
/ 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.00 PAGE 1 

Publi~hed: 11/03/67 

Identification 

User Control Overview and Terminology 
J. H. Saltzer, C~ Marceau 

Purpose 

This section provides an overview of how the user "plugs 
into11 the system, that is, of the system's view of the 
user from the time he dials up until the time he logs 
out. Functional descriptions of the terms used in user 
control sections are included in this section. Section 
BQ.3.00, which is closely related to this section, discusses 
the processes in a user process group. That is, it describes 
how the functions listed here are carried out in a 
multiprogrammed system. 

User Control 

The term "user control" refers to the system's view of 
the user from the time he logs in until the time he logs 
out. The concerns of user control are 1) logging the 
user in and out; 2) supplying the user with the ability 
to interrupt the work he is doing and the ability to save 
the state of the work he is doing; 3) supplying the system 
with mechanisms for limiting the number of users and in 
general ensuring that the system will not lose track of 
users' processes. The remaining terms discussed in this 
section pertain to the functions of user control. 

System Control and User Control 

System Control is responsible for control of th~ operating 
system, from the time the system is "brought up" to the 
time it is "shut down''. User control is of interest to 
system control because user control includes the system's 
handle on users. In particular, system control can place 
a limit on the _number of users allowed on the system or 
can decide to shut down the system although many users 
are currently on the system. User control provides the 
mechanisms for enforcing these decisions. 

Login 

A "login'' occurs whenever a user explicitly requests and 
receives admission to the system. A user (a person working 
on a project) is always either a potential user (that 
is, a user in a state of potentiality), or, after he has 
logged in, an active user of the resources of the system. 
A successful login implies three things on the part of 
the system: 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 80.2.00 PAGE 2 

1) posiiive identification of the user (he is who he claims 
to be); 

2) a decision that the user may use the system at the time 
of the login (the system is not too busy to accommodate 
him); · 

3) an entry in the user log recordin~ the successful login, 
with date and time and other pert 1 nent i nformat'i on such 
as console location. 

The statements 11 the user logs in11 and 11 the system logs 
in the user11 mean the same thing. Although the former 
phrase is more precise, the latter is sometfmes also used, 
especially to refer to the actions which the system takes 
when a user logs in.· Both imply the user's volition and 
the system's response. 

Logout 

The term II logout11 refers to the actions taken to II remove11 

a user from the system, that is, to change his status 
from that of an active user to that of a potential user 
of system resources. A logout implies that the user ceases· 
to actively use the system and that he must log in again 
in order to use the system. 11 Logout11 differs from "login" 
in that it does not always imply the user's volition. 
The system may on-Its own initiative log a user out (for 
example, because of system overload). A logout which. 
occurs on the initiative of the system rather than of 
the user is called an 11 automatic logout11 • 

The user may, however, voluntarily log out. The statements 
"the user logs·out11 and 11 the system logs the user out11 

are not quite synonymous. Both imply that the system 
removes the user from the system and records the logout 
in the user log, with date and time. The first statement 
carries the further implication that the user initiated 
the logout. The statement, 11 the system logs the user 
out automatically11 , implies that the user did not initiate 
the logout. 

User-Process-Group 

The concept of the process-group is presented in BQ.O 
and for a good introduction to the meaning of the term 
the reader should consult BQ.O. Here we state only that 
processes which cooperate closely for a common purpose 
are associated in process-groups, with, for example, common 
access to data and procedures. A user-process-group is 
simply a process-group serving a logged in user. When .~ 



/. 
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.00 PAGE 3 

the user logs in, his process-group is created and when 
he logs out, it is destroyed. The user-process-group 
can be divided into two conceptual units: the overseer 
module of the process-group is a part of user control, 
concerned with providing standard services to the user 
a.nd with implementing the decisions of the system control. 
The second unit of the user process group is the computation 
of the user himself. This computation is what the user 
actually sees of the system. It consists of the execution 
of the user's colllllands and procedures, and may be multi programmed 
or not. The computation is sometimes called the user's 
work, as in 11 the user desires to interrupt his work" or 
his computation. 

Quit/Start Terminology 

If the user desires to interrupt his computation h~ does 
so by pressing a key at his console known as the ''quit 
butto~•. When the user presses the quit button, he .causes 
the overseer to stop the computation. Stopping the computation 
in this way is known as a guit. One of the functions 
of the overseer module is to 1mplement quits initiated 
by the user. · 

Stop is the name of a procedure in the overseer modu·le 
of a user-process-group. This procedure, if invoked for 
any reason, will immediately stop the computation. In . 
general, the stop procedure is called by other procedures 
as one of their steps. One such procedure is the guit 
procedure, which executes in two steps: 

1) invoke the sto~ procedure, described above, 

2) condition the process-group so that it may accept 
new commands. This is done by invoking the gyi1 
responder (see below) of the user in a new computation. 

That is, a quit cause~ the current computation to be stopped 
and a new computation initiated. The user then interacts 
with his new computation, typically by typing.a new command. 
The supporting actions of the overseer module are invisible 
to the user, who is thus only aware of being able to start 
over afresh. 

Start is a companion procedure to quit. It too is part 
of the overseer module, and its job is to undo the \I'Jork 
done by quit. The start procedure may be invoked by the 
user who types a start command immediately following a 
quit. Other invocat1ons of the start procedure occur 
as a result of unshelving an absentee computation (see 
absentee user terminology) or the resume procedure (see 
save/resume terminology). 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.00 PAGE 4 

Two other procedures which are related to quit and start 
are hold and reset •. Reset causes the computation which 
was quit to be destroyed. Normally there can exist only 
two levels of computation simultaneously: one level which 
is currently doing the user's work, and one level which 
was quit. If a second quit follows the first, the previously 
quit computation is destroyed and there are again only 
two levels of computation. 

It may happen that after quitting a user wishes to operate 
on his previous computation, for example to~ it (see 
save/resume terminology). By operating on his quitted 
computation he is treating it as data of the current computation. 
The hold procedure, part of the overseer module, is invoked 
to hold a quitted computation as part of the current computation. 
After a hold there is only one computation; the current 
one. 

Commands such as save or hold are not part of a user's 
computation but directions to user control (in this case 
the overseer) concerning the computation. Thus these 
commands are system standards and are not dependent on 
the particular subsystem in which the user may be operating. 

Subsystems 

When a user interacts with his computation he ••sees11 a 
subset of corrmands and procedures, for example, the Multics 
Command System. The user control MSPM sections refer · 
to such a subset as the user's subsystem. Most general 
purpose users will use the Multics Command System as their 
subsystem, but other users might use a special purpose 
subsystem, such as one which interprets every line typed 
by the user as a request concerning airline reservations. 

A subsystem, in the user control sense of the word, is 
defined by three elements: a login responder, or the 
program of the subsystem which interprets the first command. 
a user types after login; a 9.Y..!.l responder, which interprets 
the first command a user types after a quit; an automatic 
logout~ flgg, which, if ~p, indicates that th~ user>s 
co~putation should be saved 1n case of an automat1c logout 
or if the user's console hangs up. 

Note that when a user types ••start11 after a quit, his 
command is interpreted by his quit responder. The Multics 
command system quit responder interprets the start command 
as an instruction to user control and not as a regular 
command line (the line is not interpreted by the Shell -
see BX.3.06). Another subsystem might prevent the user 



MULTICS SYSTEM-PrWGRAt'11'1ERS' MANUAL SECTION 13().2.00. PAGE 5 

from corrrnunicating with user control simply by refusing 
to forward his requests to user control. In such a subsystem 
the user could not execute commands concerning h~s computation, 
but could only execute commands within his computation. · 

Save/resumg terminology 

It is possible to §av.e the state of a computation so that 
it may be resumed at a later date. For example, in case 
of an automatic logout, if the automatic logout save flag 
is up, the overseer saves the user's current computation. 

Saving a computation usually consists of reservin those 
processes which are performing the computation see BQ.3.00 
for the functions of processes in a process-group).·. To 
preserve a process means to freeze it in a stable state 
so that it can be resurrected and continue to run as before •. 
A preserved process is a snapshot of a process and not 
actually a process. Thus it is not in the runni~g~ ready, 
nor blocked states. The process can be resurrected and 
placed in the blocked state, at which time it becomes 
capable of execution again. A pn:~served process retains 
its process I.D. but does not t1ave a process directory 
(an entry in the process directory directory signifying 
that it is a known process) and, as stated above, is neither 
running, ready, nor blocked. (All this seems theologically 
appropriate. ) 

To save a computation it is necessary to preserve all 
processes executing the computation and to save the state 
of all input/output of interest to the computation. To 
resume a computation it is necessary to resurrect all · 
processes which are part of the computation (that is, 
to restore the computation) and to start the computation! 

Absentee User Ter.mi no log:r 

An absentee user is one who requests a computation to 
be executed in his absence, that is, while he is not inter-acting 
with it from a console. Such a computation executes in 
an absehtee user-process-group. The typical user is an · 
interactive user, and his user-process-~roup is called 
an interactive group: the terminolog~ 1ntroduced in this 
section up until now is concerned with the interactive 
USer process-group. \1Je nOW diSCUSS thOSe aspeCtS Of an 
absentee group which distinguish it from the interactive 
case: 

,. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION_BQ.2.00 ·PAGE 6 

1) The overseer module of an absentee process-group does not 
set up the mechanisms necessary for the user to request 
any of the functions of quit, start, etc., since the 
absentee user is presumably not directing the progress of 
his computation from a console. 

2) As a general rule the system attempts to provide response 
to the interactive user's requests so that the interaction 
rate will be useful. However, response quality of the 
absentee group may typically be sacrificed in favor of 
both interactive groups and system efficiency. 

3) If system load becomes very heavy or if the system must be 
brought down for a short time, the absentee ·group will be 
shelved (see below). A shelved group may be unshelved on 
the initiative of the system at some later time, over which 
the user has no control. 

The common feature of these three characteristics of an 
absentee group is that the system assumes that no interaction 
between user and computation is taking place, and also 
that the user relinquishes control of his computation 
to the system. It is conceivable that an absentee user's 
computation will in fact attach a console and attempt 
interaction. However, the system is not designed to support 
an interactive computation in an absentee group. A user 
who tries such a combination will find himself with an 
ineffectual quit button (since the overseer module is 
not attached to the quit button) and with poor interaction 
time (since the system makes no special effort to secure 
him good response time). 

An absentee computation can be submitted only by another 
computation (possibly absentee), in the form of a file 
of commands to be executed. This file is known as the 
absentee source file for the computation. 

The computation is submitted to the absentee monitor process, 
a system process whose mission is to control the number 
of absentee computations which are currently competin~ 
for computer resources. That is, the user, through h1s 
computation, attempts to log in an absentee computation~ 
With respect to this absentee computation the user is 
termed an absentee user. The absentee monitor process 
handles the lo~in request. This type of login has the 
same character1stics as an interactive login: 1) The 
absentee monitor authenticates the identity of the user 
requesting login by noting the process group id of the 
process group requesting the login. 2) The absentee monitor 
decides whether the system will accept a new process-group 
of this user at this time. 3) The absentee monitor records 
the login in the user logo 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.2.00 PAGE 7 

An absentee computation begins in the shelved state. 
A shelved absentee computation consists of a collection 
of segments only, and is known only to the absentee monitor 
process. In addition to the absentee source file, associated 
with a shelved absentee computation is an absentee saved 
file, preserving the state of the absentee-computat1on 
at its last time of execution. (An absentee computation 
which has not yet begun to execute for the first· time 
has no absentee saved file.) 

From time to time, as it observes that resources are available, 
the absentee monitor process unshelves one or more absentee 
computations. Unshelving involves creating an absentee 
user process group and instructing it to execute the computation. 
The overseer module for the absentee group allocates all 
necessary resources to the process group and resumes the 
absentee saved file. If this computation is being unshelved 
for the first time, the absentee overseer simply causes 
the computation to begin in the user's login responder, 
which begins executing commands from the absentee source 
file for this computation. 

The absentee monitor process may also observe that ·there 
are too many unshelved absentee groups in progress for 
the current collection of available resources. If so, 
it takes the initiative to shelve some of the executing 
absentee computations. A computation·may be shelved by 
sending to its overseer an order to suspend operations . 
(see BQ.3.01 ). The overseer wi 11 then perform the suspend 
procedure, which involves calling the stop and~ procedures, 
deallocating all resources, and then returning control 
to the absentee monitor process. The save procedure saves 
the current state of the computation in an abse~tee saved 
file •. The absentee monitor process then destroys the 
overseer process group and the absentee job is now considered 
shelved. 

Note that an absentee job does not need to be logged out 
if the system is taken down. Instead, it is merely shelved, 
and when the system is restarted, it appears among the 
candidates to continue absentee operations. However the 
absentee computation itself may initiate logout, when 
it is complete, or the user who submitted the absentee 
computation may request that it be lo~Jged out by logging 
in (interactive or absentee) and send1ng the absentee 
monitor process an appropriate event signal (as the result 
of executing an appropriate command). The absentee monitor 
process will force the computation in question into the 
shelved state if it is not already in that state, and 
then complete the actions necessary to log out the computation. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION Bl~.2.00 ·PAGE 8 

The user may now paw about in the absentee saved file 
to determine the state of the computation~ when it was 
cut off. He may also resume the computation in an interactive 
group (after sui table modifications to ensure that his 
computation takes commands from his console and not from 
the absentee source file). 

--.-.., 


