
' I ..

PROJECT MAC

Computer Systems Research Division

A CPU SPEED MEASUREMENT TOOL

by J. H. Saltzer

October 9, 1973

Request for Comments No. 39

The enclosed writeup, in SPS format, describes a software tool

I have found very useful in making measurements of the 6180 processor.

It may be found in my directory, under the name

">udd>CompSys>Saltzer>mip_test".

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per­
mission, and it should not be referenced in other publications.

mip_test

tool

April 30, 1973

Purpose

The mip_test command is a diagnostic tool used to measure the performance

of the central processor and identify sources of interference with its

normal running speed. The command performs a standard instruction sequence

1000 times, noting the time required for each of the 1000 runs. It then

prints a table of run times (in microseconds), run speeds (in millions of

instructions per second) and number of observations. Excessively long

run times (more than about 3 times normal) are assumed to be the result

of interrupts, and are sunnnarized, rather than included in the table. The

primary use of this connnand is to verify that the processor is working

correctly.

Usage

mip_test

sequence_ option

2) sleep_count

3) margin

-sequence_option- -sleep_count- -margin-

if present indicates which of four instruction
sequences is to be used. The following are
recognized:

ada ada instructions

epp epp instructions with ordinary address

eppi eppi instructions with indirect address

spr spr instructions

mix "Multics mix" of instructions

If sequence_option is omitted, "mix" is used.

if present, is a decimal integer indicating the
number of times the experiment should be repeated,
with a ten-second pause between repeats. A single
summary table is printed, combining the repeats.
If sleep count is omitted, a value of 1 is used. A
sleep co~nt larger than 1 may be useful in making
the program run in different memory boxes at differ­
ent times.

if present, indicates that shorter or longer instruc­
tion sequence than usual should be used. The value
margin = "short" produces an instruction sequence
about 50% shorter, while the value margin = "long"
produces an instruction sequence about 50% longer.
The longer and shorter instruction sequences are some­
times useful in interpreting abnormal results.

-2-

Notes

The actual run timing is performed in a machine language subroutine which

reads the calendar clock, executes the test sequence, and reads the calendar

clock again. To control the effect of the time required for the clock

reading itself, a test sequence requiring 200-300 microseconds is used.

The machine language program is an impure procedure, so that all instruction

and operand references for a single test sequence can be concentrated in a

single page and also located in the same memory controller. (If interlace

is used, the test sequence may be spread among memory controllers despite

its concentration in a single page.) For this reason, the test may run at

normal speed even if part of the processor associative memory is disabled

only one or two AM registers are needed for normal-speed operation.

Because it is an impure procedure, some care is required to run it. The

internal alm procedure is named "mipt", and is placed in the Multics storage

system with the copy switch set on. This switch guarantees that when the

program is used, a private copy is first made for the user, in his process

directory, using a standard unique identifier for its segment name.

If there is no interference, all 100 test sequences should run with the same

speed. In practice, one usually observes about 70-90% of the sequences to be

at one speed, and the remaining 10-30% to be at slower speeds, corresponding

to various combinations of memory interference caused by I/O or another

processor. In addition, the different CPU's and memory boxes have different

speeds in a range of about ~ 1%; some experiments will exhibit these

differences.

Program mip_test calls the command pcd to get a listing of cpu's and memories,

both before and after the experiment. Use of the pcd command requires system

programming (phcs_) privileges.

-3-

The thirty instruction sequence used as a "Multics mix" is as follows:

CIJIJOP it~ "1
~pr ibp it~ "2
1dcJ<..j biJI3 II::.;

ada b iJ ll~ ''II

s ta \J ''5
1doq y "t..J
J,Jpy 1, d 1 117

stoq \J II" ()

spribp its II ~J

tra l,ic "1U
1da bpiU,* 11 11
anaq bpiG "12
qr 1 3 ~~ 11 13
stu VJ II lll

dO~ X "15
CPIJUP its IIlLi
1 cLJ \v 11 17
1J<Jlj X "1o
eraq 7 II 1 :.J ...
CI:Jpq ;:;u 11 iu
tnL l, i c 11 21
1h 34 II ') , !
SIJr ibp its "2,;)
f1J u,Jl 112.4

c)JcJ y II 2 ;_j

sba L.
II '! , ... u

sta \v "L.J
lda u,Ju II ,.) t.' ... o
eaxl -1,1 "L:J
tn~: -2g,ic II.:) U

The data area addressed by this sequence is in the same page of memory as the

instruction sequence, and is declared as follows: (location "its" is initiali­

zed with a pointer to itself.)

even
b!.>S clkl,~~

i t s: dec u
Jec \)

x: Jec 1131
y: dec 7~5

L. : dec .;;7~31

\ J : dec lJ

On the following three pages are sample outputs of the mip_test command, on

the HISI 6180 at M. I. T. The occasional fast execution of the "spr" instruc­

tion are unexplained.

'I

mip_test mix

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

i 10 trials of over 1000 microseconds.
musecs mips

282 .644 0
280 .648 1
279 .652 51
277 .656 948
275 .660 0

average mips = .659
each trial 182 instructions

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

r 1703 1. 055 3.450 107

mip_test mix long 10

cpu b 6
...,.

mem b 128. on
mem c 128. on
mem a 128. off

73 trials of over 1150 microseconds.
musecs mips

430 .632 0
427 .636 1
425 .640 35
422 .644 57
419 .648 2790
417 .652 118
414 .656 92
412 .660 6907
409 .664 0

average mips = .G58
each trial 272 instructions

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

r 1706 7.825 7.358 267

mip_test spr

cpu b 6
mem b 128. on
rnem c 128. on
mem a 128. off

-5-

16 trials of over 1000 microseconds.
musecs

409
406
402
399
395
392
388
385
382
379
376
372
3G9
366
3G4
361
358
355

mips
.444
.448
.452
.456
.460
.464
.468
.472
.476
.480
.484
.488
.492
.496
.500
.504
.508
.512

0
112
873
0
0
0
0
0
0
0
0
0
0
0
0
0
15
0

average mips = .453
each trial 182 instructions

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

r 1709 1.380 1.890 61

mip_test ada

cpu b
mem b
mem c
mern a

6
128.
128.
128.

on
on
off

3 trials of over 1000 microseconds.
musecs mips

203 1.188 0
203 1.192 461
202 1.196 539
201 I. 200 0

average mips = 1.195
each trial 242 instructions

CPU b
mem b
mem c
mem a

6
128.
128.
128.

on
on
off

r 1709 .943 1.572 40

. -~~·

mip_test epp

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

5 trials of over 1000 microseconds.
musecs mi ps

280 .648 0
279 .652 1
277 .656 754
275 .660 245
274 .664 0

average mips = .660
each trial 182 instructions

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

r 1656 1. 208 4.658 111

mip_test eppi

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

4 trials of over 1000 microseconds.
musecs mi ps

363 .336 0
358 .340 1000
354 • 3 44 0

average mips = .341
each trial 122 instructions

cpu b 6
mem b 128. on
mem c 128. on
mem a 128. off

r 1657 1. 208 4.558 84

hmu

Multics 20.12bx, load 22.0/50.0; 22 users
Absentee users 0/2

r 1657 .110 .136 11

Today is October 8, 1973 @

