
PROJECT MAC 

Computer Systems Research Division 

SOME SYSTEM CERTIFICATION TASKS 

by J. H. Saltzer 

September 5~ 1973 

Request for Comments No.34 

One of the goals of this summer's work has been to lay out in more 

detail some specific tasks which will allow us to get started on the over­

all project of developing a certifiably ("auditably") correct protected 

core for Multics. This note describes several specific tasks which so far 

have been identified as plausible candidates; the purpose of this note is 

to promote discussion -- better defining these tasks~ and to encourage 

suggestions for tasks not defined here. 

Several of the tasks suggested here involve modifications to the 

current Multics system. For each of these~ two observations are in order: 

1) a method of measurement of progress is needed~ to establish "how much" 

each modification carries us toward the goal of an auditable central core; 

and 2) discussions and negotiations with Honeywell are required to estab­

lish whether or not each suggested modification should be targeted toward 

installation in some current or future standard version of Multics. It 

seems inevitable that at least some of the changes which will be needed to 

achieve an auditable system will violate either compatability or performance 

constraints of the standard system~ and thereby force a development of a 

parallel version~ which we might call Multics/A (for Multics/Auditable). 

On the whole~ it will be seen that most of the initial tasks are 

directed toward identifying more exactly which functions of the operating 

system must be privileged~ and which~ by careful design~ can be left to the 

user (in Multics~ on a per ring basis.) This work may be described as 

better defining where the security perimeter of the system should be located. 

It is expected that there will be many more such tasks in this class. I 

estimate that this general class of activity~ when completed~ will represent 

perhaps one-half to two-thirds of the intellectual and programming effort of 

the overall project. Two remaining major areas of work~ both more suitably 

tackled later~ are the rewriting of otherwise untouched protected programs in 

a standard auditable style~ and installation of at least one internal firewall 

This note is an informal working paper of the Project MAC Computer Systems 
Research Division. It should not be reproduced without the author's per­
mission~ and it should not be referenced in other publications. 



-2-

or protection ring within the protected supervisor to separate those proce­

dures which actually implement the protection mechanism itself -- a so-called 

"protection kernel". 

The tasks so far identified are the following: 

1. Removal of the dynamic linker and library search modules from ring 0. 

This modification would remove two large and hard-to-audit modules 

from the protected area. The dynamic linker is especially hard to audit 

because its correct operation depends on its interpreting a highly 

structured but unprotected data base (an object segment linkage and 

definition area) without accidentally getting mixed up. Neither of the 

modules has need for supervisor privileges or protection from the 

invoking user; both are currently in ring 0 because of their intimate 

interface with the storage system. The task includes better definition 

of the interface to the storage system, and taking advantage of the 

lower cost of changing protection rings with the 6180 hardware. 

2. Removal of the "reference name" concept from ring 0. The notion of a 

remembered reference name is currently maintained on a per-ring basis, 

in the per-process known segment table in ring 0. There is no apparent 

reason why reference names cannot be remembered in the ring of interest; 

such an arrangement will also permit a subsystem writer to disable 

reference names if he desires. This change would simplify both the imple­

mentation and the description of several supervisor interfaces. 

3. Removal of the "working directory" concept from ring 0. The comments 

regarding reference names apply to the working directory also. 

4. Develop a uniform storage system status-returning entry. This minor 

cleanup would replace about half-dozen distinct supervisor interfaces 

with a single, more easily audited interface for returning to the user 

any status information about his segments. (This task is actually the 

iceberg tip of a larger task to develop a simple, consistent set of 

supervisor entries.) 

5. Modify the traffic controller to provide cheap, rapidly scheduled, 

wired-down processes which can operate using any descriptor segment which 

happens to be available in primary memory. This change would allow the 

present interrupt handlers for the printer, teletype interface, network 

interface, and tape handlers to be replaced with scheduled processes. 



-3-

The actual interrupts would do nothing but notify the appropriate 

process. The virtue of this strategy is that scheduled processes 

can coordinate their activities with standard coordination primitives 

(block, wakeup, wait and notify); the present interrupt handlers 

cannot, for example, wait on an interlock, and are therefore filled 

with tricky code which uses read-alter-rewrite instructions to avoid 

encountering interlock situations. 

6. Modify the traffic controller (and other per-process data base 

managers) to permit multiple processes per address space. This 

modification is the key to untangling several very complex paths 

through the present supervisor. Typewriter management, network interface 

management, dialup handling, and quit handling can all be done as 

simple coordination of parallel processes rather than with the present 

ad hoc multiplexing of a single process among many conceptually parallel 

activities. The propagation of this change through the network control 

is planned as part of the task, to test it's effectiveness. 

7. Develop a uniform process coordination/message passing strategy. The 

current Multics has several different coordination and message passing 

schemes in it, each with slightly different properties as to the scope 

of naming and details of interface: 

Wait and notify, used for storage system signalling 

Block and wakeup, used for I/O coordination 

Interprocess communication, used for multiplexing processes 
among event call channels 

Signals, used to generate interrupts in a process 

Message segments, used to queue messages in a catalogued place 

Mail facility, used for inter-user mail 

Lock and Unlock, used for coordinating data base use 

The I/O system, used for message passing and queueing 

The task here is to develop one or two moderately flexible process 

coordination and message passing facilities which can be used to 

support all of the various users of these facilities. The payoff in 

simplification of the central supervisor should be quite high. 



-4-

8. Merge the network interface with the typewriter communications inter­

face. These two interface programs are two of the largest protected 

subsystems; they largely duplicate each other. The typewriter control 

system should use the network code conversion strategy which does not 

require protection; the network interface should use a buffering strategy 

more similar to the typewriter modules. With moderate effort, the 

interface between the 6180 and the DataNet 355 communications computer 

can be made essentially identical to the network host-to-IMP interface, 

allowing further control program sharing. By taking the best design from 

each of the two systems, a compact and effective communication interface 

module should result, with minimum privileged code. 

9. System Census. This task consists of conducting a census of the number 

of programs, number of lines of source code, and number of lines of 

generated text (machine instructions) in the protected supervisor. This 

census will be useful for two purposes: identifying subsystems which 

are unreasonably large or complex for further study, and to keep track 

of progress in simplifying and reducing the size of the protected 

supervisor. 

10. ALM program catalogue. A list of all protected programs currently written 

in ALM (the Multics Assembly Language) is being developed, with the 

goal of identifying all reasons why assembly language has been used. 

This task includes the development of proposals to eliminate the need 

for assembly language completely. Such elimination is an important step 

in simplifying the description of the system and of simplifying the job 

of an auditor. 

11. Development of coding style standards. A standard programming style 

will need to be developed, one which emphasizes clarity in program 

structure to an auditor. Undoubtedly, the programming style will borrow 

much from the emerging area of structured programming. The task includes 

the experimental rewriting of some parts of the storage/directory system to 

the new standards to test their viability. 

12. Use of unique segment number. The implication, in terms of simplifying 

system structure, of using unique identifiers for segment numbers will 

be explored. An immediate implication of such a strategy would be that 

pointers containing segment numbers could be left in permanently 



-5-

catalogued, shared storage; many programmed tricks to accomplish the 

equivalent effect could be eliminated from the system. There are many 

other implications for system creation, interprocess communication, 

dynamic linking, and hardware addressing architecture which should be 

examined; many simplifications seem to follow. An intermediate strategy, 

of using unique identifiers to replace the absolute addresses in a 

segment descriptor word, and developing a microprogrammed memory con­

troller architecture which responds to such unique identifiers and 

contains in a separate box all virtual memory implementation seems 

worthy of exploration as part of this task. 

13. I/O hardware architecture proposal. A key result of the thesis 

just completed by D. Clark is that, with correct design, essentially 

no I/O strategy or device management code, except that dealing with 

multiplexed channels, needs to be protected. Since I/O software is a 

significant part of the present protected supervisor, a detailed design 

proposal for a new hardware I/O architecture along the line of Clarks' 

thesis is in order. Thanks to the modular organization of the 6180, it 

is relatively easy to envision actually building and trying out this 

design at some point in the future. 

14. Reconfiguration hardware proposal. A fair amount of very intricate 

machine language code in the protected core of Multics is devoted to 

the dynamic reconfiguration of processors and memory, a valuable feature. 

Much of the intricacy can be attributed to performing reconfiguration 

with hardware not designed for it. A general design developed by R. Schell 

in his 1971 Ph.D. Thesis should be reviewed and a specific hardware 

proposal for the 6180 system should be constructed along the lines 

suggested by Schell. Such a design would probably influence future 

rather than current versions of the Multics hardware but the result is of 

interest now to establish how large is the effect in reducing complexity 

of the protected supervisor. In addition, operation of a secure system 

probably requires padlocking many of the control panels currently used 

by the operator to accomplish dynamic reconfiguration. 



-6-

15. System description improvement. If an auditor is to review a supervisor 

program for correctnessJ he must have a completeJ concise statement 

of what the program is intended to do. Today's description consists 

of English language supervisor interface descriptionsJ with PL/1 

calling sequences. There is no simple description of the "state" of the 

supervisor and the things a user may do to legally alter its state. 

The first step in this task is simply to collect in one place all the 

present documentation of the protected supervisor interfaceJ and 

evaluate it. The next step is to try to develop a more precise state 

description of the supervisorJ and the ways in which a user can change 

or observe its state. This task seems to include becoming expert in 

description languagesJ such as the Vienna Definition LanguageJ so as 

to develop equivalently powerful methods of describing an operating 

system. 

Some of the fifteen tasks described above are already being worked on; 

others may not be started for some timeJ depending on availability of 

personnel to do them. A detailed schedule of target completion times has 

not yet been developed. 

• 


