
PROJECT MAC 

Computer Systems Research Division 

SOME RECENTLY REPAIRED SECURITY HOLES OF MULTICS 

by J. H. Saltzer and D. Hunt 

January 28, 1974 

Request for Comments No. 47 

This note is the third of a series* which describes design and imple

mentation errors in Multics which affect its ability to protect information and 

provide service. The purpose of the series is to try to discuss what incorrectly 

laid groundwork permitted each trouble to creep in. 

It is interesting (and comforting) to note that no security problem yet 

discovered has required any change in the original overall design of Multics; 

the problems have universally been at the level of detailed design errors or 

implementation slipups; the repairs have been conceptually simple readjustments 

to bring the design or implementation back to the originally intended one. 

Reused address 

Following a system crash, the salvager may discover that a single disk 

or drum page is being used by two or more page tables, a situation which should 

ne~er occur intentionally, but may appear if a crash occurs while updating a 

page table value. In the original design, the page in question was awarded to 

the first page table encountered by the salvager, and later users of that page 

were assigned new pages containing zeroes. Since there is no way to tell which 

of the multiple users was the legitimate one, the present, safer design gives 

all users of a reused page distinct pages of zeroes. This improved design 

helps reduce the chance of one user seeing another user's data because of a sys

tem crash. Ideally, one would make the storage space which holds a page larger 

than the page itself, and store a copy of the segment unique identifier with each 

page when it is assigned to a segment. Then, since pages are identifiable, lost 

or multiply-used pages could be returned to their proper owners with less chance 

of accidental interchange. 

This problem illustrates an issue which is as yet not very systematically 

approached in large systems: the initial design almost always assumes perfectly 

functioning hardware and software, and as experience is gained about which 

failures are most common, patches are added to protect. The design of the 

* Previously issued: RFC-5 and RFC-46. 

This note is an informal working paper of the Project MAC Computer Systems 
Research Division. It should not be reproduced without the author's per
mission, and it should not be referenced in other publications. 



second CTSS file system included fo:s;ward ..!!!:2 backward pointers with every 

record of a file; the system always checked the back pointers to see that 

they contained the expected values. As a result, parts of user files were 

almost never interchanged -- a distinct improvement over the first CTSS file 

system which used forward pointers alone, and in which it was a common occur

rence to find someone else's data in your file. Unfortunately, this parti

cular CTSS lesson did not get transferred to Multics, probably because of the 

extra overhead that might have been involved in drum management. 

Operator login window 

When bootloading Multics, the operator dialed a telephone number to 

log in the "initializer" console, which controls all system operation. A 

hostile user, with careful timing, could dial the number and take over the sys

tem as it comes up. The design was adopted so that system initialization could 

be performed from any available terminal; it was originally intended that the 

operator supply a password, but for some reason that intent was never implemented. 

The design was recently changed to permit use of a terminal which is permanently 

wired to the system; security is higher, but when that terminal breaks, system 

operation may be awkward. The awkwardness c~n be eliminated by having several 

available hardwired terminals. 

FSDCT update problem 

The "file system device configuration table' (FSDCT) contains a bit 

for every storage block in every secondary storage device. A "one" means 

the block is unused, a "zel!o11 means it is used. If several devices become 

completely used, a page of the FSDCT may become filled with zeroes. Since 

it is an important table, it is frequently backed up by copying it out to 

secondary storage. The procedure invoked for this copyL-_g is the standard 

page removal procedure, which has been designed to discard pages of zeroes 

rather than writing them out. The routines which read the FSDCT from 

secondary storage at system initialization time (before the standard paging 

program works) was a non-~:andard one which did not know that pages of zeroes 

were given special treatment; a system crash resulted whenever the system 

was initialized. In principle, at least, a user with a very large storage 

allo~ent could exploit this bug by creating many segments just before a 

system shutdown. The system would shut down with an FSDCT containing blank 



-

-3-

pages, and all future attempts to bootload the system would fail. The bug 

was fixed by revising the FSDCT reading procedure to correctly recognize the 

blank pages during initialization. 

This is a category of bug which does not permit the exploiter to 

read information, but merely to deny use of the system to other legitimate, r 

users. The particular problem illustrates the effect of first using a 

special trick for efficiency, followed by later use of an old procedure 

for a new purpose without reviewing its operat!on for special tricks. 

Login table overflow 

The list of logins during a single boatload of Multics was stored in 

a single segment with no overflow procedure. A single user, by logging in 
I , 

several thousand times, could overflow the segment, making further logins 

by authorized users impossible. 

This is another example of a "denial-of-use" bug, but one which 

could be rapidly recovered from by reinitializing the system. Its origin 

lies in the period between 1968 and 1970 when a combination of pressure to 

get going and also a short average "system up" time made programmed provi

sions for table overflow look like a non-essential luxury. It has been 

long since fixed by adding an overflow procedure, but its origin is instruc

tive since there may be yet unsuspected protection bugs with the same origin. 

Page control magic number 

An old hardware bug trap places magic numbers in core where a page 

is to be read in, then after reading the page checks.the numbers. If still 

there, it assumes the page didn't come in, and reports a page read error to 

the user. If a user places contrived names containing the magic bit patterns 

strategically in a directory to which he has only append access, he can 

effectively delete other entries in the directory. 

The trap has been left in the system, but it has been placed under 

strict operations control by requiring a special "debug" card in the configur

ation deck loaded by the system operator before lootload; operation with 

the debug card in place is done only with special authorization, and leaves 

an audit trail. 



Retriever .!£.!-setting bug 

The retriever, used to obtain old copies of files from backup tapes, 

used to work as follows : 

1. Create a new empty segment in the user's directory, with an 
access-control-list permitting access to anyone. 

2. Copy the data from the tape into the new segment. 

3. Read the appropriate aecess~control-list from the tape. 

4. Replace the initial access-control-list with the one read 
from the tape. 

If an error of any kind occurred after completion of step 2, the retriever 

would exit, leaving the data reloaded but unprotected; the user received no 

warning of the condition. As a result, an explorer of the directory hierarchy 

would typically discover several files to which he had access but should not 

have. 

The problem was repaired by making the initial access-control-list 

grant access to the retriever process only; any errors after that point 

result in a fail-safe inaccessibility of the segment. Since the user who 

requested the retrieval will usually try to immediately use his retrieved 

segment, its inaccessibility will tend to be discovered quickly, and a 

locksmith can be called upon to adjust the situation. 

This problem is a good example of design wh:i .::~1 did not take 

into account all the implications of an error encountered in an otherwise 

acceptable sequence. 

Process directory record overflow 

If the user generates t~J much sto~age (more thaP 500 pages) in 

his process directory, an error is signalled to him. In the original design, 

the signaller used the wrong stack, crashing the system. This bug could be 

exploited to deny service to others at the user's whim. It was repaired by 

having the signaller use •,l,.e correct stack. It is a good example of the 

effect of complexity (the need for several possible stacks) compounded with 

the difficulty of testing unused and limit conditions. Basically, the 

handlers for rare and unusual conditions tend to be poorly tested simply be

cause normal use, which uncovers most bugs in today's systems, does not 

exercise them. 



·-

-5-

Locked stack ~ problem 

In the design of the 645, a provision was made for the supervisor to 

lock the value of any base register. This feature was included primarily 
I 

because it was planned to handle faults and interrupts using a stack, and it 

waJ not certain at the time whether or not use of a stack was possible unless 
I 

the stack base register (containing the stack segment number) was locked against 
I • 

user tampering. For several years, Multics operated with a locked stack base 

register whose value was changed·by a master-mode procedure as part of the 

ring-switching operation. 

The fault and interrupt interceptors were coded assuming a locked 

stack base at three points, although after the ring design was complete, 
I 

it'became clear that the user could, in principle, be safely ,allowed to 

mo4ify the stack base register. 

With the evolution of the design of the PL/I compiler, it became appar

ent that the extra flexibility of allowing the stack base register to be user 

changeable was quite handy, so the stack base register was unlocked. Unfortu

nately, no one followed through with the three one-line changes to the fault 

and interrupt interceptors required to eliminate their dependence on a locked 

stack base register. As a result, one could load the stack base register with 

the segment numbers of one of the ring-zero stacks, and then wait for the 

next fault or interrupt, which would go to an interceptor which incorrectly 
! 

assumed that because the stack base register had the expected value, the 

stJck pointer register must also be loaded correctly. The result was 

possible overwriting of a ring zero data storage area at the direction of 

the user. 

The problem was fixed by adding the three one-line checks mentioned. 

The underlying trouble here seems to be a failure to follow through all the 

implications of a change in a fundamental ground rule; clearly such changes 

are dangerous and must be approached with all possible caution. (see also 
I 

RFC-46, discussion of user-ring master-mode procedures.) 

!!!'! ring ill£! bug 
The system has an internal procedure, named "append_branch", which 

creates a new segment, and a utility named "makeseg" which either creates 

a new segment (by calling "append_branch") or returns a pointer to an old 



-6-

one if it already exists. Since "append_branch" requires many arguments to 

describe the newly created segment, and "makeseg" supplies useful defaults 

for most of the arguments, there is a tendency among system programmers to 

call "makeseg" rather than "append_branch", even when use of an old segment 

would be incorrect. In the case of the procedure which creates stacks for 

newly entered rings, the user could create a segment with the stack name of 

a previously unused inner ring, but with ring brackets allowing him to 

read and write the stack contents. Then, upon calling a procedu.re in the 

inner ring, stack creation would be automatically triggered. The stack 

creating program called 11makeseg 11 , and thus would receive a pointer to the 

previously planted stack rather than an indication of an error. The inner 

ring procedure would then proceed, oblivious to the fact that its stack 

was then accessible to programs in outer rings. 

The problem was fixed in moving to the 6180, since the stack 

creation strategy had to be modified anyway; procedure append_branch is now 

used. We have here an example of how a particular combination of too many 

conveniences in one utility program can lead to sloppy consideration of 

the implications of using it. 


