
r

PROJECT MAC

Computer Systems Research Division

PROPOSAL FOR CSR WORK BEGINNING JULY 1, 1973

by J. H. Saltzer

January 26, 1973

Request for Comments No. 2

Each year Project MAC submits a proposal to its sponsoring

organizations for continuation of its work. Enclosed is the introduction

and the Computer Systems Research Division portion of the December, 1972,

proposal to ARPA, which covers the period beginning in July, 1973.

If you are interested in reading the other parts of the MAC proposal,

I have a copy available for loan.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per­
mission, and it should not be referenced in other publications.

INTRODUCTION

Project MAC proposes to continue its research program under

the support of the Advanced Research Projects Agency. During the

present 10 month ARPA contract, Project MAC has undergone a con­

siderable reorientation. This included a major reorganization of

the laboratory from 12 independent research groups, to four

divisions. The four divisions are:
I. Fundamental Studies

II. Computer Systems Research

III. Programming Technology

IV. Automatic Programming

As was previously proposed, we have directed our ARPA sup­

ported work towards Research in Automatic Programming, centered

in divisions III and IV. Division II herein proposes to embark

upon a new ARPA sponsored program of research in the certification

of computer programs. Division I is almost entirely supported by

the National Science Foundation.

With this proposal we have decisively committed ourselves

toward new programs and to the goals of focusing ARPA supported

research at Project MAC in one major direction -- Automatic Pro­

gramming. In addition, we propose to continue our strong in­

volvement in the Network and to continue that part of our inquiries

into fundamental studies that is in support of Automatic Program­

ming. We propose to continue the development of systems and

languages that support our major activities such as MACSYMA,

MUDDLE, PLANNER, CALICO, and a common base language.
We propose to complete the implementation of LISP on Multics

and to make MACSYMA and other systems available on Multics.
We propose to begin the task of pioneering the use of very

large random access (500 nanosecond cycle time) memory by an

arrangement with the M.I.T. Information Processing Center that

will, under partial support from ARPA, vastly increase the size

of the main fast memory on the Multics system making this extra

-2-

large memory available exclusively to Project MAC when needed.

The goal of the new program of research in the certification

of computer programs is to develop techniques that will allow

one to be assured that a large and complex program performs as

specified. This research effort will maintain a close relation­
ship with other ARPA sponsored activity in this area.

Most important is our proposed research in Automatic Pro­

gramming. We view our task as one of understanding the problems

and possibilities of future uses of computers, so that we may

today embark on a program of research that will lead to the

development of techniques that will use the capabilities of the

systems of tomorrow to solve the problems of tomorrow.

The problem that we see most clearly is that the desires for

larger, more complex and more sophisticated systems will find no

sensible fulfillment in the products of today's programming

technology. At IBM there is already underway a major shift of

personnel from hardware to software; but merely increasing the

number of programmers will not provide the answer. The problem

will be, increasingly, that computer systems will not be doing

what is wanted -- because of the difficulty of knowing how to

program what is wanted, and much more so because of the immutable

fact that what is wanted today is different from what was wanted

yesterday and is different from what will be wanted tomorrow.
The difficulty of modifying a complex system is strangely inde­

pendent of the difficulty of specifying the change.

We see ways of attacking the root of the problem. The systems
of tomorrow must combine three types of knowledge -- knowledge
about the program's domain of operation; knowledge about program­

ming and the particular program itself; and most important, some

of the common sense knowledge that we all share. We are en-
gaged in the business of learning how to create systems with the

first two types of knowledge, in our divisions IV and III, and

we have reason to believe that future basic research will show
us how to tackle the third type of knowledge.

-3-

The remainder of this proposal is comprised of five seg­

ments: four segments outling the specific areas of proposed

work of the four divisions, and a fifth, separate segment on

the budgetary considerations.

-6-

DIVISION II - COMPUTER SYSTEMS RESEARCH

The Computer Systems Research division of Project MAC

is engaged in experimental studies on the problem of making

the engineering of large-scale computer systems into a more

methodical discipline. Its recent activities include the

measurement and documentation of the Multics system, and the

attachment of that system to the ARPA network. For the

coming contract period, the division proposes the follow­

ing four activities:

1. Research in the certification of computer systems (50%)

2. System measurement and modeling activities

3. Extensions of the ARPA network attachment to

Multics

4. Exporting the Multics design

(15%)

(30%)

(5%)

The percentages given suggest the fraction of ARPA supplied

division resources to be applied to each activity. The first

activity is a new one; the other three are continuations of

present activities. More detailed descriptions of these

activities are the subject of the follmving three sections.

Research in the Certification of Computer Systems

The Computer System Research division proposes to under­

take a major new research project. The goal of this new

project is to make possible the certification that a large­

scale computer system has been correctly implemented. As

will be explained, the initial vehicle for this research

will be the security kernel of a modified version of the

Multics system.

It is well-known that large-scale computer operating

systems have a tendency to be extraordinarily complex, large

in size, difficult to maintain, and awkwardly organized.

There seem to be several reasons for these tendencies, such as:

-7-

- Attempts to stretch the functional capabilities of the
system as far as possible.

- Working in a hardware environment which was determined
before software requirements were fully understood.

- Attempts to squeeze the hardware and software system
to its absolute limit of performance.

- Attempts, because of the high cost of system develop~

ment, to get the system "on the air" in the absolutely
shortest time possible.

Of these four, probably the last two are the strongest

contributors to unmaintainable and incomprehensible design,

since they both encourage shortcuts to be taken and modularity
to be violated against the better judgement of the system

designer.

The net effect of these pressures is that most modern

large-scale operating systems contain implementation errors

which cannot be found except by running the system, and wait­

ing for the errors to be exposed accidently. It is bad

enough that timing-dependent errors which cause a system crash

may occur just often enough to be disruptive, but not frequently

enough to be easily reproduced by a benchmark test {e.g., every

two hours.) In addition, there are at least two classes of

implementation errors which may not routinely be noticed by

running the system against a normal load:
1. Errors which result only in performance degradation of

the operating system.
2. Errors in the implementation of the system's information

protection mechanisms.

For both of these classes of errors, the system usually
appears to correctly process its normal workload; only special­
ized tests (e.g., reproducible loads with known performance

consequences, or test programs which systematically attempt

to violate the security mechanisms), which are not part of
the usual workload, have any chance of revealing the difficulty.

-a-

There appear to be three distinct strategies available

for attacking the problem of reducing the probability of

implementation errors in a computer operating system:

1. Use a top-down constructive programming approach to the

initial design of the operating system, following the

principles of Dijkstra and Mills.

2. Subject all of the modules bf the operating system, and

its inter-module reference pattern, to the emerging

techniques of program correctness proofs.

3. Modify an existing operating system so as to simplify

its organization sufficiently that it may be subjected

to line-by-line auditing by human examiners with high

probability that they will detect any inconsistencies,
errors, or subversions of the system.
The first of these three methods, while probably most

appealing, has two interacting defects. First, there is

no way to release the top-down designer from the pressures
toward complexity which were mentioned earlier, especially

the pressure to get a system operational as soon as possible

because of the development expense. Second, unless one can
permit the top-down designer the freedom to discard functional

requirements which are hard to fit into the design (that is,

to simplify the problem being solved by the system under de­
sign) then for a large system, a very long and expensive

design period seems inevitable, during which time much thought

and experimentation goes into devising schemes which method­
ically do everything called for in the system specifications.

The second method, correctness proofs, is in its infancy -­
at the level of theoretical development -- and seems to be far
from practical application to a set of programs as large as a

typical computer operating system. Work is proceeding at
many laboratories on expanding the capabilities of correctness
proofs, but it will probably be some time before this technique

~- is applicable.

-9-

For these reasons, the third technique, evolution of an

existing operating system to simplify it to the point of audit­

ability, is proposed as the subject of this research. This

proposal is based on the existence of a fully-equipped,

operating, and easily evolvable system: the Multics system,

previously developed by the CSR division of Project MAC. Be­

cause of the special difficulty in discovering errors in the

security and protection areas, and because of the recent

growing interest in that area both in private industry and in

government and defense circles, the vehicle proposed for

initial study is the flprotection kernel" of the system.

There are several reasons for choosing this particular

system and this particular area. First, Multics has been

developed from the ground up to be a protectable system, and

it already contains protection mechanisms as advanced as any

available, including special hardware features such as "pro­

tection rings". Second, the Multics system is better organized

than most for evolution and modification, being relatively

modular, being largely writteh in the PL/I language, and allow­

ing initial checkout of most supervisor programs in a user

environment. Third, a pool of expertise in the system organiza­

tion is available at Project MAC, and at Honeywell, whose con­

tinued cooperation is assured. Thus, productive work can begin.

immediately. Also, documentation of the Multics system is now

sufficiently well-organized that new graduate students and

staff members can rapidly learn about the environment. Finally,

the result, if successful, will be exportable. The present

Multics system is a commercially available product 1 and new

ideas developed in the course of this research should be rela­

tively easy to retrofit to the standard Multics system. Since

it is intended th~t a working prototype be constructed, it

would also be straightforward for, say, a government agency
'

to request that the manufacturer turn the prototype directly

into a production model. The relatively clean organization

of the basic system will make the result suitable for study

-10-

and imitation by designers of other operating systems

in the same way that the present Multics system is already

a subject for study and imitation in many locations in the

U.S. and abroad. The specific area chosen, namely the

security kernel, is one for which there is much interest

in understanding and exportation.

The method which will be followed will be to build, by

evolution from the standard Multics system, a new version.

This new version is to have a "most protected area" which is

simpler in organization and much smaller in size than the

standard system. The present "most protected area" consists

of about 400 modules, or about 80,000 lines of mostly PL/I

code. An initial target is to reduce both of these numbers

by approximately one order of magnitude. Although a change
of this magnitude may seem at first to be unrealistic, there

are several reasons why we expect that it is possible:

- Experience in working with Multics over the last several

years has proven that its PL/I code and general structure

make the system malleable. Recent drastic revisions such

as new formats for directories, replacement of software

by hardware rings, and even introduction of a new sub­

routine calling sequence have gone smoothly and quickly.

- Even before a comprehensive review has been undertaken,
several specific possible ·simplifications have already

been recognized which can strongly reduce the size of

the most protected area. Again, past experience in re­
viewing and revising such areas as system initialization,
interprocess communication, and drum and core management

strategy, have proven that the opportunity for a more
leisurely review of a design, after the initial rush to

get a first draft design completely operational, can

yield real insight into the necessary structure, and a
resultant simplification and shrinkage of the code re­

quired for implementation. In the present system, user

terminal management, dynamic linking, and library search

-11-

are examples of mechanisms which do not need to be pro­

tected from the user to the same degree as, say, the

interrupt handlers. Yet, they are so protected, and

for the wrong reason: to maintain high performance,

since they must communicate intimately with the modules

which must be protected, such as shared I/O buffer man­

agers and directory format managers. These are examples

in which the full effect of the newly-available ring

protection hardware can be easily exploited to segre­

gate into the more protected areas only the functions

honestly requiring maximum protection. This ring hard­

ware permits calls to procedures in a protected area to

be performed with the same mechanism and at the same

cost as a call to a procedure which is not protected.

- In the rush to make Multics fully operational, several

well-understood shortcuts were taken. These shortcuts

can now be reviewed, and redone, generally producing a

more methodical structure. The most significant of this

class of change is to permit multiple, parallel, processes

in a single address space. Such a change would eliminate

a vast number of special tricks used to provide rapid

interrupt-time response, to provide a "quit" button on

the user terminal, and to coordinate activities which are

more simply viewed as parallel ones, such as management

of all inactive telephone lines. The primary effect of

this change, to reduce all hardware interrupt handlers
to a half-dozen lines of code plus one subroutine call,

is especially far-reaching in terms of simplicity and
auditability of the resulting structure.

In light of these three reasons, it is anticipated that substan­

tial progress toward a full order of magnitude reduction in the

size of the most protected area can actually be accomplished.
From past experience with such activities, it would appear

that a target date of about three years from the time work be-

gins, a prototype system may be available.

-lla-

An important difference between this kind of activity and

the traditional activity of building or modifying an operating

system is that when an unexpected problem is encountered, it

must be mastered by completely consistent redesign rather than

by shortcuts and patches, if simplicity of organization is to

be a result. For this reason, we propose to work in an environ­

ment free from deadlines and expectations by users of

products to be delivered on a firm schedule. To accomplish

this change of environment, a method of operation distinctly

different from that used in the past to develop Multics itself

is proposed. In the past, as rapidly as innovations were

checked out, they were delivered and installed in the standard

system, to be used immediately at M.I.T., and after some delay

at the other sites operating the Multics system. This pattern

will probably continue to be the method of Honeywell with re­

spect to the Multics system. However, for purposes of this

project, we propose to split off and develop a distinct version

of the operating system, unhampered by compatibility require­

ments and day-to-day operational needs of the various Multics

sites. (Of course, our Honeywell counterparts may well wish

to pick up ideas, techniques, or even changed modules, with the

intent of adapting them to operate in the standard Multics

systems.)

As suggested above, it is planned that this project be car­

ried out jointly with the Cambridge Information Systems Labora­

tory of the Honeywell Company. The manager of that laboratory

has expressed interest, and a separate proposal to that effect

will be made to Honeywell. The level of effort proposed would

include six to eight professional programmers (half of which

would come from Honeywell), about eight graduate research as­

sistants, half a dozen undergraduate students, and parts of

the time of three faculty members.

In addition to cooperation with Honeywell, close coordina­

tion with several other activities will be maintained. Most

important of these are the "software assurance project'' at

-12-

University of Southern California Information Sciences

Institute, the computer security activities in the Air

Force Electronics Systems Division, and the RISIS project

at the Lawrence Livermore Laboratory. Discussions with

the people in charge of these three projects have produced

a general agreement to remain in close contact. At the

present time, it would appear that the four organizations

(including MAC/CSR) can supply distinct, unique and inter-

locking capabilities:

1. ISI can suggest the constraints on an operating system

design which will make auditing possible, and can help

develop standards for program organization and structure

which will make auditing easier.

2. AF/ESD can provide the constraints on an operating

system design needed by a user who has both operational

and security requirements.

3. LRL can provide a tiger team which can look for weakness

in the system itself.

4. MAC/CSR can provide the experience in the real world of

operating system construction to make sure that the

prototype which results has a suitable functional capa­

bility, reasonable performance, and is maintainable.

As a target, the following objective is proposed: the

actual prototype operating system should consist of a small

set of structured programs with annotation and commentary

to make it easy for a reader to understand, and suitable

for publication in a technical report or possibly even in

the "Algorithms" section of the Communications of the ACM.

On the other hand, this publishable system kernel should

not restrict the present functional capabilities of the

full Multics system in any important way.

A substantial amount of computation resources will

be required. Time and storage space on the M.I.T. Information

Processing Center Multics site are the primary requirement, to

-13-

allow editing, compiling, generating and storage of test systems.

In addition, time on some distinct, small configuration of hard­

ware will be required for checkout and performance benchmarking

of test systems.

System Measurement and Modeling Activities

An exceptionally productive area for the last year or so has

been in taking measurements of the M.I.T. Multics site, and

developing models which track these measurements. There are

several reasons for this productivity:

- The M.I.T. Multics site is now being used in production

by some 700 individuals, for a wide variety of purposes.

Thus we are able to observe a realistic working computer

facility.
- Almost all programs run at M.I.T. have been written new

for Multics, and are designed for its advanced program­

ming environment. Most other computer systems in produc­

tion use have loads consisting at least in part of programs

designed for other systems, which makes interpretation of

measurements difficult.

- The relatively methodical organization of the Multics

supervisor, and the fact that it is written largely in

PL/I, make addition of meters and interpretation of measure­
ments a reasonable project at the graduate student level.

There is therefore a pool of available and willing talent

to apply to measurement and modeling problems.
-The move to a new generation of hardware,.underway now,

will provide an opportunity for systematic comparison

measurement and algorithm evaluation in a new operating

region.

Thus we expect that the measurement and modeling area is one

in which a continued modest investment will yield substantial
results.

-14-

Extensions of the ARPA Network attachment to Multics

The basic objective of this activity is to make the ARPA

network the preferred method of information flow in and out of

a Multics-class system. A secondary objective is to feed back

into the network designs the special concerns of a general­

purpose computer utility which is being used as a service system.

Some users have already found that the inherent flexibility of

the ARPA network terminal interface is superior to the direct

terminal attachment interface of Multics. For example, display

terminals operating above 2000 bits per second and typewriter

terminals operating at 300 bits per second can be used only via

the ARPA net at present. The logical extension of this goal is
to develop the capabilities of the network attachment to the

point that:

- Line printers, card readers, and card punches are readily

attachable via the network.

Terminal I/O buffering for the network is as effective

as for directly attached terminals.

- Display systems of high bandwidth can be used over the

network.

- User magnetic tapes are attachable, via the network.

- Ultimately, the need for operators in the computer machine

room is eliminated, as all I/O operations have been de­

centralized, and placed in the user's hands. (The hardest
function to automate is that related to initiating the

correct degree of backup/restart following a system hard­
ware or software failure.).

To this end, several specific activities are proposed:

1. Input and output buffering strategies for the ARPA network
are primitive, and not suitable for high traffic, in contrast
to direct attachment teletype software, which by now uses a

highly optimized buffering strategy. The ARPA net buffering

strategy is complicated by the need, on the one hand, to

-15-

drive terminals attached to TIP's with negligible internal

buffering, and on the other hand to pass large files to other

systems with arbitrarily large buffer capabilities. Quite

a bit of additional work is needed to develop, implement,

and install a strategy which will handle both ends of this

spectrum effectively. The strategy must also be capable

of supporting character-at-a-time and full duplex use of

Multics.

2. Attachment of the Project MAC display system to the ARPA

network will introduce, for the first time, large numbers

of high bandwidth devices, all attempting to access one or

a few hosts. In addition, evolution of the ARPA net itself

will cause more attention to turn to development of graphics

protocols. Participation in the development and also imple­

mentation of the graphic protocols for Multics is planned

as well as the deeper integration of graphical mechanisms

into the system itself.

3. Initial planning will begin on the problem of allowing files

which appear in the directories (catalogues) of one network

host to be physically stored at a different network host.

This idea is a step beyond currently proposed "file transfer

protocols" in that the user of such a file would see nothing

exceptional compared with access to a file which happened

to be stored locally. The tricky problem here is to inte­

grate this view into the segmented virtual memory view that

all on-line storage is directly addressed and shareable.

Planning and development of suitable protocols is proposed.

In addition to those specific activities, the CSR division

of Project MAC will continue to be an active participant in

Network Working Group activities, lending its experience in

operating system design and its viewpoint as a general-purpose

server site to the various activities of the NWG. This activity

will primarily be reflected in travel and borrowing of time of

people nominally assigned to other network activities.

-16-

Finally, CSR will continue to administer a small fund for

experimental use of the Multics system by ARPA-sponsored net­

work u~ers outside M.I.T. The purpose of this fund is two-fold:

1) To permit other network sites to feel that they may

experiment with or demonstrate their own capabilities

by remote use of the Multics system.

2) To permit other network users to get onto and evaluate

Multics as a possible host for their own work. (Any

productive work which follows such an initial intro­

duction would normally be funded by direct arrangements

between the other network site and the M.I.T. Informa­

tion Processing Center.)

Exporting the Multics Design

Although the development and implementation of the initial

Multics system is now complete, the transfer of the know how

and ideas embodied in the system to other system designers is

not. To this end, a small activity, included in this proposal

to establish its legitimacy, is planned to continue support of

writing of technical papers and books about the Multics design,

and offer space and computer time to permit visitors to examine

and use the Multics system to learn how it is constructed.

