
PROJECT MAC March 15, 1973 

Computer Systems Research Division Request for Comments No. 11 

PROTECTION AND THE CONTROL OF INFORMATION SHARING IN MULTICS 

by Jerome H. Saltzer 

Abstract: This paper describes the design of mechanisms to control 

sharing of information in the Multics system. Nine design principles 

help provide insight into the tradeoffs among different possible designs. 

The key mechanisms described include access control lists, hierarchical 

control of access specifications, identification and authentication of 

users, and primary memory protection. The paper ends with a discussion 

of several known weaknesses in the protection mechanism design. 

Keywords: Multics, protection, security, privacy, access control, 
authentication, computer utilities, time-sharing systems, 
proprietary programs, protected subsystems, virtual 
memory, descriptors. 

CR Categories: 2.12, 3.70, 4.30, 6.2 

This is the second draft of a paper currently intended for sub
mission to the ACM 4th Symposium on Principles of Operating Systems, to 
be held in Yorktown Heights, New York, in October, 1973. 

~ 1973 by J. H. Saltzer. All rights reserved. 

This note is an informal working paper of the Project MAC Computer 
Systems Research Division. It should not be reproduced without the 
author's permission, and it should not be referenced in other publica
tions. 



date 3/13/73 

Protection and the Control of Information Sharing in Multics 

by J. H. Saltzer 

An essential part of a general-purpose computer utility system is 

a set of protection mechanisms which control the transfer of information 

among the users of the utility. The Multics system*, a prototype com-

puter utility, serves as a useful case study of the protection mechanisms 

needed to permit controlled sharing of information in an on-line, general-

purpose, information-storing system. This paper provides a survey of the 

various techniques currently used in Multics to provide controlled sharing, 

user authentication, inter-user isolation, supervisor-user protection~ 

user-written proprietary programs, ai::td control of special privileges. 

As will be seen, controlled sharing of information was a goal in · 

the initial specifications of Multics, and thus has influenced every 

stage of the system design, starting with the hardware modifications to 

the General Electric 635 computer which produced the original GE645.base 

for Multics. As a result, information protection is more thoroughly 

integrated into the basic design of Multics than is the case in many 

commercial systems whose original specifications did not include comprehen-

sive consideration of information protection. 

* A brief description of Multics, and a more complete bibliography, are 
given in the paper by Corbato, Saltzer, and Clingen [CSC]. 



Saltzer -- Protection in Multics -2-

Multics is an evolving system, so any case study must be a snapshot 

taken at some specific time. The time chosen for this snapshot is Spring, 

1973, at which time Multics is operating at M. LT. using the Honeywell 6180 

computer system. Rather than trying to document every detail of a changing 

environment, this paper concentrates on the protection strategy of Multics, 

with the goal of communicating those ideas which can be applied or adapted 

to other operating systems. 

What is new? 
~~--

In trying to identify the ideas related to protection which were first 

introduced by Multics, a certain amount of confusion occurs. The design was 
''' 

in;i.tially laid out in. 1964-196 7, and ideas were borrowed from many sources 

and embe 11 ished, and new ideas were added. Since then, the sys tern has . b,een 

available for study to many other system designers, who have in turn borrowed 
' . 

and embellished upon the ideas they found in Multics while constructing their 

own systems. Thus some of the ideas reported here have already ~ppeared ~n the 

literature. Of the ideas reported here, the following seem to be both novel 

and previously unreported: 

The notion of designing a comprehensive computer utility with information 

protection as a fundamental objective. 

qperation of the supervisor under the same hardware constraints as 

user programs, under descriptor control and in the same address.space 

as the user. 

Facilities for user-constructed protected subsystems. 

Interactive authentication of jobs received through the card reader. 

Extensive human engineering of the user authentication (password) interface-

Decentralization of administrative control of the protection mechanisms. 

Ability to allow or revoke access with immediate effect. 



Saltzer -- Protection in Multics -3-

Multics is unique in the extent to which information protection has been 

permitted to influence the entire system design. By describing the range of 

protection ideas embedded in Multics, the extent of this influence should 

become apparent. 

Design Principles 

Before proceeding, it is useful to review several design principles 

which were used in the development of facilities for information protection 

in Multics, TheSE' design principles provided guidance in many decisions, 

although admittedly some of the prirciples were articulated only during the 

design, rather th<m in advance. 

1. Every designer should know and understand the protection objectives 

of the system. At the present rather shaky stage of unders ta.•tding 

of operating system engin~ering, there are many points at whieh an 

apparently "don 1 t care" d·~cision actually has a bearing on 

protect ton. Although thene decisions will eventually come to 

light as the system design is integrated, a system design cannot 

withstand very many reversals of early design decisions if it is 

to be completed on a reasonable schedule and within a budget. By 

keeping all designers awa~e of the protection objectives, the 

early decisions are more likely to be made correctly. 

2. Keep the design as simple and small as possible. This principle is 

stated so often that it becomes tiresome to hear. However, it bears 

repeating with respect to protection mechanisms, since there is a 

special problem: design and implementation errors which result in 

unwanted access paths will not be immediately noticed during routine 



Saltzer -- Protection in Multics -4-

use, since routine use usually does not include attempts to utilize 

improper access paths. Therefore, techniques such as complete, 

line-by-line auditing of the protection mechanisms are necessary; 

for such techniques to be successful, a small and simple design is 

essential. 

3. Protection mechanisms should be based on permission rather than 

exclusion. This principle means that the default situation is lack 

of access, and the protection scheme provides selective permission for 

specific purposes. The alternative, in which mechanisms attempt to 

screen off sections of an otherwise open system, seems to present 

the wrong psychological base for secure system design. A conserva

tive design must be based on arguments on why objects should be 

accessible, rather than on why they should not; in a large system 

some objects will be inadequately considered and a default of lack 

of access is more fail-safe. Along the same line of reasoning, a 

design or implementation mistake in a mechanism which gives explicit 

permission tends to fail by refusing permission, a safe situation, 

since it will be quickly detected. On the other hand a design or 

implementation mistake in a mechanism which explicitly excludes 

access tends to fail by not excluding access, a failure which may 

go unnoticed. 

4. Every access to every object must be checked for authority. This 

principle, when applied methodically, is the primary underpinning 

of the protection system. It forces a system-wide view of access 

control which includes initialization, recovery, shutdown, and 

maintenance. It also implies that a foolproof method of 



Saltzer -- Protection in Multics -5-

identifying the source of every request must be devised. In a 

system designed to operate continuously, this principle requires 

that when access decisions are remembered for future use, careful 

consideration be given to how changes in authority are propagated 

into such local memories. 

5. The design is not secret. The mechanisms do not depend 

on the ignorance of potential attackers, but rather on possessiun 

of specific, more easily protected, protection keys or passwords. 

This strong decoupling between protection mechanisms and protection 

keys permits the mechanisms to be reviewed and examined by as many 

competant authorities as possible, without concern that such review 

may itself compromise the safeguards. Peters [P) and Baran [B) 

discuss this point further. 

6. The principle of least privilege. Every program and every 

privileged user of the system should operate using the least amount 

of privilege neces·sary to complete the job. If this principle is 

followed, the effect of accidents is reduced. Also, if a question 

related to misuse of a privilege occurs, the number of programs 

which must be audited is minimized. Put another way, if one has a 

mechanism available which can provide "firewalls", the principle of 

least privilege provides a rationale for where to install the firewalls. 

7 . Make sure that the design encourages correct behavior in the users, 

operators, and administrators of the system. Previous experience 

with systems which did not follow this principle has revealed numerous 

examples in which users ignored or bypassed protection mechanisms 

for the sake of convenience. It is essential that the human inter

face be designed for naturalness, ease of use, and simplicity, so 

that users will routinely and automatically apply the protection 

mechanisms. 



Saltzer -- Protection in Multics -6-

8. Provide the option of complete decentralization of the administration ~ 

of protection specifications. If the system design forces all ad-

ministrative decisions (e.g., protection specifications) to be set 

by a single administrator, that administrator quickly becomes a 

bottleneck and an impediment to effective use of the system, with the 

result that users begin adopting habits which bypass the administrator, 

often compromising protection in the bargain. Even if responsibility 

can be distributed among several administrators, the same effects may 

occur. Only by permitting the individual user some control of his own 

administrative environment can one insist that he take responsibility 

for his work. Of course centralization of authority should 
J 

be available as an option. It is easy to limit decentralization; 

it seems harder to adapt a centralized design to an environment 

in which decentralization is needed. 

9. Assume that some users will require protection schemes not antici-

pated in the original design. This principle requires that the 

system provide a complete set of handholds so that the user, without 

exercising special privileges, may construct a protected subsystem 

which can interpret access requests however the user desires. 

The application of these nine design principles will be evident in 

many of the specific mechanisms described in this paper. 

The Storage System and Access Control Lists 

The central fixture of Multics is an organized information storage 

system. Since the storage system provides both reliability and protection 

from unauthorized information release, the user is thereby encouraged 

to make it the repository of all of his programs and data files. All use of 



Saltzer -- Protection in Multics -7-

information in the storage system is implemented by mapping the information into 

the virtual memory of some Multics process. Physical storage location is auto-

~~~!~~lly determined by activity. As a result, the storage system is also used for 

all system data bases and tables, including those related to protection. The con-

sequence of these observations is that one access control mechanism, that of the 

storage system, handles almost all of the protection responsibility in Multics. 

Storage is logically organized in separately named data storage segments, 

each of which contains up to 262,144 36-bit words. A segment is the cataloguing 

unit of the storage system, and it is also the unit of separate protection. 

Associated with each segment is an access control list, an open-ended list 

of names of users who are permitted to reference the segment.* To under-

stand the structure of the access control list, first consider that every 

access to a stored segment is actually made by a Multics process. Associated 

with each process is an unforgeable character string identifier, assigned to 

the process when it was created. In its simplest form, this identifier might 

consist of the personal name of the individual responsible for the actions 

of the process. (This responsible person is commonly called the principal, 

and the identifier the principal identifier.) Whenever the process attempts 

to access a segment or other object catalogued in the storage system, the 

principal identifier of the process is compared with those appearing on the 

access control list of the object; if any match is found access is granted. 

Actually, Multics uses a more flexible scheme which facilitates granting 

access to groups of users, not all of whose members are known, and which may have 

dynamically varying membership. A principal identifier in Multics consists 

of several parts; each part of the identifier corresponds to an independent, 

* The Multics access control list corresponds roughly to a column of 
Lampson's protection matrix. [L] 



Saltzer -- Protection in Multics -8-

exhaustive partition of all users into named groups. At present, the 

standard Multics principal identifier contains three parts, corresponding to 

three partitions: 

1. The first partition places every individual user of the installation 

in a separate access control group by hbnself, and names the group 

with his personal name. (This partition is identical to the simple 

mechanism of the previous paragraph.) 

2. The second partition places users in groups called projects, which 

are basically sets of users who cooperate in some activity such as 

constructing a compiler or updating an inventory file. One person 

may be a member of several projects, although at the beginning of any 

instance of his use of Multics he must decide under which project he is 

operating. 

3. The third partition allows an individual user to create his own, named 

protection compartments. Private compartments are chiefly useful for 

the user who has borrowed a program which he has not audited, and wishes 

to insure that the borrowed program does not access certain of his own 

files. The user may designate which of his own partitions he wishes to 

use at the time he authenticates his identity.* 

Although the precise description in terms of exhaustive partitions 

sounds formidable, in practice a relatively easy-to-use mechanism results. For 

example, the user named "Jones" working on the project named "Inventory" and 

designating the personal compartment named "a" would be assigned the principal 

identifier: 

Jones.Inventory.a 

* The third partition has not yet been completely implemented. The current 
system uses the third partition only to distinguish between interactive and 
absentee use of the system. 



Saltzer -- Protection in Multics -9-

Whenever his process attempts to access an object catalogued in the storage 

system, this three part principal identifier is compared with successive entries 

of the access control list for the object. An access control list entry 

similarly has three parts, but with the additional convention that any or all 

of the parts may carry a special flag to indicate "don't care" for that 

particular partition. (We represent the special flag with an asterisk in 

the following examples.) Thus, the access control list entry 

Jones.Inventory.a 

would permit access to exactly the principal of our earlier example. The 

access control list entry 

Jones.*.* 

would permit access to Jones no matter what project he is operating under, and 

independent of his personally designated compartment. Finally, the access con

trol list entry 

*.Inventory.* 

would permit access to all users of the "Inventory" project. Matching is on 

a part by part basis, so there is no confusion if there happens to be a project 

named "Jones". 

Using multi-component principal identifiers it is straightforward to 

implement a variety of standard security mechanisms. For example, the military 

"need-to-know" list corresponds to a series of access control list entries with 

explicit user names but (possibly) asterisks in the remaining fields. The 

standard government security compartments are examples of additional partitions, 

and would be implemented by extending the principal identifier to four or more 

parts, each additional part corresponding to one compartment in use at a parti

cular installation. A restriction of access to users who are simultaneously 

in two or more compartments is then easily expressed. 



Saltzer -- Protection in Multics -10-

We have used the term "object" to describe the entities catalogued by 

the storage system with the intent of implying that segments are not the only 

kinds of objects. Currently, four kinds of objects are implemented or 

envisioned: 

1. Segments 

2. Message queues (experimental implementation) 

3. Directories (called catalogues in some systems) 

4. Removable media descriptors (not yet implemented) 

For each object, there are several separately controllable modes of 

access to the object. For example, a segment may be read, written, or executed 

as a procedure. If we use the letters r, w, and e for these three modes of 

access, an access control list entry for a segment may specify any of the 

combinations of access in table I. Certain access mode combinations are 

prohibited either because they make no sense (e.g., write only) or correct 

implementation requires more sophisticated machinery than implied by the 

simple mode settings. (For example, an execute-only mode, while appealing as 

a method for obtaining proprietary procedures, leaves unsolved certain problems 

of general proprietary procedures, such as protection of return points of calls 

to other procedures. The protection ring mechanism described later is used in 

Multics to implement proprietary procedures. The execute-only mode, while 

probably useful for less general cases, has not been pursued.) 

Mode ical use 

(none) access denied 

r read-only data 

re pure procedure 

rw writeable data 

rew impure procedure 

Table I: Acceptable combinations of access modes for a segment. 



Saltzer -- Protection in Multics -11-

In a similar way, message queues permit separate control of enqueueing 

and dequeueing of messages, tape reel descriptors permit separate control of 

reading, writing, and appending to the end of a tape reel, and directories 

permit separate control of listing of contents, modifying existing entries, 

and adding new entries. Control of these various forms of access t.o objP.ct"l 

is provided by extending each access control list entry to include access 

mode indicators. Thus, the access control list entry 

Smith.*.* rw 

permits Smith to read and write the data segment associated with the entry. 

It would have been simpler to associate an access mode with the 

object itself, rather than with each individual access control list entry, 

but the flexibility of allowing different users to have different access 

modes seems useful. It also makes possible exceptions to the granting of 

access to all members of a group. In the case where more than one access 

control list entry applies, with different access modes, the convention is 

made that the first access control list entry which matches the principal 

identifier of the requesting process is the one which applies. Thus, the 

pair of access control list entries: 

Smith. Inventory.* 

* • Inventory.* 

(none) 

rw 

would deny access to Smith, while permitting all other members of the 

"Inventory" project to read and write the segment. To insure that such con

trol is effective, when an entry is added to an access control list, it is 

sorted into the list according to how specific the entry is by the following 

rule: all entries containing specific names in the first part are placed 

before those with "don't cares" in the first part. Each of those subgroups 

is then similarly ordered according to the second part, and so on. The 

purpose of this sorting is to allow very specific additions to an access 

control list to tend to take precedence over previously existing (perhaps 



Saltzer -- Protection in Multics -12-

by default) less specific entries, without requiring that the user master 

a language which permits him arbitrary ordering of entries. The result 

is that most common access control intentions are handled correctly 

automatically, and only unusually sophisticated intentions require careful 

analysis by the user to get them to come out right. 

To minimize the explicit attention which a user must give 

to setting access control lists, every directory contains an "initial access 

control list11 • Whenever a new object is created in that directory, the con-

tents of the initial access control list are copied into the access control 

list of the newly created object*. Only if the user wishes access to be 

handled differently than this does he have to take explicit action. Permission 

to modify a directory's contents implies also permission to modify its initial 

access control list. 

The access control list mechanism illustrates an interesting subtlety. 

One might consider providing, as a convenience, checking of new access control 

list entries at the time they are made, for example to warn a user that he has 

just created an access control list entry for a non-existent person. Such checks 

were initially implemented in Multics, but it was quickly noticed that they 

represented a compromise of privacy: by setting an access control list entry 

for an individual's name, one could learn whether or not that individual was 

a registered user of the system. For this reason, a name-encoding 

scheme which required checking of access control entry names at the time 

they were created was abandoned. 

* An earlier version of Multics did not copy the initial access control 
list, but instead considered it to be a common appendix to every access 
control list in that directory. That strategy made automatic sorting of 
access control list entries ineffective, so sorting was left to the user. 
As a result, the net effect of a single change to the common appendix 
could be different for every object in the directory, leading to frequent 
mistakes and confusion, in violation of the seventh design principle. Since 
in the protection area, it is essential that a user be able to easily under
stand the consequences of an action, this apparently more flexible design was 
abandoned in favor of the less flexible but more understandable one. 



Saltzer -- Protection in Multics -13-

It is also interesting to compare the Multics access control scheme 

with that of the earlier CTSS system [CTSS]. In CTSS, each file had a set 

of access restriction bits, applying to all users. Sharing of files was 

~ccomplished by permitting other users to place in their directories special 

entries called links, which named the original file, and typically contained 

further restrictions on allowable access modes. The CTSS scheme had several 

defects not present in the Multics arrangement: 

1. Once a link was in place there was no way to remove it without 

modifying the other user's directory. Thus, revocation of access 

was awkward. 

2. A single user, using the same file via different links, could 

have different access privileges, depending on which link he used. 

Allowing access rights to depend on the name which happens to be used 

for an object certainly introduces an extra degree of flexibility, 

but this flexibility more often resulted in mistakes than in usefulness. 

3. As part of a protection audit, one would like to be able to obtain 

a list of all users who can access a file. To construct that list, 

on CTSS, one had to search every directory in the system to make 

a list of links. Thus such an audit was expensive and also com

promised other users' privacy. 

Multics retains the concept of a link as a naming convenience, but the Multics 

link confers no access privileges -- it is only an indirect address. 

Early in the design of Multics an additional extension was proposed 

for an access control list entry: the "trap" extension, consisting of a one

bit flag and the name of a procedure. The idea was that for all users whose 

principal identifier matched with that entry, if the trap flag were ~ the 

procedure named in the trap extension should be called before access be 

granted. The procedure, supplied by the setter of the access control list 



Saltzer -- Protection in Multics -14-

entry, could supply arbitrary access constraints, such as permitting access 

only during certain hours or only after asking another logged in user for 

an OK. This idea, like that of the execute-only procedure, is appealing 

but requires an astonishing amount of supporting mechanism. The trap pro

cedure cannot be run in the requesting user's addressing and protection 

environment, since he is in control of the environment and could easily sub

vert the trap procedure. Since the trap procedure is supplied by another user, 

it cannot be run in the supervisor's protection environment, either, so a sepa

rate, protected subsystem environment is called for. Since the current Multics 

protected subsystem scheme allows a subsystem to have access to all of 

its user's files, implementation of the trap extension could expose a user 

to unexpected threats from trap procedures on any data segment he touches. 

Therefore, at the least, a user should be able to request that he be denied 

access to objects protected by trap extensions, rather than be subject to 

unexpected threats from trap procedures. Finally, if such a trap occurs on 

every read or write reference to the segment, the cost would seem to be high. 

On the other hand, if the trap occurs only at the time the segment is mapped 

into a user's address space*, then design principle four, that every reference 

be validated is violated; revocation of access becomes difficult especially if 

the system is operated continuously for long periods. The sum total of these 

considerations led to temporarily abandoning the idea of the trap extension, 

perhaps until such time as a more general domain scheme, such as that suggested 

by Schroeder [S] is available. 

Both backup copying of segments (for reliability) and bulk input and 

output to printers, etc. are carried out by operator-controlled processes 

which are subject to access control just as are ordinary users. Thus a user 

* Or, in traditional file systems, at the time the file is "opened". 



Saltzer -- Protection in Multics -15-

can insure that printed copies of a segment are not accidentally made, by fail-

ing to provide an access control list entry which permits the printer process to 

read the segment.* Access control list entries permitting backup and bulk 

I/O are usually part of the default initial access control list. Bulk input 

of cards is accomplished by an operator process which reads them into a system 

directory, and leaves a note for the user in question to move them to his own 

directory. This strategy guarantees that there is no way in which one user can 

overwrite another user's segment by submitting a spurious card input request. 

These mechanisms are examples of the fourth design principle: every access to 

every object is checked for authority. 

An administrative consequence of the access control list organization 

is that personal and project names, once assigned, cannot easily be reused, 

since the names may appear in access control lists. In principle, a system 

administrator could, when a user departs, unregister him and then examine 

every access control list of the storage system for instances of that name, 

and delete them. The system has been deliberately designed to discourage such 

a strategy, on the basis that a system administrator should not routinely paw 

through all the directories of all system users. Thus, the alternative 

scheme was adopted, requiring all user names, once registered, to be permanent. 

Finally, the one most apparent limitation of the scheme as presently 

implemented is its "one-way" control of access. With the described access 

control list organization, the owner of a segment has complete control over who 

may access it. There are some cases in which users other than the owner may 

wish to see access restricted to an object which the owner has declared public. 

* Of course, another user who has permission to read the segment could make 
a copy and then have the copy printed. 



Saltzer -- Protection in Multics -16-

For example, an instructor of a class may for pedagogical purposes wish to 

require his students to write a particular program rather than make use of 

an equivalent one already publicly available in the system. Alternatively, 

a project administrator concerned about security may wish to insure that his 

project members cannot copy sensitive information into storage areas which 

are not under his control, and cannot set access control lists to permit 

access by users outside the project. This kind of control can be expressed in 

Multics currently only by going to the trouble of constructing a protected 

subsystem which examines all supervisor calls, thereby permitting complete 

control over which objects are mapped into the address space and what terms 

are added to access control lists. Fortunately, there have so far appeared 

only a few examples in which such control is required, and the escape suggested 

has proven adequate for those cases. A more general solution would be to 

associate with the user's process a list of pathnames of directories he may 

access, and a list of access control list terms which constrain the range of 

entries he may place on access control lists. These two constraining lists 

would be set only by the project administrator or security officer. The 

constraining lists would be especially useful in the military security 

environment, since they would help in the construction of a list of items 

a defector might have had access to. 

As is evident, the Multics access control list mechanism represents an 

engineering tradeoff among three conflicting goals: flexibility of expression, 

ease of understanding and use, and economy of implementation. Additional 

flexibility of expression was tried (e.g., the common access control list 

mechanism previously footnoted) with the conclusion that the additional confu-

sion which results from accidental misuse of the generality can outweigh the 

benefits; apparently the correct direction is the opposite, toward simpler, less ~ 

general, and more easily understandable protection structures. 



Saltzer -- Protection in Multics -17-

Hierarchical Control of Access Specifications 

Since in Multics every object~ including a directory~ must be catalogued 

in some directory~ all objects are arranged into a single hierarchical tree 

of directories. This naming hierarchy also provides a hierarchy of control of 

access~ through the ability to modify the contents of a directory. Since 

a directory entry consists of the name of some object and its access control 

list~ having access to modify directory entries is interpreted to include 

the ability to modify the access control lists of all the objects catalogued 

in that directory. No further hierarchical control is provided; for example~ 

there is no ability to say "allow read access to Jones for all segments 

below this node in the naming tree." Such specifications are similar in 

nature to the "common access control list" mentioned before; they make it 

difficult for a user to be sure of all the consequences of a change to the access 

specification. For example~ removing a specification such as that quoted 

above~ which permits only reading~ might render effective a forgotten access 

control term lower in the naming hierarchy which permits both reading and 

writing.* 

Although it would appear that the hierarchical scheme provides an 

inordinate amount of power to a project administrator and~ above him~ to a 

system administrator~ in practice it forces a careful consideration of the 

lines of authority over protected information~ and explicit recognition of 

an authority hierarchy which already existed. In some environments~ it 

would probably be appropriate to publicly log all modifications of directory 

* Early versions of Multics provided a limited form of higher-level 
specification in the form of ability to deny all use of a directory~ and 
therefore of the objects contained within it. For the reasons suggested~ 
this feature has been disabled. 



Saltzer -- Protection in Multics -18-

access above some level, soas to provide a measure of control of the use of 

hierarchical authority. More elaborate controls might include requiring 

cooperative consent of some quasi-judicial committee of users for modifica

tion of higher-level directory access. Such controls are relatively easy 

for an installation or a project to implement, using protected subsystems. 

It is possible, by choosing access modes correctly, to use the hier

archical access control scheme in combination with the initial access control 

list to accomplish a totally centralized control of all access decisions. If, 

for example, a project administrator creates a directory for a user, places an 

initial access control list in that directory, and then grants to the new user 

permission only to add new entries to the directory, all such new entries 

would automatically receive a copy of the initial access control list determined 

by the administrator -- the user would have no control over who may use the ob

jects he creates. By policy, a system administrator could run an entire 

installation under this tight control, and retain for himself complete authority 

to determine what access control list is placed on every object, as in IBM's 

Resource Security System. [I] Alternatively, any smaller portion of the naming 

hierarchy can be kept under absolute control by the person having authority 

to modify access control lists at the top node of the portion. 

The other obvious alternative to a hierarchical control of modification 

of access control lists would be some form of self-control. That is, the 

ability to modify an access control list would be one of the modes of access 

controlled by the list itself. This alternative has never really been fully 

explored in the Multics context, partly because the implications of the hier

archical method were easier to understand. Probably the chief advantage of 

self-control of access modification would be that one could provide an individual 

a fully private work area in which no one manager, security officer, or 
~ 



Saltzer -- Protection in Multics -19-

or system administrator -- could intrude. On the other hand, the implemen-

tation of a "locksmith" while easy to do may require introducing hidden 

access paths which are then subject to misuse.* Also, one wonders how a 

self-control scheme would fit smoothly into an organization which does not 

usually give an individual the privilege of choosing his own office door 

lock. Clearly, the social and organizational consequences of the choice 

between these two design alternatives deserve further study. 

Authentication of users 

All of the machinery of access control lists, access modes, protected 

subsystems, andhierarchical control depend on an accurate principal identifier 

being associated with every process. Accuracy of identification depends on 

authentication of the user's claimed identity. A. variety of mechanisms are 

used to help insure the security of this authentication. The general 

strategy chosen by Multics is to maintain individual accountability on a 

personal basis. Every user of a given installation (with one class of exception, 

noted later) is registered at the installation, which means that a unique 

name, usually his last name plus one or two initials, is permanently entered 

in a system registry. Associated with his name at the time he is registered 

is a password of up to eight ASCII characters. Whenever any person proposes 

to use the system, he supplies his unique name, at which point the system 

demands also that he provide his password. 

* A locksmith would be an administrator who can provide accountable 
intervention when mistakes are made. For example, if an organization's 
key data base is under the exclusive control of a manager who has been 
disabled in an automobile accident, the locksmith could then provide 
another manager with access to the file. It seems appropriate to 
formalize the concept of a locksmith so that appropriate audit trails 
and authority to be a locksmith can be well-defined. The alternative 
of sending a system programmer into the computer room with instructions 
to directly patch the system or its data may leave no audit trail and 
almost certainly encourages sloppy practice. 



Saltzer -- Protection in Multics -20-

Thus far, the authentication mechanism of Multics is essentially the 

same as for most other remote-accessed systems. However, Multics uses several 

extra measures related to user authentication, which are not often found in 

other systems. For one, all use of the system, whether interactive or 

absentee (batch) is authenticated interactively. That is, initiation of a 

batch job is not done on the basis of information found in a card reader. 

Arriving card decks are read in and held in on-line storage by a system process, 

for which an operator is responsible. All absentee jobs, whether they are to 

be controlled by files created from cards or files constructed interactively 

or files constructed by another program, must be initiated by some job already 

on the system, and whose legitimacy has been previously authenticated. Al

though a chain of absentee job requests can be developed, the chain must have 

begun with an interactive job, which requires interactive authentication. In 

the simplest case, the individual responsible goes to an interactive console, 

identifies and authenticates himself, and requests execution of the job repre

sented by the incoming card deck. If necessary, the request will automatically 

wait until the card deck arrives, so that the user need not wait for the operator 

or for a card reader queue~ Thus, no job is ever run without prior positive 

identification of the responsible party. Note that for installations in which 

responsibility for card controlled jobs is considered unimportant, it is rather 

trivial to construct a Multics program, run under the responsibility of the 

card reader operator, which accepts and runs as a job anything found in the 

card reader. All such jobs would be run in processes bearing the principal 

identifier of the card reader operator, and are thus constrained in the range of 

on-line information which they can access. The inviolate principle of access 

* The automatic wait is not yet implemented. 



Saltzer Protection in Multics -21-

control remains that on-line authentication of identity, by presenting a 

password, is required in order to start a process labeled with a particular 

desired principal identifier. Note also that the fact that a job happens 

to be operated without an interactive terminal has no bearing on its privileges, 

except as explicitly controlled by its principal identifier. Finally, to 

handle the situation where a busy researcher asks a friend to submit the 

batch job, a proxy login scheme permits the friend to identify himself, under 

his own password, and then request that the job be run under the principal 

identifier of the original researcher. The system will permit logins only 

if the person responsible for the principal identifier to be used has previously 

authorized proxy logins by giving a list of proxies.* 

As to protection of passwords, several facilities are provided. The 

user may, after authenticating himself, change his password at any time he 

feels that the old one may have been compromised. A program is available 

which will generate a random eight-character password with English digraph 

statistics, thereby making it pronounceable and easy to memorize, and mini

mizing the need for written copies of the password. Passwords are stored in the 

file system in mildly encrypted form, using a one-way encryption scheme along 

the lines suggested by Wilkes [W]. As a result, passwords are not routinely 

known by any system administrator or project administrators, and there is 

never any occasion for which it is even appropriate to print out lists of 

passwords. If, through some accident, a stored password is exposed, its 

usefulness is reduced by its encrypted form. 

* The proxy login is not yet implemented. 



Saltzer -- Protection in Multics -22-

When the user is requested to give his password, at login time, the 

printer on his terminal is turned off, if possible, or else a background of 

garbling characters is first printed in the area where he is to type his 

password. Although the user could be indoctrinated to tear off and destroy 

the piece of paper containing his password, by routinely protecting it for 

him the system encourages a concern for security on the part of the user. 

In addition, if the user's boss (or someone from four levels of management 

higher) happens to be looking over his shoulder as he logs in, the user is 

not faced with the awkward social problem of scrambling to conceal his pass-

word from a superior who could potentially take offense at an implication 

that he is not to be trusted with the information. 

A time-out is provided to help protect the user who leaves his ter-

minal, is distracted, and forgets to log out. If no activity occurs for a 

period, a logout is automatically generated. The length of the time-out period 

can be adjusted to suit the needs of a particular installation. Similarly, 

whenever service is interrupted for more than a moment, a new login is re-

quired of all interactive users, since some users may have given up and left 

their terminals. 

Finally, several logging and penetration detection techniques help 

prevent attacks via the password route. If a user provides an incorrect 

password, the event of an incorrect login attempt is noted in a threat-moni-

toring log, and the user is permitted to try again, up to a limit of ten 

times at which point the telephone (or network) connection is forcibly broken 

by the system, introducing delay to frustrate systematic penetration attempts.* 

* With ASCII passwords chosen to match English digraph frequency, a little 
less than four bits of information are represented by each character (despite 
the eight or nine bits required to store the character.) An eight character 
password thus carries about 30 bits of information, which would require about 



Saltzer -- Protection in Multics ~23-

Whenever a user logs in, the time and physical location (terminal identifica-

tion) of his previous login are printed out in his greeting message, thus giving 

him an opportunity to notice if his password has been used by someone else in his 

absence. Similar1~ monthly accounting reports break down usage by shift and 

services used, and may be reviewed on-line at any time, thereby providing an 

opportunity for the individual to compare his pattern of use with that observed 

by the system, and perhaps to hereby detect unauthorized use. If either of 

these mechanisms suggests unauthorized use, the individual involved may ask the 

system administrator to check the system log, which contains an entry for every 

login and logout giving date and time, terminal type used, and terminal 

identification, if any. 

For a project which maintains especially sensitive information, the project 

administrator may designate the initi@l procedure to be executed by some or all 

processes created using the name of that project as part of its principal identi-

fier. This initial procedure, supplied by the project administrator, has complete 

control of the process, and can demand further authentication (e.g., a one-time 

password or a challenge-response scheme,) perform project logging of there-

sult, constrain the user to a subset of the available facilities, or initiate a 

logout sequence, thereby refusing access to the user. In the other direction, 

10~ guesses using an information theoretic optimum guessing strategy. If 
one mounted a simultaneous attack from 100 computer-driven terminals, and 
the system-imposed delays average only 10 milliseconds per attempt, about 
105 seconds, or one full day of systematic attack would be required to guess 
a password. Although use of a uniformly random password generator would 
increase this work factor by several orders of magnitude, resistance to use 
of hard-to-remember passwords and the need to make written copies might act 
to wipe out the gain. Of course, this work factor calculation presumes 
that the attacker has no further basis on which to narrow the range of pass
word possibilities, for example, by knowing that the user in question may 
have chosen his own password, or by wiretapping a previous login. 



-------------------------~-------------------------------

Saltzer -- Protection in Multics -24-

some projects may wish to allow unlimited public access to their files. If 

so, the project administrator may indicate that his project will accept login of 

unauthenticated users. In such a case, the system does not demand a password, 

instead assigning the personal name "anonymous" to the principal identifier 

of the process involved, using the name of the responsible project for the 

second part of the principal identifier. The principal identifier "anonymous" 

is the one exception to the registration scheme mentioned earlier. Allowing 

anonymous users does not compromise the security of the storage system, since 

the principal identifier is constrained, and all storage system access is based 

on the principal identifier. The primary use of anonymous users has been for 

educational purposes, in which all students in a class are to perform some 

assignment. Sometimes, this feature is coupled with the project-designated 

initial procedure, so that the project may implement its own password scheme, 

or control what facilities are made available, so as to limit its financial 

liability. Some statistical analysis and data-base development projects also 

permit anonymous use of data-retrieval programs. 

The objective of many of these mechanisms, such as simple registration 

of every user, the proxy login, the anonymous user, concealment of printed 

passwords, and user changeable passwords, together with a storage system which 

permits all authorized sharing of information is to provide an environment 

in which there is never any need for anyone to know a password other than his 

own. Experience with the earlier CTSS system demonstrated that by omitting 

any of these features, the system itself may actually encourage borrowing of 

passwords, with an attendent reduction in overall security. 



\ 

Saltzer -- Protection in Multics -25-

Primary Memory Protection 

We may consider the access control list to be the first level of 

mechanism providing protection for stored information. Most of the burden of 

keeping users' programs from interfering with one another, with protected 

subsystems, and with the supervisor is actually carried by a second level of 

mechanism, which is descriptor-based. This second level is introduced 

essentially for speed, so that arbitration of access may occur on every 

reference to memory. As a result, the second level is implemented mostly 

in hardware in the central processing unit of the Honeywell 6180. Of course, 

this strategy requires that the second level of mechanism be operated in such 

a way as to carry out the intent expressed in the first level access control 

lists. 

A.s described by Bensoussan et al. [MVM] the Multics virtual memory is seg

mented to permit sharing of objects in the virtual memory, and to simplify address 

space management for the programmer. The implementation of segmentation uses 

addressing descriptors, a technique introduced in the Burroughs BSOOO computer 

systems [D). The original Burroughs implementation of a descriptor was ex

clusively as an addressing and type-labeling mechanism, with protection provided 

on the basis that a process may access only those objects for which it has 

names. In Multics, the function of the descriptor* is extended to include modes 

of access (read, write, and execute) and to provide for protected subsystems 

which share object names with their users. Evans and LeClerc [EL] were among 

the first to describe the usefulness of such an extension. 

* With the exception of type identification, which is not provided in Multics. 



Saltzer -- Protection in Multics -26-

As shown in figure two, there are three classes of descriptor exten-

sions for protection purposes: mode control, protected subsystem entry con-

trol, and control on which protected subsystems may use the descriptor at all. 

Every reference of the processor to the segment described by this descriptor 

is thus checked for validity. 

The virtual address space of a Multics process is implemented with an 

array of descriptors, called a descriptor segment, as in figure three. Every 

reference to the virtual memory specifies both a segment number (which is 

interpreted as an index into the descriptor segment) and a word number within 

the segment. 

Figure three also helps illustrate why the protection information is 

associated with the addressing descriptor rather than with the data itself.* 

Each computation is carried out in its own address space, so each computation 

has its own private descriptor segment. Using this mechanism, a single physical 

segment may appear in different address spaces with different access privileges 

for different users, even though they are referring to the same physical data. 

Since in a multiprocessor system such as Multics two such processes may be 

executing simultaneously, a single protection specification associated with the 

data is not sufficient. Having the protection specification associated with 

the descriptor allows for such controlled sharing to be handled easily. 

An unusual feature of the descriptors used in Multics is embodied in 

the second and third extensions of figure two. Together, they allow hard-

ware enforcement of protected subsystems. A protected subsystem is a collec-

tion of procedures and data bases which are intended to be used only by calls 

* The alternate option is chosen, for example, in the IBM 360/67 and the 
IBM 370 "Advanced Function" virtual memory systems. [IBM2] 



Saltzer -- Protection in Multics 

basic descriptor extension for protection 

® 

@D Physical address and size of the segment based on 
this descriptor. 

G) Bits separately controlling permission to read, write 
and execute the contents of the segment based on this 
descriptor. 

GD Control of permission to enter a protected subsystem 
which has entry points in the segment based on this 
descriptor. 

(D Controls on which (hierarchically arranged) protected 
subsystems may use this descriptor. 

Figure 2 -- A Multics descriptor. 

-.27-



Saltzer -- Protection in Multics -28-

to designated entry points, known is Multics as gates. If this intention 

is hardware enforced, it is possible to construct proprietary programs 

which cannot be read, data base managers which return only statistics 

rather than raw data to some callers, and debugging tools which cannot be 

accidentially disabled. The descriptor extensions are used to authenticate 

subroutine calls to protected subsystems. Two important advantages flow 

from using a hardware-checked call: 

1. Calls to protected subsystems use the same structural mechanisms as 

do calls to unprotected subroutines, with the same cost in execution 

time. Thus a programmer does not need to take the fact that he is 

calling a protected subsystem into account when he tries to estimate 

the performance of a new program design. 

2. It is quite easy to extend to the user the ability to write protected 

subsystems of his own. Without any special privileges, any user may 

develop his own proprietary program, data-screening system, or extra 

authentication system, and be assured that even though he permits 

others to use his protected subsystem, the information he is protecting 

receives the same kind of security as does the supervisor itself. 

In support of call protection, hardware is also provided to automatically 

check the addresses of all arguments as they are used, to be sure that the 

caller has access to them. Checking the range of the argument values is left 

to the protected subsystem. 

Protected subsystems are formed by using the third field of the descriptor 

extension of figure 2. To simplify protected subsystem implementation, Multics 

imposes a hierarchical constraint on all subsystems which operate within a 

single process: each subsystem is assigned a number, between 0 and 7, and it 



Saltzer -- Protection in Multics -29-

is permitted to use all of those descriptors containing protected subsystem 

numbers greater thanorequal to its own. Among the descriptors available to 

a subsystem may be some permitting it to call to the entry points of other 

protected subsystems. This scheme goes by the name rings of protection, and 

is more completely described by Graham [G) and by Schroeder and Saltzer [S+S]. 

The use of these rings to provide protected subsystems is described by 

Schroeder in a companion paper [s]*. As far as is known, the only other 

systems which permit general, user-constructed protected subsystems are the 

CAL operating system [LC] and the projected Cambridge Capability System [CSS]. 

The descriptor based strategy permits two further simplifying steps to 

be taken: 

1. All information in the storage system is read and written by map
ping it into the virtual memory, and then using load and store 
instructions whose validity is checked by the descriptor mechanism. 

2. The supervisor itself is treated as an example of a protected 
subsystem, which operates in a virtual memory arbitrated by 
descriptors, exactly the same as do the user programs which 
it supports. 

The reasons why the first step provides simplification for the user have been 

discussed extensively in the literature [MVM, STAR]. The second step 

deserves some more comment. By placing the supervisor itself under the control 

of the descriptors, as in figure three a rather substantial benefit is achieved: 
J 

the supervisor then operates with the same addressing and machine language 

code generation environment as the user, which means that supervisor programs 

may be constructed using the same compilers and debugging tools available to 

a user. The effect on protection is non-trivial: programs constructed and 

checked out with more powerful tools tend to have fewer errors, and errors in 

·the supervisor which compromise protection often escape notice. 

* A more general approach, not yet implemented, but which removes the restric
tion that the protected subsystems be hierarchical, is also described by 
Schroeder in his doctoral thesis [ST]. 



Saltzer -- Protection in Multics -30-

user load 
and store 
instructions 
and instruc-
tion fetches 

user calls 
to super-
visor 

/ 
I 

~addressing/protection descriptors 

..-------"""":' 
~ 

I 

® --~--~~~l~~\\~~~,~------~ 
I 
l 

Primary 
Memory 

Drums, 
Disks, 
etc. 

I 

I 
' 

I 
~ _____ t ___ u 

I 
I 

I (!) : 
--+-~--~~~-----+----·~---~ 

Security 

EnvelopeL 

J 
I 

I 

I 

I 
I 
I 
I 

r-1 ~ -----+----
1 
j 

® Storage 
System 

~---(V~~ Access Control 
List Checker 

@ Descriptor 
~-----~~ Writer 

/ 

r----
1 

Call to storage system to 
add object to virtual 
memory. 

VM access by storage system 
to locate object in directory 
structure. (includes recursive 
invocation to storage system 
to add directories to VM) 

VM access by access control 
list checker to read principal 
identifier and access control 
list. 

VM access to write new address
ing and protection descriptor 
into descriptor segment. 

~ Caller accesses new object. 

Figure 3 -- Descriptor management in Multics. The Multics 
supervisor is treated as a protected subsystem. 



-

Saltzer -- Protection in Multics -31-

Perhaps equally important is that the determination of whether one is 

in or ~ of the supervisor is not based on some processor mode bit which can 

be accidentally left in the wrong state when control is passed to a user 

program. Instead, the addressing privileges of the current protected subsystem 

are governed by the subsystem identification, located in the descriptor of the 

segment which supplied the most recent instruction. Every transfer of control 

to a different program is thus guaranteed to automatically produce addressing 

privileges appropriate to the new program. If a supervisor procedure 

should accidentially transfer to a location in a user procedure, that procedure 

will find that the protection environment has automatically returned to the state 

appropriate for running user procedures. 

Finally, the descriptors are adjusted to provide only the amount 

of access required by the supervisor, in consonance with design principle 

six. For example, procedures are not writeable, and data bases are not 

executable. As a result, programming errors related to using incorrect 

addresses tend to be immediately detected as protection violations, and do 

not persist into delivered systems. If one reviews the operation of Multics 

starting with the initial loading of the system on an empty machine, he will 

find that only the first hundred or so instructions do not use descriptors. 

Once a descriptor segment has been fashioned, all memory references by the 

processor from that point on are arbitrated by descriptors. 

These mechanisms do not prohibit the supervisor from making full use of 

the hardware when appropriate. Rather, they protect against accidental overuse 

of supervisor privileges. Clearly, the supervisor must be able to write into 

the descriptor segment, in order to initially set it up, and also to honor 

requests to map additional objects of the storage system into segments of the 



Saltzer -- Protection in Multics -32-

virtual memory. This adjustment of descriptors is done with great care, using 

a single procedure whose only function is to construct descriptors which 

correspond to access control list entries. A call to the storage system which 

results in adjustment of a descriptor is illustrated in figure three. In this 

figure, it is worth noting that even the writing of the descriptor is done 

with use of a descriptor for the descriptor segment itself. Thus there is little 

danger of accidentally modifying a descriptor segment belonging to some other 

user, since the only descriptor segment routinely appearing in the virtual memory 

of this process is its own. 

Entries to the supervisor which implement "special privileges" 

(e.g., the operator may have the privilege of shutting the system down) 

are generally controlled by ordinary access control lists, either on the 

gates of supervisor entries, or in some cases by having the supervisor 

procedure access some data segment before proceeding with the privileged 

operation. If the user attempting to invoke the privilege does not appear 

on the access control list of the data segment, an access violation fault 

will occur, rather than an unauthorized use of the privilege. 

The final step of "locking up" the supervisor lies in management of 

source-sink input-output. Recall first that all access to on-line catalogued 

information of the storage system is handled by direct mapping into the vir-

tual memory. Thus, input and output operations in Multics consist only of 

true source-sink operations, that is of streams of information which enter or 

leave the system. Such operations are performed by hardware I/O channels, follow-

ing channel programs constructed by the I/O system in response to I/O requests 

of the calling program. These I/O channel programs are placed in a part of 



Saltzer -- Protection in Multics -33-

the virtual memory accessible only to the supervisor.* Similarly, all input 

data is read into a protected buffer area, accessible only to the supervisor. 

Only after the input has -arrived and the supervisor has had a chance to 

check it is it turned over to the user, either by copying it, or by modi-

fying a descriptor to make it accessible to the user. A similar, inverse 

pattern is used on output. Since during I/O neither the data nor the channel 

program is accessible to the user, there is no hesitation about permitting 

him to continue his computation in parallel with the I/O operation. Thus, 

fully asynchronous operations are possible. 

The system is initialized from a magnetic tape which contains copies 

of every program residing in the most protected area. In this way, the inte-

grity of the protection mechanisms depends on protecting only one magnetic 

tape, and is independent of the contents of the secondary storage system 

(disk and drums) which are more exposed to compromise by maintenance staff. 

On the other hand, since the system is designed for continuous operation, 

there appears to be no need for a separable package consisting of pass-

words and clearance information as suggested by Weissman. [A] 

* And to the I/O channels, which use absolute addresses. If separate I/O 
channels were available to each physical device and the I/O channels used 
the addressing descriptors, protected supervisor procedures would not be 
required for I/O operations after device assignment (which requires a 
descriptor to be constructed.) 

Here is an example of a place where building a new system, rather than 
modifying an old one, has simplified matters. On some computer systems, 
the user constructs his own channel programs, and may even expect to modify 
them dynamically during channel operation. It is quite hard to invent a 
satisfactory scheme for protecting other users against such I/O operations 
without placing restrictions on their scope, or inhibiting parallel 
operation of the user with his I/O channel programs. 



Saltzer -- Protection in Multics -34-

To round out the discussion of primary and virtual memory protection, 

we should consider storage residues. A storage residue is the data copy 

left in a physical storage device after the previous user has finished 

with it. Storage residues must be carefully controlled to avoid accidental 

release of information. In a virtual memory system, the only 

way a storage residue could be examined would be to read from a previously 

unused part of the virtual memory. By convention, in Multics, the supervisor 

provides pages of zeros in response to such attempts. Since all access to 

on-line storage is via the virtual memory, no additional mechanism is required 

to insure that a user never sees a residue from the storage system. 

Weaknesses of the Multics Protection Mechanisms 

One is always hesitant to list the weaknesses in his system, for a 

variety of reasons. Often, they represent mistakes or errors of judgement, 

which are embaras.sing to admit. Such a list provides an easy target for 

detractors of a design, and in the protection area provides an invitation for 

potential attackers at production installations which happen to be using the 

system. In the case of a system still evolving, such as Multics, known 

weaknesses are being corrected as rapidly as feasible, so any list of weaknesses 

is rapidly obsolete. And finally, any list of weaknesses is almpst certainly 

incomplete, being subject to all of the built-in blindnesses of its 

authors. Nevertheless, such a list is quite useful, both to look for 

specific interesting unsolved problems, and also to establish what level of 

considerations are still considered relevant by the designers of the system. 

The weaknesses described here begin with two major areas, followed by 

several smaller problems. 



--

Saltzer -- Protection in Multics -35-

Probably the most important weakness in the current Multics design 

lies in the large number of different program modules which have the ability, 

in principle, to compromise the protection system, Of the 2000 program 

modules which comprise Multics, some 400, or 20%, are in the "most protected 

area", consisting of system initialization, the storage system, miscellaneous 

supervisor functions, and system shutdown. Although all of 

these 400 modules operate using the descriptor-based virtual memory described 

earlier, the descriptors serve for them only as protection against accidentally 

generated illegal address references; these modules are not constrained by the 

inability to construct suitable descriptors in the same way as the remaining 1600 

modules or user programs. Thus any of these 400 modules (averaging perhaps 200 

lines of source code each) might contain an error which compromises the security 

mechanisms, or even a security violation intentionally inserted by a system 

programmer. The large number of programs and the very high internal intricacy 

level frustrates line-by-line auditing for errors, misimplementation, or inten

tially planted trapdoors. This weakness is not surprising for the first imple

mentation of a sophisticated system, and upon review it is now apparent that 

with mild software restructuring plus help from specialized hardware the number 

of lines of code in the most protected area can be greatly reduced -- perhaps 

by as much as an order of magnitude. In examining many specific examples, 

there seem to have been three common, interrelated reasons for the extra bulk 

currently found in the protected area: 

. economics: at the time of design, a function could be implemented 

more cheaply in the most protected region. Since the protection ring 

mechanism was originally simulated by software, there were design 

decisions based on the assumption that calls across ring boundaries 

were expensive. 



Saltzer -- Protection in Multics -36-

rush to get on the air: in the hurry to get an initial version of 

the system going, a shortcut was found, which required unnecessarily 

placing a module in the most protected region . 

• lack of understanding: a complex subsystem was not carefully enough 

analyzed to separate the parts requiring protection; the entire 

subsystem was therefore protected. 

With hardware-supported protection rings, hindsight, and the experience 

of a complete working implementation, it is apparent that a smaller "most 

protected area" can be constructed. It now appears possible to make complete 

auditing a feasible task. A project is now underway to test this hypothesis 

by attempting to develop an auditable version of the most protected region 

of Multics. 

The second serious weakness in the current Multics design is in the 

complexity of the user interface. In creating a new segment, a 

user should specify permitted lists of users and projects, specifyallowedmodes of 

access for each, decide whether or not backup copies should be allowed and 

whether or not bulk I/O should be permitted for the segment, and whether or 

not the segment should be part of a protected subsystem. He should check that 

permissions he has given to modify higher-level directories interact in the 

desired way with his current intent. A variety of defaults have been devised 

to reduce the number of choices which need be made in common cases: as already 

mentioned, a per-directory "initial access control list" is by default 

assigned to any new segment created in that directory. The defaults merely 

hide the complex underlying structure, however, and do not help the 

user with an unusual protection requirement, who must figure out for himself 

how to accomplish his intentions amid a myriad of possibilities, not all of 

which he understands. The situation for a project administrator, who can 



Saltzer -- Protection in Multics -37-

control the initial program his users get, and may perhaps force all of his 

users to interact via a limited, protected subsystem is similar, but with 

fewer defaults and more possiblities available. 

The solution to this problem lies in better understanding the nature 

of the typical user's mental description of protection intent, and then devising 

interfaces which permit more direct specification of that protection intent. As 

an example, Leo Rotenberg devised a simple Multics program which prints a list of 

all users who may force access to a segment (by virtue of having modify access 

to some higher level directory.) This list does not correspond to any single 

access control list found anywhere in the system, yet it is clearly relevant 

to one's image of how the segment is protected. Setting up the mechanisms 

of access control lists, accessibility modes, and rings of protection perhaps 

should be viewed as a problem of programming in which, as usual, the structures 

available in initial designs do not correspond directly with the user's way of 

thinking, even though there may be some way of programming the structure to 

accomplish any intent. In the area of protection, the problem has a special edge, 

since if a user, through confusion, devises an overly permissive protection 

specification, he may not discover his mistake until too late. 

At a level of significance well below the two major points of system 

size and user interface complexity are several other kinds of problems. 

These problems are felt to be less significant not because they cannot be 

exploited as easily, but rather because the changes required to strengthen most 

of the areas are straightforward and relatively easy to implement. These 

problems include: 

1. Communication links are weak. Of course, any use of swit~hed telephone 

lines leads to vulnerability, but provision for integration of a 

Luciger-like system (SNO) for end-to-end encryption of messages sent 



Saltzer -- Protection in Multics -38-

over public lines or through a communication network 

would probably be a desirable (and simple) addition. As an example of 

a typical problem in this area, the Bell System 202C6 DATAPHONE dataset, 

which is used for 1200 bps terminals, does not include provision for 

reporting telephone line disconnection to the computer system during 

data output transmission. If a user accidentally hangs up his telephone 

line during output, another user dialing to the same port on the computer 

may receive the output, and capture control of the process. Although re

medial measures such as requiring reauthentication every few minutes could 

be used, automatic detection of the line disconnection would be far more 

reassuring. (Note that for the more commonly used 103A DATAPHONE dataset, 

which does report telephone line disconnections, this problem does not 

exist; upon observing the dropping of the carrier detect line from the 

dataset, Multics immediately logs the user out.) 

2. The operator interface is weak. The primary interface of the operator 

is as a logged-in user, where his interactions can be logged, verified, 

and suitably restricted. However, he has a secondary 

interface: the switches and lights of the hardware itself. It would 

appear that the potential for error or sabotage via this route is far 

higher than necessary. If every hardware switch in the system were both 

readable and settableby(protected supervisor) programs, then all such 

switches could be declared off lUnits to the operator, and perhaps placed 

behind locked panels. Since all operator interaction would then be 

forced to take place via his terminal, his requests can be checked for 

plausibility by a program. What has really gone wrong here is a failure 

to completely reconsider the role of the operator in a computer system 

operating as a utility. Functions such as operation of card readers and 

printers do not require access to switches on the side of the processor 

or even physical presence in the same room as the computer, for that 

matter. The decision that a system failure has occurred and the 



Saltzer -- Protection in Multics -39-

appropriate level of recovery action to take are probably the operator 

functions which are hardest to automate or decouple from the physical 

machine room, but certainly much movement in this direction would be 

easy to accomplish. 

3. Users are permitted to specify their own passwords, leading to easy-to

guess passwords. The resulting loss of security has already been well 

documented in the literature [CW], and this path has been used at least 

once to penetrate Multics at M.I.T., when a programmer chose as his 

Multics password the same password he used on another, unsecured 

time-sharing system. The correct strategy here would be to force the use 

of system-generated randomly chosen passwords, and also to place an 

expiration date on them, to force periodic password changes. For 

sensitive applications, or situations where the password must be exposed 

to unknown observers (as in using a system via the ARPA network), the 

system should provide lists of one-time passwords. 

4. The supervisor interface is vulnerable to misimplementation. Although 

this difficulty could be described as a specific example of a supervisor 

too large and complex to audit, it is worth identifying in its own right. 

The problem has to do with checking the range of arguments passed to the 

supervisor. The hardware automatically checks that argument addresses 

are legitimately accessible to the caller, and completely checks all use 

of pointer variables as indirect addresses. However, it provides no 

help in determining whether the ultimate argument values are "reasonable" 

for the supervisor entry in question. Each entry must be prepared to 

operate correctly (or at least safely) no matter what combination of 

argument values is supplied by the caller. Certain kinds of interfaces 



Saltzer -- Protection in Multics -40-

make for difficulty in auditing a program to see if it properly 

checks range of arguments. For example, if the allowed range of one 

argument depends on the result of computation which is based in part 

on another argument, then it may be hard to enforce a programming 

standard which requires that all supervisor entries check the range of 

all their arguments before performing any other computation. The current 

Multics interface has examples of situations in which, to verify that a 

supervisor entry is correctly programmed so that it does not blow up when 

presented with an illegal argument, one must trace hundreds of lines of 

code and many subroutine calls. Such interfaces discourage routine 

auditing of the supervisor interface, and probably result in some un

detected implementation errors. It would be interesting to 

explore the design of argument range-checking hardware, which would 

force the system programmer to declare the allowed range of arguments 

for his entries, and thereby force out into the open the existence of 

arguments whose range is not trivially testable, for interface design 

revision. 

5. Secondary storage residues are not cleared until they are reassigned. 

When a segment is deleted, all descriptors for the physical storage 

area are destroyed, and the area is marked as reusable. No further 

descriptors for the storage area will ever be constructed without 

first clearing the storage area, but meanwhile the residue remains 

intact. In principle, there is no way to exploit these residues using 

the system itself, but automatic overwriting of the residues at the 

time of deletion would provide an additional safeguard against acci

dents, and guarantee that a segment, once deleted, is not accessible even 

to a hardware maintenance engineer. A similar problem exists for 

' . 



Saltzer -- Protection in Multics -41-

the magnetic tapes containing backup copies of segments. In at least 

one case on another time-sharing system, the persistence of backup 

copies has proved embarrassing: a government agency requested that 

a file containing a list of special telephone access codes be completely 

deleted; the installation administrator found himself with no convenient 

way to purge the residues on the backup tapes. These tapes should 

probably be encrypted, using per-segment keys known only by the operating 

system. It is an interesting problem to construct a strategy for safely 

encrypting backup copy tapes, while ensuring that encrypting keys do 

not get destroyed upon system failure, making the backup copies worthless. 

6. Over-privileged system administrator. Some system functions have 

been organized in such a way that the administrators of the system 

require more privilege than really necessary. For example, 

measures of secondary storage usage are stored in the using directory 

rather than in an account file. As a result, the 

administrative accounting programs which prepare bills for secondary 

storage use must have access to read every directory in the storage 

system. Such a design means that one of the easiest ways to attack is 

to attempt to influence the system administrator, possibly by surrep

titiously inserting traps in some program he is likely to use* while 

running a process whose principal identifier needlessly permits exten

sive privileges. 

7. Ponderous backup copy and retrieval scheme, It has been noticed that the 

general method currently used for indexing the contents of storage system 

backup copy tapes is weak so that the only effective way to identify a 

desired copy of a damaged segment is to permit the user to manually scan 

* This technique has been described as the "Trojan Horse" attack. [C] 



Saltzer -- Protection in Multics -42-
' . 

printed journals of the names of the segments copied onto each tape. 

These journals contain the names of other users' segments and directories, 

and were intended for use only for emergency situations and with proper 

clearance. Unfortunately, the number of retrieval requests which 

can be handled on other than an emergency basis is a sensitive function 

of the quality of the tools available for searching the journals 

automatically while maintaining privacy. A simple scheme based on 

a protected subsystem for searching journals has recently been 

proposed, but is not yet implemented. 

8. Counter-intelligence techniques have not been exploited. Although logs 

of suspicious events are maintained no true counter-intelligence strategies 

are employed. For example, Turn, et al. [TFH] have suggested inserting care-

fully monitored apparent flaws in the system. These flaws are intended to 

attract a would-be attacker; any attempt to exploit them would result 

in an early warning of attack and an opportunity to apprehend the 

attacker. 

9. Some areas of potential vulnerability have not been examined. These 

include vulnerability to undetected failures of the hardware protection 

apparatus[M],* electromagnetic radiation from the physical hardware 

machine[BD],and traffic analysis possibilities, using performance 

measurement tools available to any user. 

It is interesting to note that none of these nine specific weaknesses 

represent intrinsic difficulties of full-scale computer utility systems --

relatively straightforward modification can easily strengthen any of these 

areas. In fact neither the two major weaknesses nor the nine specific ones 

represent "holes" in the sense of being innnediately exploitable by an attacker. 

* Although the 6180 hardware is less vulnerable than some. An asynchronous 
processor-memory interface tends to stop when an error occurs rather than ~ 
proceeding with wrong data; complete instruction decoding explicitly traps 
all but legal operation codes and addressing modifiers; and tremultiprocessor 
organization helps obviate the need for pipelines and other accident-prone 
highly-tuned logic tricks. 



Saltzer -- Protection in Multics -43-

Rather, they are areas in which an attacker is more likely to discover a method 

of entry caused by misimplementation, misunderstanding, or mismanagement of an 

otherwise securable system, 

Conclusions 

This paper has surveyed the complete range of information protection 

techniques which have been applied to a specific example of a system designed 

for production use as a computer utility. Over three years of experience in 

a production environment at M.I.T. has demonstrated that the mechanisms are 

generally useful. A commonly asked question (especially in the light of 

recent experiences with attempts to add security to other commercially avail-

able computer systems) is "how much performance is lost?" This question is 

difficult to answer, since as is evident, the protection structure is deeply 

integrated into the system and cannot be simply "turned off" for an experiment.* 

However, one significant observation may be made. In general, the protection 

mechanisms are closely related to naming mechanisms, and can be implemented 

with a minimum of extra fuss in a system which provides a highly structured 

naming environment. Thus, the users of Multics apparently have found that 

the overall package of a structured virtual memory with protection comes 

at an acceptable price. 

The Multics protection mechanisms were designed to be basic and 

extendable, rather than a complete implementation of some specialized security 

* In analogy, we may consider a mouse. The mouse has an elaborate system which 
maintains a constant body temperature, where, for example, a lizard does not. 
There is a sense in which the mouse is thereby less efficient, but one may also 
credibly argue that the question of efficiency is incorrectly posed. In a simi
lar way, comparison of systems with and without protection may also be incorrect. 
(Analogy thanks to Carla M. Vogt.) 



Saltzer -- Protection in Multics -44-

model. Thus there are mechanisms which may be used to provide the multi

level security classification (top secret, secret, confidential, unclassified) 

and the access compartments of the U.S. governmental security system. [WW] 

If one wished to precisely imitate the government security system, he could 

do so without altering the operating system. In this sense, Multics differs 

with, say, SDC 1 s ADEPT [A] and IBM's Resource Security System [I], both of 

which specifically implement models of the government security system, but 

which do not permit, for example, user-written proprietary programs. 

We should also note that the Multics system was designed to be 

securable, which is different than stating that any particular site is actually 

operated in a completely secured fashion. Such matters as machine room 

security, certification of hardware maintenance engineers and system operators, 

I • 

and telephone wire tapping are largely outside of the scope of operating ~ 

system design. In addition, correct administration can be encouraged by the 

design of an operating system, but not enforced. Further we have reported 

the design of the system, realizing that its implementation has not yet been 

completely audited and therefore may contain trivial programming errors which 

affect protection. 



.. l 

Saltzer -- Protection in Multics -45-

Acknowledgements 

As is usual in any large system design, many individuals have 

contributed ideas and suggestions, and a complete acknowledgement is very 

hard to compose. Professor E.L. Glaser provided the firm conviction that 

information protection was a reasonable goal during the critical initial 

design period of the Multics system. He also suggested several of the 

design principles and many of the specific protection mechanisms which 

were ultimately included. Professor R.M. Graham worked out the initial 

design of the protection ring mechanism, and Professor M.D. Schroeder 

expanded that design to include automatic argument validation and complete 

hardware support. Integration of protection into the storage system was 

accomplished by R.C. Daley. More recent upgradings of the user interface 

have been designed by V.L. Voydock, R.J. Feiertag, and T.H. VanVleck. 

P.A. Belmont, D.A. Stone, and M.A. Meer developed an early internal 

memorandum which helped articulate the design issues. Others offering 

significant help include Professor F.J. Corbato, C.T. Clingen, D.D. Clark, 

M.A. Padlipsky, and P.G. Neumann. Of course, every system programmer who 

worked in the most protected region of Multics has also contributed by 

his extra care and understanding of the protection objective. 



Saltzer -- Protection in Multics 

References 

[I] IBM Application Program Manual "OS/MVT with Resource Security, 
General Information and Planning Manual," File No. GH20-1058-0, 
IBM Corporation, December, 1971. 

[A] Weissman, C., "Security Controls in the ADEPT-50 Time-sharing 
System," AFIPS Con£. Proc. 35, (1969 FJCC), pp. 119-133. 

-46-

[S+S] Schroeder, M.D., and Saltzer, J.H., "A Hardware Architecture for 
Implementing Protection Rings," Connn. ACM 15, 3 (March, 1972), 
pp. 157-170. 

[W] Wilkes, M.V., Time-Sharing Computer Systems, American Elsevier 
Publishing Co., 1968. 

[MVM] Bensoussan, A., Clingen, C.T., and Daley, R.C., "The Multics 
Virtual Memory: Concepts and Design, 11 Comm. ACM 15, 5 (May, 1972) 
pp. 308-318. 

[D] The Descriptor -- ~ Definition of the B5000 Information Processing 
System, Burroughs Corporation, Business Machines Group, Sales 
Technical Services, Systems Documentation, Detroit, Michigan, 1961. 

[STAR] Holland, S .A., and Purcell, C .J., "The CDC Star-100 -- A Large Scale 
Network Oriented Computer System," IEEE International Computer Society 
Con£., Sept, 1971, pp. 55-56. 

[ST] Schroeder, M.D., "Cooperation of Mutually Suspicious Subsystems 
in a Computer Utility," Ph.D. thesis, Department of Electrical 
Engineering, Massachusetts Institute of Technology, September, 1972. 
(Also available as M.I.T. Project MAC Technical Report TR-104.) 

[SNO] Smith, J.L., Notz, W.A., and Osseck, P.R., "An Experimental 
Application of Cryptography to a Remotely Accessed Data System," 
Proc. ACM 1972 Annual Con£., pp. 282-297. 

[CW] Computerworld report of theft of Shell files. 

[TFH] Turn, R., Fredrickson, R., and Hollingworth, D., "Data Security 
at the Rand Corporation: Description and Commentary," Rand 
Corporation Report P-4914, October 1972. 

[CSC] Corbato, F.J., Clingen, C.T., and Saltzer, J.H., 11Multics: The First 
Seven Years," 1972 Spring Joint Computer Conference (May 16-18, 
1972), AFIPS Conference Proceedings, Volume 40, pp. 571-583. 

[CTSS] The Compatible Time-Sharing System; ~Programmer'~ Guide, M.I.T. 
Press, 1966. 

[S] Schroeder, M.D., "Protected Subsystems in Multics," in preparation. 

... 
I '" 



--· 
Saltzer -- Protection in Multics -47-

[P] 

[B] 

[EL] 

[L] 

[LC] 

[CCS] 

[M] 

[WW] 

[BD] 

[G] 

[IBM2] 

[C] 

Peters~ B.~ "Security consideration in a multi-programmed computer 
system~" AFIPS Con£. Proc. 30~ (SJCC 1967)~ pp. 283-286. 

Baran~ P.~ "Security~ Secrecy~ and Tamper-Free Considerations," 
On Distributed Communications 2, Rand Corp. Technical Report 
RM-3765-PR. 

Evans, D.C., and LeClerc~ J.Y.,"Address Mapping and the Control 
of Access in an Interactive Computer~" AFIPS Con£. Proc. 30, 
(1967 SJCC), pp. 23-30. 

Lampson, B.W., "Protection," Proc. 5th Princeton Con£. on Informa
tion Sciences and Systems, (March, 1971), pp. 437-443. 

Lampson, B.W., "An Overview of the CAL Time-Sharing System," 
Computer Center, University of California, Berkeley (sept. 5, 1969). 

Needham~ R.M., "Protection Systems and Protection Implementations," 
AFIPS Con£. Proc. 41, Vol I, (FJCC 1972), pp. 572-578. ---- ---
Molho, L.M., "Hardware aspects of secure computing," AFIPS ~· 
Proc. 36, (1970, SJCC), pp. 135-141. 

Ware, W., et al., Security Controls for Computer Systems, Rand 
Corp. Technical Report R-609, 1970. (Classified Confidential). 

Beardsley, C.W., "Is your computer insecure?" IEEE Spectrum 2, 
1 (January, 1972), pp. 67-78. 

Graham, R.M., "Protection in an Information Processing Utility," 
Comm. ACM 11, 5 (May, 1968), pp. 365-369. 

IBM System 370 Principles of Operation Manual~ GA22-7000. 

Branstan, D.K., "Privacy and Protection in Operating Systems," 
Computer, Vol. ~' 1, 1973, pp. 43-47. 




