
M0126

A Hardware Architecture for Implementing Protection Rings

Michael D. Schroeder•
and

Jerome H. Saltzer•

August 2, 1971

ABSTRACT

Pro.tection of computations and information is an important
aspe.c-t .. of a computer uti 1 tty. In a system that uses segmentation
as a memory addressing scheme, protection can be achieved ln part
by associating concentric rings of decreasing access capability
with a computation. This paper describes processor mechanisms
for implementing these rings of protection tn hardware. The
mechanisms allow cross-ring calls and subsequent returns to occur
withbut "traps". Automatic hardware validation of references
across ring boundaries Is also performed. Thus, a call by a use~
procedure to a protected subsystem (Including the supervisor) is
no more complex than a call to a companion user procedure. ihe
complexity of ~assing and referencing arguments I$ the same in
both cases as well.

PREPRINT
This paper will be presented at the
3rd ACM Symposium on Operating
Systems Principles, to be held In
Palo Alto, California, October
18-20, 1971.

* Massachusetts Institute of Technology, D•partm~nt of Electrical
Engineering and Project MAC, Cambridge, Massachusetts. Wbrk
reported herein was supported tn part by Project MAC, an M.I.T.
research program sponsored by the Advanced Research Project
Agency, Department of Defense, under Office of Naval Re~earch
Contract N00014-70·A-0362-0001.

M0126

lntrodyctlon

The topic of this paper is the control of access to stored

information In a computer utility. The paper describes a set of

processor access control mechanisms that were devised as part of

the second Iteration of the hardware base for the Multlcs system.

These mechanisms provide a hardware implementation of protection

"rings" which limit the access capability of an executing

program.

Multlcs is a general-purpose, multiple-user, Interactive

computer system developed at Project MAC of M.I.T. in a joint

effort with th~ Cambridge Information Systems Laboratory bf

Hone~well Information Systems Inc. and, unti1. 19~~~ the Bell

Telephone Labor~tori~~. It was built and.is' being ruri as an

e~perlment ln.deslgntng, lmplem~~ttng, operating, and ~valuating

a prototype computer utility. (See the b'tbllography In [1] for a

complete list of publication~ on Multics.)

Multlcs Is currently implemented on a Honeywell 645 computer

system. The 645 represents a first attempt to define a suitable

hardware base for a computer utility. ~~hi.le containing special . '

logic to support a segmented virtual memory, th~ 645 processors

[2] provide only a limited set of access control mechanisms,

forcing software intervention to implement protection rings. In

·1967 Graham [3] proposed a way of supporting protection rings in

hardware that would have required less software Intervention;

mechanisms similar to those he proposed appear in the Hitachi

5020 [4] •. In the course of Multlcs development a second

2

M0126

iteration of the design of the hardware base has been undertaken

and the resulting new hardware system is being built usihg the

technology of the Honeywell 6000 series computer systems. The

new processor includes an improved set of access control

mechanisms, described here, that implement rings almost

completely in hardware. These mechanisms developed from a scheme

described in [5]. Although specifically designed for Multics1

the mechanisms are applicable to any computer system which uses

segmentation as a memory addressing scheme.

This paper begins by establishing the general need to

control access to stored information in a computer utility and by

presenting several criteria for comparing different sets of

access control mechanisms. Relevant aspects of the ortantzation

of segmented memories are then sketched, and the processor

mechanisms for implementing protection rings are described. The

paper concludes by considering how rings can be used and

evaluating the Impact of a hardware implementation of rfngs on

software system design.

Access Control ln a Comoyter Utjljty

Protection of computations and information is an important

aspect of a computer utility which arises because a computer

utility serves multiple users with different goals and who are

responsible to different authorities. Such a diverse group will

use the same system only if it is possible for them to achieve

independence from one another. On the other hand, a great

potential benefit of a computer utility is its ability to allow

3

M0126

users to easily communicate, cooperate, and but ld upon one

another's work. The rrile of protection in a computer utility is

to control user interaction -- guaranteeing total user separation

when desired, allowing unrestricted user cooperation when

desired, and providing as many intermediate degrees of control as

w i 11 .be usefu 1.

While there are

computer utility,

stored information.

many manifestations of protection in a

most may be related to controlling a·ccess to

Because stored information repre~ents both

data and executable procedure, control of access to stored

information serves to regulate information proc~ssing as well.

·Four criteria can be ·app 1 i ed to a set of access centro 1

mechanis~s to judge its usefulness in a computer utility:

func~fons·l capabf 11 ty, economy, simpl i'ci ty, and programming

generality. The first means that a set of access control

mechanisms sh6uld have the functional capability to meet an

interesting set of user protection needs in a natural way. The

ability to meet interesting protection needs must be a quality of

the basic mechanisms, while the ability to do so in a natural way

is a quality of their user interface. An obvtous goal in

designing new protection mechanisms is to maximize functional

capability.

The second criterion, economy, means that the cost of

specifying and enforcing a particular kind ~f access constraint

with a set of mechanisms should be so low that It is not an

important consideration in determining the type of access control

4

M0126

to be used in a particular application. In addition, cost should

be proportional to the functional capability actually used. The

existence of access control mechanisms with sophisticated

capabilities should cost.no extra to those with unsophisticated

needs. Cost includes the subsystem complexity and user

inconvenience that result from use of the access control

mechanisms, as well as any associated extra storage space and

execution time.

Simplicity is the third criterion. While it is true that

simplicity often leads to economy, spmething more is at stake

here. For a set of access control mechanisms to be atcepted and

used there must be a high degree of confidence that there exists

no way to circumvent it. The best way to achieve confidence in

the protection Is to keep the mechanisms simple so that they may

be completely understood. With respect to access control

mechanisms, lack of simplicity often implies lack of security.

The fourth criterion, programming generality, Is often

neglected. It means that individual procedures may be easily

combined into larger units without understanding or altering

their internal organizations. Programming generality allows

sharing to be effective _in encouraging users to build upon one

another's work. An implication of programming generality of

r-elevance to access control mechanisms is that it be possible to

change the protection environment of procedures and collections

of procedures without altering their internal structure~ THe

specific protection environment of a procedure should not be

5

M0126

reflected in its object code so that it may operate in different

protection environments without recompilation.

It clearly is difficult to design access control mechanisms

that satisfy all four of these criteria simultaneously.

Increases in functional capability come at the expense of

economy, simplicity, and programming generality. The challenge

in designing a set of access control mechanisms is to maximize

functional capability within the constraints of the other three

criteria. In the following sections a set of hardware access

control mechanisms that was devised in the course of Multics

development is described. These mechanisms appear to provide a

significant improvement in the simultaneous satisfaction ·of the

four criteria as compared· with the mechanisms in the Initial

Mu 1 t i cs imp 1 emen tat ion.

~Segmented Virtual Memorv Environment

The processor access control mechanisms described here

regulate the ability of an executing program

information in a segmented virtual memory. As

understanding these access control mechanisms

to reference

a basis for

th.i s section

briefly reviews the structure of a segmented virtual memory.

(See [6-8] for detailed descriptions of several segmented virtual

memories.)

A machine language program for a segmented environment does

not reference memory by absolute address. Rather, its memory

consists of independent segments identified by number. Each

segment Is a variable length array of words. A two-part address

6

M0126

(~,~) identifies word~ of the segment numbered~.

The collection of segments in the virtual memory is defined

by a descriptor segment. It contains an array of segment

descriptor words (SOW's), .each of which can describe a single

segment in the virtual memory. The number of a segment is just

the index of the corresponding SOW in the descriptor segment.

Among other things, an SOW contains the absolute address of the

beginning of the corresponding segment in memory. The absolute

address of the beginning of the. descripto~ segment is contained

in the descriptor base register (OBR) of a processor. Each

processor contains logic for automatically translating two-part

addresses into the corresponding absolute addresses. Address

translation, done with an lndexed retrieval of the ~ppropriate

SOW from the descriptor segment, occurs each time a word in the

virtual memory is referenced, I.e. each time an instructioh,

indirect word, or instruction operand reference is made by an

executing program.

Storage for segments is usually allocated with a paging

scheme in scattered fixed-length blocks. If used, paging is

taken into account by the address translation logic as well as

segmentation, but is totally transparent to an executing machine

language program. Paging, if appropriately implemented, need not

affect access control; it will be ignored in the remainder of

this paper.

Changing the absolute address in the OBR of a processor will

cause the address translation logic to interpret two-part

7

M0126

addresses relative to a different descriptor segment. This

facility can be used to provide each user of the system with a

separate virtual memory. A single segment may be part of several

virtual memories at the same time, allowing straightforward

sharing of segments among users.

For clarity, the following sections describe control of

access in terms of the Multics implementation, although, as

mentioned before, the techniques described are equally applicable

to any system using segmentation •.

Controlling Access ln £Virtual Memory

A process with a new virtual memory is created for each user

when he Jogs in to Multics, and the name of the user is

associated with the proces~. The process is the active agent of

the · user 1 and Is his on 1 y mean·s of referenc f ng and man i pu 1 at i ng

information stored on-line.

On-line storage in Multics is organized as a collection of

segments of Information. A process can reference a segment of

on-line storage only if the segment is first added to the virtual

memory of the process. Adding a segment to a vi.rtual memory is

an operation performed by supervisor programs. This operation

provldes the initial opportunity for controlling access to

informat1on stored on-line. The name of the user associated with

a process must match some entry on the access control list of a

segment before the supervisor will add that segment to the

virtual memory of the process.

Once a segment is included in the virtual memory, however,

8

M0126

finer control on access is required. (If a process could, say,

write in any segment to which it had access, little sharing of

information among users would occur.) If this finer control is

to be effective agains~ arbitrary machine language pr~g~ams

constructed by users, it must be implemented as hardware access

validation on each reference. The structure of the virtual

memory makes it natural to record these finer constraints in the

SOW associated with each segment. Since t'he processor must

retrieve the SOW for a segment each time that segment is·

referenced by two-part address anyway, there is little time cost

added to validate the intended access against constraints

recorded there. With this structure it is also possible to

change the allowed access to~ segment by changing the finer

constraints recorded in the SOW, and to expect the change to be

immediately effective.

With the Honeywell 645, flags which enable a segment to be

read, written, and. executed appear in each SOW. The value for

each flag comes from the access control list entry which matched

the name of the user associated with the process. An attempt by

a process to change the contents of a word of a segment, for

example, would be allowed by the processor only if the write flag

were .QJ1 in the SOW for the segment. This mechanism provides

individual control on the ability of·each user's process to read,

write, a~d execute the words in each segment stored on-line. It

also makes a segment the smallest unit of information that can be

separately protected.

9

M0126

With the access control mechanisms described so far, all

programs executed as part of some process have the same

capability to access information. However, there seems to be an

intrinsic need in many computations for the access capabilitY of

a process to vary as the execution point passes through the

various programs that direct the computation. The most obvious

examples of this need are explicit invocations of supervisor

programs during the course of a computation. The execution point

may pass from a user program to a.supervisor program to initiate

an tnput/output operation or change the access control list of a

file, and then pass back to the user program. Presumably the

executing supervisor program can access information· in some way

that the\ user p·rogram cannot~ In a system 'that allows , and

encourages sharing ·of informatiQn among users, other ex~mples

appear. For instance, user A may wish to allow user· B to acc~ss

a sensitive. data segment, but only through a sl)ecial program,

provided by'A, that audits references to the segment. Doring the

course of a computation in a process of ~ser B, ~ccess to the

sensitive data segment should be allowed only when the execution

point is in the special program provided by A.

The word "domain" is frequently associated with a set of

access capabilities. The examples above point to an Intrinsic

need for multiple domains to be associated with a process and for

the domain in which the process is executing to occaslohally

change as the execution point passes from one program to another.

A descriptor segment with read, write, and execute flags in the

10

M0126

SOW's defines a single domain. Additional mechanisms are

required to allow multiple domains to be associated with a single

Multics process.

A very general set of access control mechanisms would place

no restriction on the number of domains which could be associated

with a process, and would force no restrictive relationships to

exist among the sets of access capabilities included in the

domains. Unfortunately, devising such a set of access control

mechanisms that also meet the cri.teria of economy, simplicity,

and programming generality is a difficult research problem. (See

[9-14] for several approaches that have been explored.) In

Multics the strategy was adopted of limiting the number of

domains which may be associated with a process, and of forcing

certain relationships to exist among the sets of access

capabilities included in the domains. The result is protection

rings. The extent to which this strategy results in a useful set

of access control mechanisms will be discussed later.

The characterization of rings as a restricted implementation

of domains is the result of hindsight. When developed, rings

were viewed as a natural generalization of the supervisor/user

modes that provided protection In many computers. This path of

development was chosen because it solved the most pressing

problems of access control involved in the prototype computer

utility and, because of the inherent simplicity of the idea, it

was a path that the Multics designers felt confident they could

successfully complete. Even today rings appear to provide an

11

M0126

effective trade-off among the criteria mentioned above.

Protection Rings

Associated with each Multics process are eight domains

called protectlon rings. The protection rings are named by the

integers 0 through 7. The access capabilities included in ring m

are constrained to be a subset of those in ring n whenever m > n.
Put another way, the sets of access capabilities represented by

the various rings of a process form a collection of nested

subsets, with ring 0 the largest set and ring 7 the smallest set

in the collection. Thus, a process has the greatest access

ability when executing in ring 0, and the least access ability

when executing in ring 7. The total ordering of the sets of

access capabilities defined by the consecutively numbered rings

of a· process ts the property ·that allows a straightforward

implementation of rings in hardware.

As described earlfer, the permission flags of each segment

in the virtual memory of a process simply indicate that the

segment can or can not be read, written, or executed by the

process. With the addition of rings, the flags must be extended

to indicate which rings Include each access capability. Because

of the nested subset property of rings, the capability, say, to

write a particular segment, if allowed at all, is included in all

rings numbered less than or equal to some value ~· The range of

rings over which this write permission applies is called the

write bracket of the segment for the process. Read and execute

brackets for each segment can be established in the same way. A

12

M0126

process is permitted to read, write, or execute a segment in its

virtual memory only if the ring of execution of the process is

within the proper bracket.

A partial hardware implementation of rings places numbers

indicating the top of each bracket of a segment in the SOW of the

segment, along with the read, write, and execute flags. If a

flag is ~ then the number specifies the extent of the

corresponding bracket. Turning a flag ~ indicates that the

corresponding access capability. is not included in any ring of

the process. For example, a data segment might have its execute

flag turned~ or a procedure segment might have its write flag

turned~. A register is added to the processor to record the

current ring of execution of the process. The processor can then

validate each reference to a segment by making the obvious

comparisons when the SOW for the segment is retrieved for address

translation.

Figure 1 illustrates the flags and brackets that might be

associated with a writeable data segment for some process. The

segment can be written into when the process is executing in ring

O, read from when the process is executing in any of rings 0

through 4, and cannot be executed from any ring.

The association of multiple domains of protection with a

process generates the need for a new kind of access capability

the capability to change the domain of execution of a process.

Since changing the domain of execution has the potential to make

additional access capabilities available to a process, it is an

13

M0126

0

' ,

1

write bracket

2 3

read bracket

4 5 6 7 ring

read flag on
write flag ~
execute flag: .2.£!.

Figure 1: Example access indicators for a writable data segment

0 1 2 3 4

read bracket

execute bracket

5 6

gate extension

7 ring

r~ad flag
write fla8
exec\lte flag:
gate list

Figure 2: Example access indicators for a pure procedure segment

....

0 1 2 3

read bracket

4 5 6

-~,..--''~oo-..-~..,...,....-..... -
execute
I> racKet gate.

ex'tensJ.on

..... -- --- - - - -,,- - --- ..._._--- tl

write bracket if write
flag 2!!.

7 ring

read flag
write flag
execute flag:
gate list

.QE
2ll
2!!.
o, 1, 2

Figure 3: Example access indicators for a procedure segment showing
coincidence of bottom of execute bracket and top of potential
write bracket.

14

·~

M0126

operation that must be carefully controlled. An understanding of

the sort of control required can be gained by reviewing the

purpose of domains (and rings in particular). A domain provides

the means to protect procedure and data segments from other

procedures that are part of the same computation. Using domains

it should be possible to make certain access capabilities

available to a process only when particular programs are being

executed. Restricting the start of execution in a particular

domain to certain program locati~ns, called gates, provides this

ability, for it gives the program sections that begin at those

locations complete control over the use made of the access

capabi·lities included in the domain. Thus, changing the domain

of execution must be restrtcted to occur only as the result of

transfering control to one of these gate locations of another

domain.

With a completely general implementation of domains, each

domain could provide protection against the procedures executing

in all other domains of a process. The corresponding property of

rings is that the protection provided by a given ring of a

process is effective against procedures executing in hJgher

numbered rings. Switching the ring of execution to a lower

number may make additional access capabilities available to a

process, while switching the ring to a higher number can only

reduce the available access capabilities. Thus, the downward

ring switching capability must b~ coupled to a transfer of

control to a gate into the lower numbered ring. Gates are

15

t-10126

specified by. associating a (possibly empty) list of gate

locations with each segment in the virtual memory of a process.

If the execution point of the process is transferred to a segment

while the ring of execution is above the top of the execute

bracket for the segment, then the transfer must be directed to

one of the gate locations in the segment. If the transfer is to

a gate, then the ring of execution of the process will switch

down to the top of the execute bracket of the segment as the

transfer occurs. If the transfer. is not directed to one of the

gate locations, then the transfer is not allowed.

To provide control of this downward ring switching

capab.lity which is consistent with the subset property of rings,

a gate extension to the execute bracket of a segment is defined.

The gate extension specifies the consecutively numbered rings

above the execute. bracket of the segment that include the

"transfer to a gate and change ring" capability for the segment.

The gate list and the gate extension to the execute bracket

can both be specified with additional fields in the SOW for each

segment. Certain restrictions on the form of the gate list, to

be described later, allow its specification in a fixed-length

field.

In contrast to downward ring changes, switching the ring of

execution to a higher numbered ring can only decrease the

available access capabilities of a process. Thus, an upward ring

switch is an unrestricted operation that can be performed by any

executing procedure. (Care must be taken, however, to insure

16

M0126

that the instruction to be executed immediately following an

upward ring switch will come from a segment that is executable in

the new, higher numbered ring.) For programming convehience the

upward ring switch may be coupled to a special transfer

instruction.

A specific example will help clarify the meaning of the

execute bracket, the gate extension, and the gate list of a

segment. Figure 2 illustrates the way the access capabilities to

a pure procedure segment (one which does not modify itself when

executed) might be distributed to the various rings of some

process. When the process is executing in any of rings 0 through

4, any words of this segment may be executed as machine

instructions. When the process is executing in rings 5 or 6,

only transfers of the execution point to words 0 or 1 of the

segment will be allowed. These transfers will result in the ring

of execution switching down to 4. From ring 7 no attempt to

execute in the segment will be allowed. The s~gment may be read

from any ring In which it will execute.

The abstract description of rings is now one step from

completion. The last step comes from the observation that for

each procedure segment in the virtual memory of each process

there is a lowest numbered ring in which that procedure is

intended to execute. Further, that ring is not always zero. For

example, user- procedures are not intended to execute in ring 0,

the ring of a process containing the most access capabilities.

Allowing a non-zero bottom on the execute bracket would provide

17

M0126

the means to prevent the accidental transfer to and execution of

a procedure in a ring numbered lower than intended. Violating

the nested subset property with respect to execute access

capability by allowing a non~zero bottom on the execute bratket

of a segmant turns out to make rings no more difficult to

implement, and is thus desireable in view of the protection

against errors it provides.

The non-zero bottom on the execute bracket of a segment can

be provided without adding another field to the SOW. The method

is to use the field which specifies the top of the write bracket

to specify the bottom of the execute bracket as well. The double

use of this field does not appear to remove any interesting

functional capability from the access control mechanisms. In

fact, It eliminates an unwanted degree of freedom in access

specification, thereby removing the potential to make certain

types of errors. There are two cases to consider in support of

this contention. For a seiment with a write bracket but no

execute bracket, or vice versa, nothing is los.t by double use of

the field. For a segment with both a write bracket and an

execute bracket the double use of the SOW field constrains these

brackets to overlap by exactly one ring. Overlap by more than

one ring is not interesting because executing a procedure in a

~ing lower than the highest ring from which it can be written

invalidates the protection provided by the lower ring. The

forced single ring overlap guarantees that writable procedures

will execute in only one ring. Finally, there is no obvious

18

M0126

application for segments with disjoint write and execute

brackets.

As redefined, then, the execute bracket of a segment for a

process can be any consec~tively numbered group of rings, ·and

need not begin with ring 0. If the segment also has a write

bracket, then the bottom of the execute bracket must coincide

with the top of the write bracket. When the ring of execution is

below the execute bracket the process cannot execute words of the

segment as machine instructions, although the process can use

the unrestricted upward ring switch capability to execute the

segment in a higher ring that is within the execute bracket. For

many ~rocedure segments the execute bracket includes exactly one

ring the ring in which the procedure segment is intended to

execute. Procedure segments with wider execute brackets usually

contain commonly used library subroutines that are certified as

acceptable for execution in any of the rings from which they may

be called.

Figure 3 illustrates the relationship of the execute bracket

and the potential write bracket for a typical pure procedure

segment in the virtual memory of some process. This segment is

executable in ring 4 and contains gates into ring 4 for rings 5

and 6. It may be read from rings 0 through 4. If the procedure

were also writable then the write flag would be gn, and execution

and modification could occur in ring 4.

The gate list and the numbers specifying the read, write,

and execute brackets, and gate extension for a segment all come

19

M0126

from the access control list entry which permitted the process to

include the segment in its virtual memory, as did the values for

the read, write, and execute flags •

.C.S..U .aw:L Return

In the case of general domains, a change in the domain of

execution of a process occurs when the executing procedure

transfers control to a gate of another domain. In the context of

most programming languages an interprocedure transfer represents

a subroutine call, a. return following a call, or a non-local

goto. Linguistically, all three operations produce a change in

the environment of the execution point; this change affects the

binding of variable names to virtual storage locations. The call

operation has the additional function of transmitting arguments

and ·recordIng a return point. Producing the correct change in

the environment- (as we 11 as transmitting arguments and recording

a return point In the case .of a call} generally r~quires the

cooperation of both the procedure initiating the operation and

the procedure receiving control. If a call, return, or goto

changes the domain of execution because It happens to be directed

to a gate location of another domain, then the situation becomes

more complicated, for neither procedure can depend upon the other

to cooperate. An important simplification introduced by

restricting domains to a ring structure is that a procedure may

assume the cooperation of procedures in lower numbered rings.

When procedures are shared among different processes and

different domains, the addressing environment is usually defined

20

via a processor register, for it

addresses within the procedures

M0126

is not convenient to embed

themselves. In Multics, pure

procedures are used with a per process call stack, and the stack

pointer regiSter provides the required environment definitton.

The call stack of a process is implemented with a separate

segment for each ring being used. The stack segment for

procedures executing in ring n has read and write brackets that

end at ring n. Thus, stack areas for these procedures are not

accessible to procedures executing in any ring m > n. Part of

the function of the call, return, and goto operations is to

properly update the stack pointer register.

The most common ways of changing the ring of execution of a

process are a call to a gate of a lower numbered ring and the

subsequent upward return. A downward call represents the

invocatlon of a user-provided protected subsystem or a supervisor

procedure. Because the Honeywell 645 was designed around the

usual supervisor/user protection method, the Multics

implementation for this machine simulates rings by 11 trapptng" to

special ring-changing software when downward calls and upward

returns are performed. The hardware mechanisms detailed in the

next section eliminate the need to "trap" in these cases. Using

these improved hardware access control mechanisms, downward calls

and upward returns occur without the intervention of special

softw~re and are performed by the same object code sequences that

perform calls and returns that do not change the ring of

execution.

21

M0126

It is the nested subset property of rings that makes a

straightforward hardware implementation of downward calls and

upward returns possible. Because of this property the called

procedure automatically has all access capabilities required to

reference any arguments that the calling procedure can

legitimately specify and to return to the calling procedure in

the ring from which it called. Furthermore, it is reasonable to

trust the called procedure to properly restore the stack pointer

on return since it has access c~pabilities which allow· It to

cause the calling procedure to malfunction in many other ways

anyway. However, three problems remain. First, the called

procedure must be able to calculate the correct new stack

pointer. Second, the called procedure must have a way of

validating references to arguments so that it cannot be tricked

into reading or writing an·argument that the caller. could not

also read or write. Finally, the called procedure must have a

way of knowing for certain the ring in which the calling

procedure was executing so that the called procedure cannot be

tricked into returning control to a ring not as high as that of

the calling procedure.

The key to solving the first problem, creation of a new

stack pointer, is a rule relating the segment number of the stack

_segment for a ring to the ring number. Using this rule, the

processor automatically calculates the segment number of the

proper stack segment for the called procedure's ring of

execution. By convention, word zero of each Multics stack

22

M0126

segment points to the beginning of the next available stack area.

Thus, the stack segment number alone provides the called

procedure with enough information from which to construct its own

stack pointer. Because the processor provides the stack segment

number, no procedure executing in a higher numbered ring, e.g.

the calling procedure, can affect the value of the stack pointer

for the called procedure.

The second problem, validation of argument references, is

solved by providing processor meGhanisms which allow a procedure

to assume the more restricted access capabilities of any higher

numbered ring when convenient. Using these mechanisms the called

proc~dure can validate access when referencing arguments as

though execution were occurring in the (higher numbered) ring of

the calling procedure. Thus, the called procedure, even though

it is executing in a ring with more access capabilities than the

ring of the calling procedure, can prevent itself from reading or

writing any argument that the calling procedure could not also

read or write.

The final problem, knowing the rlng of the caller, is solved

by having the processor leave in a program accessible register

the number of the ring in which execution was occuring before the

downward call was made. The subsequent return is made to that

ring. Thus, the calling procedure has no opportunity to lower

the number of the ring to which the return is made.

The next two sections describe in more detail how downward

calls, argument referencing and validation, and upward returns

23

M0126

are implemented. Before proceeding to that description, however,

there is another possibility to consider: an upward call and the

subsequent downward return.

An upward call occur~ when a procedure executing in ring n
calls an entry point in another procedure segment whose execute

bracket bottom ism> n. When the call occurs the ring of

execution will change tom. The subsequent return is downward,

resetting the ring of execution to~· This case exhibits two

unpleasant characteristics of .a general cross-domain call and

return that were not present in the case of the downward call and

upward return.

~The first is that the calling procedure

arguments that cannot be referenced from the ring of

may

the

specify

called

procedure. (In the case of the downward call, the nested subset ~

property of rings guaranteed that this could not happen.) There

are at least three possible solUtions to this problem. One Is to

require that th~ calling procedure specify only arguments that

are accessible in the higher numbered ring of the called

procedure. This compromises programming generality by forcing

the calling procedure to take special precautions in the case of

an upward call. Another possible solution is to dynamically

include in the ring of the called procedure the capabilities to

reference the arguments. Because a segment is the smallest unit

of information for which access can be individually controlled,

this forces segments which contain arguments to contain no other

information that should be protected differently, again

24

t·10126

compromising programming generality, unless segments are

inexpensive enough that, as a matter of course, every data item

is placed in its own segment. It may also be expensive to

dynamically include anq remove the argument referencing

capabilities from the called ring. The third possible solution

is copying arguments into segments that are accessible in the

called ring, and then copying them back to their original

locations on return. This solution restricts the possibility of

sharing arguments with parallel processes. None of the three

solutions lend themselves well to a straightforward hardware

imp 1 emen tat ion.

The second unpleasant characteristic is that a gate must be

provided for the downward ·return. (In the case of the upward

return the nested subset property of rings made a return gate

unnecessary.) The return gate must be created at the time of the

upward call and must be destroyed when the subsequent return

occurs. If recursive calls into a ring are allowed, then this

gate must behave as though it were stored in a push-down stack,

so that only the gate at the top of the stack can be used. The

gates specified in SOW's seem poorly suited to this sort of

dynamic behavior. Processor mechanisms to provide dynamic,

stacked return gates are not obvious at this time.

Because of these two problems, the hardware implementation

of rings described in the next section does not automatically

perform upward calls and downward returns. When an attempt to

perform an upward call or downward return is detected by the

25

M0126 .

hardware it "traps" to a supervisor procedure that executes in

ring 0 and which performs the necessary addressing and protection

environment adjustments.

~Hardware ImplementatiOn Qf Rings

In this section the ideas presented in the previous sections

are gathered into a description of a design for processor

hardware to implement rings. The description only touches upon

those aspects of the processor organization that are relevant to

access control. The segmented addressing hardware described

earlier serves as the foundation of the ring implementation

mechanisms.

Figure 4 presents a schematic description of segment

descriptor words, ins true t ion words, indirect words, and

processor registers that are r~levant to the discussion which

follows. The descriptor base register (DBR) contains the

absolute address and lengt~ of the descriptor segment.

Segment descriptor words (SOW's) are the entries in the

descriptor segment. If the validity bit (SDW.V) is~ then the

SOW contains the absolute address and length of some segment tn

the virtual memory of the process. The access indicator portion

of an SOW specifies the brackets, flags, and gate locations for

the segment. The three 3-bit ring numbers (SDW.Rl, SOW.R2, and

SOW.R3) delimit the read, write, and execute brackets and the

gate extension. The write bracket is rings 0 through SDW.Rl; the

execute bracket SDW.Rl through SOW.R2; and the gate extension

SDW.R2+1 through SDW.R3. Rather than providing a fourth number

26

M0126

Descriptor base register
DBR ~, ~AD-D~R-E-S~S--~-1-E_N_G_TH--~

Segment descriptor word (stored in memor)

SDW ADDRESS LENGTH

access indicator
Instruction point~e_r __ r_e~g~i_s_t+e_r--------~------r------------------4

IPR . . I RING ·I SEGNO WORD NO

Instruction word (stored in memory)

INST I PRNUM OFFSET OPCODE I I
Program accessible pointer registers

PRO

PRl

PR2

(argument pointer)

PR3

PR4

PR5

PR6

PR7

~-------+----------------~----------------~

r--------r--------------~----------------~(stack pointer)
(stack base pointer)

~ ~----S-EG,....N_O __ _,, "- wORimo

Indirect word (stored in memory)
IND ~~-R-I_N_G---r)------S-E-GN-0----~-----W-ORD __ N_O __________ l_

Temporary pointer register
TPR ~~-R~IN--G--~~------S-E-GN-O----~------WO-·RD.N---~0----~

Figure 4: Schematic description of segment descriptor
words, instruction words, indirect words, and
relevant processor registers

27

M0126

to specify the top of the read bracket, SDW.R2 is reused for this

purpose. Forcing the top of the read and execute brackets to

coincide in this manner does not seem to preclude any important

cases, and saves one ring number in the SDW. Supervisor code for

cbnstructing SOW's guarantees that SDW.Rl ~ SDW.R2 ~ SDW.R3 is

true. The single-bit read, write, and execute flags (SDW.R,

SDW.W, and SDW.E) also appear. Finally, the list of gate

locations of a segment is compressed to a single fixed-length

field CSDW.GATE) by requiring all gate locations to be gathered

together beginning at location 0 of a segment. Thus, SDW.GATE

need only contain the number of gate locations present.

The instruction pointer register (IPR) specifies the current

ring of execution and the two-part address of the next

instruction to be executed. The general format of an Instruction

word in memory (INST) Is also shown for later reference.

Ther• are eight program accessible pointer registers (PRO

through PR7). All can contain a two-part address and a ring

number. Because most procedure segments in Multics are pure and

segment numbers cannot be known at the time a procedure segment

is compiled, machine instructions specify two-part operand

addresses by giving an offset (in INST.OFFSET) relative to one of

the PR's (specified by INST.PRNUM) or IPR. The ring number in a

pointer register (PRn.RING) is used to specify a validation level

for the address, and is part of the mechanism that allows an

executing procedure to assume the access capabilities of a higher

numbered ring for referencing arguments. The processor is

28

M0126

designed .so that it is never possible for any PRn.RING to contain

a number that is less that the ring of execution found in

IPR.RING.

Indirect addressing m~y be specified in an instruction by

s~tting the indirect flag (INST.I). Indirect words (IND) contain

the same information as PR's, and may also indtcate further

indirection with an indirect flag (IND.I).

The final item in Figure 4 is the temporary pointer register

(TPR). The TPR is an internal pr~cessor register that is not

program accessible. It is used to form the two-part address of

each virtual memory reference made. The ring number CTPR.RING)

provides the value with respect to which permission to reference

the virtual ~emory location is validated.

There are two aspects to the implementation of rings in

hardware. The first is access checking logic, integrated with

the segmented addressing hardware, that validates eaeh virtual

memory reference. The second is special Instructions for

changing the ring of execution. The best way to describe the

first aspect is to walk through the processor instruction cycle,

paying particular attention to the places where operations

related to access validation occur. The second aspect will be

discussed when·the description of the instruction cycle reaches

the point where the instruction is actually performed.

The first phase of the instruction cycle, retrieving the

next instruction to be executed, is described in Figure 5.

(Refer to Figure 4 for the abbreviations used in the flow charts

29

M0126

TPR -E- IPR

Fetch SDW for segment
containing ne~t instruc
tion. (Segment number is

TPR.SEGNO)

SDW.Rl ~ TPR.RING ~ SDW.R2

yes

Finish instruction fetch.
(Word number is TPR.WORDNO)

Missing segment
no --~ ... so!Ewire-Iiifervertt!o

re uired

AcceRR v42 1 ation no ~------·•••- t: ::. -~·- ·--·-
not in execute
bracket

Figure 5: Retrieval of next. instruction tq be executed

* This check forsegment presence must occur each time an SDW is retrieved.
To avoid cluttering the flow charts, it is left out of Figures 6•10.

30

M0126

of Figures 5 through 10.) The two-part address of the next

instruction along with the ring of execution are loaded into TPR

from IPR. At the point during address translation that the SOW

becomes available, the ring of execution (now in TPR.RING) is

matched against the execute bracket of the segment containing the

instruction and the execute flag is checked. If the segment may

be executed from the current ring of execution the instruction

fetch is completed. Otherwise, the access violation derails the

instruction cycle into the fault mechanism of the processor. The

action of a fault is discussed later in this section.

The next phase of the instruction cycle, calculating the

effective address of the instruction's operand, is described in

Figure 6. This phase occurs only if the instruction has an

operand in memory. The effective address is the final two-part

address of the operand (after all address modifications and

indirections have taken place) together with an effective ring

number. The effective ring number is used to validate the actual

reference to the operand. The effective address i~ formed In TPR

which, as a result of the preceding instruction retrieval phase,

begins the effective address calculation containing the two-part

address of the instruction being executed and the current ring of

execution.

The formation of the segment number and word number portions

of the effective address in TPR.SEGNO and TPR.WORONO is very

straightforward and is described by Figure 6. The calculation of

the ring number portion of the effective address in TPR.RING and

31

M0126

Access violation

(n = INST. PRNUM)
TPR.SEGNO <= PRn.SEGNO
TPR.WORDNO <= PRn.WORDNO+INST.OFFSET
TPR.RING <= max(TPR.RING,PRn.RING)

Does instruction
specify operand address

indirectly?

yes

Fetch SDW for sei~ent
containing indirect

word. (Segment number
is TPR

>---no

effective ring not ·no
ithin read bracket of

segment containing in
direct word.

ccess violation
~-~---~--~-------~----
ead flag ~ and in-
irec t word not in sam no

segment as instruction.

yes

SDW.R = ~ yes

no

IPR.SEGNO

Finish indirect word fetch
(Word number is

TPR.WORDNO.)

TPR.SEGNO <= IND.SEGNO
TPR.WORDNO <= IND.WORDNO
TPR.RING <= max(TPR.RING,SDW.Rl IND.RING)

no

')-.-----yes -

~(TPR no.w contains effective
~ address of instruction

operand.)

Figure 6: Formation in TPR of effective address of instruction operand.

32

M0126

the access validation performed before retrieving indirect words,

also shown in Figure 6, need further comment.

The effective ring portion of the effective address provides

a procedure with the means of voluntarily assuming the access

capabilities of a higher numbered ring when making an instruction

operand reference. The effective ring number also is used to

record the highest numbered ring from which an executing

procedure possi.bly could have influenced the effective address

calculation. One opportunity for the value of TPR.RING to change

during effective address calculation occurs if the Instruction

contains an address that is an offset relative to some PRn. In

this case TPR.RING is updated with the larger of its current

value and the ring number· In the specified pointer register

(PRn.RING). Thus, if PRn.RING contains a value that Is greater

than the current ring of execution, validation of the operand

reference will be as though execution were occuring in this

higher numbered ring.

The remaining opportunities to change the value of TPR.RING

occur in conjunction with the processing of indirect words

involved in the effective address calculation. Each time an

indirect word is retrieved TPR.RING ts updated with the larger of

its current value, the ring number in the ind1rect word

(IND.RING), and the top of the wrfte bracket for the segment

containing the indirect word (SDW.Rl). The ring number in the

indirect word has the same purpose as the ring number in a

pointer register forcing validation of the operand reference

33

M0126-

relative to

calculation

some higher

the top of

numbered ring. Including in the

the write bracket of the segment

containing the indirect word, however, has another purpose. The

top of the write bracket represents the highest numbered ring

from which an executing procedure could alter the contents of the

indirect word and thereby influence the result of the effective

address calculation. Taking into account SDW.Rl when updating

TPR.RING guarantees that the operand reference will be validated

with respect to the highest numbered ring which could have

influenced the effective address.

The capability to read an indirect word during effective

address formation must be validated before the indirect word is

retrieved. Validation is w~th respect to the value in TPR.RING

at the time the indirect word is encountered.

At the conclusio~ of the effective address calculation

described In F1gure 6, TPR contains the effective address of the

instruction operand, including the effective ring number with

respect to which the reference to the operand will be validated.

The next phase of the instruction cycle is to perform the

instruction. For the purpose of access validation, the possible

instructions may be broken into three groups according to the

type of reference made to the operand. Figure 7 shows the access

validation for the straightforward cases of instructions which

read their operands and instructions which write their operands.

The third group, instructions which do not reference their

operands, is illustrated in Figure 8. One set in this group is

34

instruction
reads
operand

Fetch SDW for segment
containing operand
(Segment number in

TPR.SEGNO)

no

yes ~gge§§_Y!2!!ti2U
effective ring
not in read
bracket

no

Branch on type of
· refcerence to

operand

yes TPR.SEGNO = IPR.SEGNO

no

Access violation
----------------~---read flag not on
and operand no~in
same segment as
instruction.

M0126

instruction
writes
operand

Fetch SDW for segment
containing operand
(Segment number in

TPR.SEGNO)

yes

yes

s SDW.Rl

6c~eaa.YiQltt1QD
effective ring
not in write
bracket

-~£~~~~-Y!Q_!~!2~--
write flag not .2!1

Figure 7: Access validation for instructions which
read or write their operands.

35

M0126

CALL

Branch on
instruction

instruction transfer
instruction

Access violation
~------------------

Fetch SDW for seg
ment containing oper
and (Segment number
in TPR.SEGNO)

effective ring not~ --~ s: TPR.RING s: SDW.R2
in execute · no ---------r----------------------'
bracket yes

Access violation
-------------------execute flag ~no ------~
~ '-------~--~

yes
Access violation
-------------------attempt to change ~no -----<
~ing with transfer '-------~---------J

- -t~~J"dil(~~ ~

Figure 8: Access validation for instructions which do not
reference their operand

36

M0126

the "Effective Address to Pointer Register"-type (EAP-type)

instructions which load the RING, SEGNO, and WORDNO fields of PRn

with the corresponding fields of TPR. The operand is not

referenced so no access validation is required. Instructions of

this type are important for they are the only way to load PR's.

The remaining instructions illustrated in Fi?.ure 8 are

transfer instructions. To provide some protection against

changing the ring of execution by accident, all transfer

instructions except two, CALL ~nd RETURN, are constrained from

doing so. Since a transfer instruction does not reference its

operand, but just loads the address of its operand into the

instruction counter, no access validation is really required.

However, an advance check on-whether reloading IPR from TPR will

result in a fault on the next instruction cycle is very useful

from the standpoint of debugging, for it catches the access

v i o 1 a t i on w h I 1 e I t i s s t · i , 1 1 po s s i b 1 e to i den t i f y the t n s t r u c t I on

which made the illegal transfer. Figure 8 describes the advance

check for transfer instructions other than CALL and RETURN.

The two instructions that remain to be considered are the

instructions which can change the ring of execution: CALL and

RETURN. They are intended to be used to implement the same-named

linguistic operations.* CALL will automatically switch the ring

of execution to a lower number and RETURN to a higher number if

the occasion requires it. When used to perform an upward call or

* RETURN may also be used to implement the non-local goto
ope rat ion.

37

M0126

a downward return the instructions cause faults which allow

software intervention to complete the operations.

Figure 9 describes the access validation and performance of

the CALL instruction. Several points require further

~xplanation. The first concerns gates. From Figure 9 it is

apparent that a CALL must be directed at a gate location even

when the called procedure will execute in the same ring as the

calling procedure. The rationale for this use of the gate list

of a segment is that it can provide protection against accidental

calls to locations that are not entry points, even when the call

comes from within the same ring. Thus, SDW.GATE for a procedure

segment usually specifies the number of externally defined entry

points in the procedure segment. These become gates for higher

numbered rings in the sense described in the previous sections

only if the top of the gate extension of the segment i,s above the

top of the execute bracket, i.e. only if SDW.R3 > SOW.R2 for the

segment. The price paid for this error detection ability is that

if any externally defined entry point in a procedure segment is a

gate for a higher numbered ring, then all are. From within the

execute· bracket of a procedure segment the gate restriction can

be ~y-passed by using a normal traMsfer instruction rather than a

CALL to pass control to the segment.

The only exception to having the CALL instruction respect

the gate list of the operand segment occurs if the operand is in

the same segment as the instruction. Allowing a CALL instruction

to ignore the gate list of the segment containing the instruction

38

Access violation

execute flag off

Access violation -------------------

Fetch SDW for segment
co~taining operand.
(Segment number in

TPR.SEGNO)

r.=-- no ----~

= IPR.SEGNO

attempt to call a 1--r-- no -----<
non-gate location ~-P----------------------J

Fault - software in-

t:~~~~~!~-~~~~~El'! ~no-----<. ~ SDW.Rl
attempt to make an ~-----------------J
upward call

Access violation
-------------------effective ring
gate extension

Access violation

yes

no-------t s; SDW.R3

~no ~ IPR.RING

M0126

es

attempt to make an
upward call result
ing from effective
ring being higher
than ring of
execution PR7. SEGNO <= TPR.RING 1(create stack

PR7.RING <= TPR.RlNG
PR7 .WORDNO <= 0 base pointer)

Figure 9: Access validation and performance of CALL instruction.

39

M0126

permits i·t to be used to implement calls to internal procedures.

The access validation for the CALL instruction is made

relative to the ring number computed as part of the effective

address. Since, as a result of PR-relative addressing and

indirection, the effective ring value can be higher than the

current ring of execution (IPR.RING), what would appear to be a

call within the same ring or to a lower ring with respect to

TPR.RING can in fact be an upward call with respect to IPR.RING.

Because in normal circumstances this situation represents an

error, the decision is made to generate an access violation when

it occurs, even if the current ring of execution is within the

execute bracket of the called procedure segment.

The new ring of execution is calculated in TPR.RING.
* Following this calculation, CALL generates in PR7, a register

chosen by system convention, a pointer to word 0 of the stack

segment for the new ring of execution. The segment number of the

appropriate stack segment is the new ring number.•. In addition,

PR7.WORDNO is set to 0 and PR7.RING is set to the new ring of

* Two subtle features may be included at this point by changing
the way the new stack segment number is derived. If the CALL
instruction~~ change the ring of execution then the new
stack segment number is taken directly from the current stack
pointer register (PR6, by convention), allowing the use of
non-standard stack segments for procedures executing in the
same ring. If the CALL instruction~ change the ring of
execution then the new stack segment number is calculated by
adding the new ring number to an additional DBR field that
specifies the eight consecutively numbered segments that are
the standard stack segments of the process. The use of the
additional DBR field allows more flexibility in stack segment
assignment, facilitating the preservation of stack history
following an error and the implementation of forked stacks.

40

M0126

execution·.

Finally, the transfer of control is achieved by reloading

IPR.RING, IPR.SEGNO, and IPR.WORDNO from the corresponding fields

of TPR.

The RETURN inst~uction is described by Figure 10. The

access validation is the same as for other transfer instructions.

The ring to which the return is made is specified by the

effective ring portion of the effective address generated by the

RETURN instruction. In the case that the return is upward, the

ring number fields in all pointer registers are replaced with the

larger of their current values and the new ring of execution.

This replacement, together wlth the fact that PR's can only be

loaded with EAP-type instructions, guarantees that PRn.RING can

never contain a value that is. less than IPR.RING, a fact which

proves very useful when passing arguments on a downward call and

which makes it easy to perform an upward return to the proper

ring. (See the next section for details.)

This almost completes the description of the processor

hardware for Implementing rings. One of the final items to

consider is the action of a fault or Interrupt. Access

violations generate faults, as do a variety of other conditions,

e.g. missing page, missing segment, or processor timer runout.

An interrupt is the recognition by the processor of an external

signal. A fault or interrupt causes an unconditional transfer of

control to a pre-specified location and the change of the number

of the ring of execution to zero. A special instruction allows

41

M0126

:;

Fetch SDW for segment
containing operand
(Segment number in

TPR.SE NO

SDW.Rl ~ TPR.RING ~ SDW.R2

TPR.RING : IPR.RING
··f. (u.p~ard :r.~urn)

PRn.R G <•
max(PRn.RING,TPR.RING) fo

n = 0. 1 7

Access violation
------------------effective ring not

no~ in execute bracket

Access violation
~ ------------------no execute flag off -

Fault - software
intervention re-

attempt to make
downward RETURN

Figure 10: Access validation and performance of RETURN instruction

42

M0126

the state of the processor at the time of the fault or interrupt

to be restored later if appropriate, continuing the faulted or

interrupted instruction. The program that executes· in ring 0

which gains control in the event of a fault or interrupt is part

of the supervisor.

The final point concerns privileged instructions. Certain

instructions, if executable by all procedure segments, could

invalidate the protection provided by the ring mechanisms. Among

these are the instructions to load the DBR, 1/0 instructions, and

the instruction to restore the processor state after a fault or

interrupt. Any instruction designated as privileged will be

performed only if the process is executing in ring 0. This

convention restricts their use to supervisor procedures •

.ka.ll .Q.W1 Retyrn Reylslted

The intended use of the hardware mechanisms just described

is illustrated by considering again two key aspects of the

linguistic meaning of the operations call and return.

The first aspect to be reconsidered is the way arguments are

passed and referenced. A procedure making a call constructs an

array of indirect words containing the addresses of the various

arguments to be passed with the call. Each indirect word is

generated by forming the address of the corresponding argument in

some pointer register using an EAP-type instruction and then

storing the contents of that pointer register as the indirect

word; To inform the called procedure of the location of this

argument list, the calling procedure loads a specific pointer

43

M0126

register,· designated by software convention to be PRO, with the

address of the beginning of the argument list. An instruction of

the called procedure can reference the n~ argument as its

operand by using an indirect address. The location of the

indirect word is specified in the instruction as PRO offset by n.

If this operand reference constitutes an upward cross-ring

argument reference then the proper validation is automatic, for

PRO.RING, as set by the calling procedure, must contain a number

that is greater than o~ equal to· the number of the ring in which

the calling procedure was executing when the call was made.

Thus, validation of all argument references by the called

procedure will be with respect ·to an effective ring that Is at

least as high as the ring of the caller.

The ring number in the . argument pointer register, then,

allows the called procedure to automatically assume the fewer

access capabilities of the calling procedure in the case of an

upward cross-ring argument reference via PRO and the argument

list. Not all argument references, however, will be via PRO and

the argument list. For example, if an argument Is an array, then

the corresponding argument list indirect word will address the

first element. The called procedure may find it convenient to

load, say, PRl with the actual two-part address of the beginning

of that array argument so that array Indexing can be more easily

accomplished. If PRl Is loaded with an EAP-type instruction

whose operand address is specified via PRO and the argument list,

then the proper effective ring number will automatically be put

44

M0126

in PRl.RING, and subsequent references to the argument via PRl

will also be validated with respect to an effective ring that is

at least as high as the ring of the caller. If PRl is then

stored as an indirect word, this effective ring is put into the

RING field of the indirect word. In fact, as long as the called

procedure does not make an explicit effort to lower the effective

ring associated with an argument address, e.g. by zeroing the

RING field of an indirect word, then all manipulations of the

argument address are safe, and al1 argument references will be

validated with respect to an effective ring that is at least as

high as the ring of the caller.

One further comment needs to be made about argument passing

and referencing with respect to downward calls. The scheme just

described naturally extends to a. sequence of downward calls. For

example, assume that procedure A executing in ring 4 calls

procedure B to execute in ring 1 which then calls procedure C to

execute in ring 0. Assume further that an argument passed from A

to 8 is passed on from B to c. When C references this argument,

the reference will automatically be validated with respect to

ring 4, not ring 1 as might be expected. The reason follows from

the way in which B constructs the argument list for C. Using the

normal pattern of forming an argument address in some PRn with an

EAP-type Instruction and then storing that PR as an argument list

indirect word, an indirect word for an argument to C wi 11 have 4

in its RING field if the corresponding argument happens to have

been originally provided by A. Thus, when C references this

45

M0126

argument, an effective ring number of 4 will be used to validate

the reference. B could force validation of references to this

argument by C to be relative to ring 1 simply by resettin~ the

ring field of the corresponding argument list indirect word to 1.

The second aspect to be reconsidered with respect to call

and return is the way that the stack pointer register (PR6) is

manipulated and the return address is recorded. Before a

procedure calls another, the return address is recorded as an

indirect word in a standard location of the stack area of the

calling procedure. When the call occurs, PR6 remains pointing to

the stack area of the calling procedure. Only after the called

procedure has located its new stack area (using the address in

PR7 provided by the CALL instruction) and the contents of PR6 are

saved in that new stack area, is PR6 reset to address the stack

area of the called procedure. When it comes time to return, the

called procedure restores PR6 with the saved pointer value. PR6

is then used to address the indirect word containing the return

point that is the operand of the actual RETURN instruction.

Because PR6.RING as restored was initially set by the calling

procedure, it must contain the number of the ring in which the

calling procedure was executing (or some higher value). Thus,

the RETURN instruction is guaranteed to generate an effective

ring number no lower than the ring of the calling procedure, and

will return control to the ring of the caller or some higher

numbered ring.

46

M0126

~ .Qf Ri·ngs

Some insight into the functional capabilities of rings can

be gained by considering briefly the way the basic mechanisms

described in the previous .sections are used in ti1u 1 tics.

The ring protection scheme allows a layered supervisor to be

included in the virtual memory of each process. In r~ultics, the

lowest level supervisor procedures, such as those implementjng

the primitive operations of access control, input/output, memory

multiplexing, and processor multiplexing~ execute in ring 0. The

remaining supervisor procedures execute in ring 1. Examples of

ring 1 supervisor procedures are those performing accounting,

input/output stream management, and file system search direction.

(Deciding how many layers to use and which procedures should

execute In each layer is an interesting engineering design

problem.) Supervisor data segments have read and write brackets

that end at ring 0 or ring 1, depending on which layer of the

supervisor needs to access each.

Implicit invocation of certain ring 0 supervisor procedures

occurs as a result of a fault or an interrupt. Explicit

invocation of selected ring 0 and ring 1 supervisor procedures by

procedures executing in rings 2 through 7 of a process is by

standard subroutine calls to gates. No other access to

supervisor segments by procedures executing in higher numbered

rings is allowed.

Because separate access control lists for each segment and

separate descriptor segments for each process provide the means

47

to control separately the use of each segment by each user's

process, not all gates into supervisor rings need be available to

the processes of all users and not all gates need have the same

gate extension associated with them. For example, some gates

into ring 0 are accessible to the processes of all users, but

only to procedures executing in ring 1. Such gates provide the

internal interfaces between the two layers of the supervisor.

Some gates into ring 1 are accessible to procedures executing in

rings 2 through 7 in the processes of selected users, but not

accessible at all from the processes of other users. An example

of the latter kind is a gate for registering new users that is

available only from the processes of system administrators.

As pointed out by Dijkstra [15], the layered supervisor

allowed by the ring protection scheme has several advantages.

Constructing the supervisor in enforced layers limits the

propagation of errors, thereby making the supervisor easier to

modify correctly and increasing the level of confidence that the

supervisor functions correctly. For example, changes can be made

in ring 1 without having to recertify the correet operation of

the procedures in ring 0.

By arranging for most user procedures to execute in ring 4,

rings 2 and 3 become available for the protection of subsystems

constructed by members of the user community. Subsystems

executing in rings 2 and 3 of a process can be protected from

procedures executing in ring 4 through 7 in the same way that the

supervisor is protected from procedures executing in rings 2

48

/~

f\10126

through 7. All comments made about a supervisor implemented in

rings 0 and 1 of each process apply to protected subsystems

implemented in rings 2 and 3. Different protected subsystems may

be operated simultaneously in rings 2 and 3 of different

processes and several processes may share the use of the same

protected subsystem simultaneously. The ring protection scheme

allows the operation of user-constructed protected subsystems

without auditing them for inclusion in the supervisor. Examples

of protected subsystems that might be provided by various users

are a personnel records subsystem, a proprietary compiler, or a

subsystem to play "moo" and safely record in a central data base

the result of every game of every player for later publication.

With most user procedures executing in ring 4, rings 5, 6,

and 7 are available for user. self-protection. For example, a

user may debug a program by executing it in ring 5 where only

procedure and data segments intended to be accessed by the

program would be accessible. The ring protection mechanisms

would detect many of the possible addressing errors that could be

made by the program and would also prevent the untested program

from damaging other user segments accessible from ring 4. In the

same way ring 5 can be used for the execution of a program

borrowed from another user when the program is not trusted.

Supervisor gates are not accessible from rings 6 and 7 of

any process in Multics. Thus, procedures executed in these rings

have no explicit· access to supervisor functions; they may,

however, call user-provided gates into rings 4 or s. Ring 6 of a

49

M0126

process might be used, for example, to provide a suitably

isolated environment for student programs being evaluated by a

grading program executing in ring 4.

The complete description of a software access control

facility based on rings that allows them to be used in the manner

just outlined would require another paper. Although a given ring

may simultaneously protect different subsystems in different

processes, each ring of each process can protect only one

subsystem at a time. A useable software access control facility

must constrain each user's ability to dynamically set and modify

access control specifications so that this sole occupant property

can be verified and enforced when necessary.

Conclusions

·The hardware mechanisms de~ived and described in this paper

implement a methodical generalization of the traditional

supervisor/user protection scheme that is compatable with a

shared virtual memory based on segmentation. This generalization

solves three significant kinds of problems of a general purpose

system to be used as a computer utility:

users can create arbitrary, but protected, subsystems for
use by others,

the supervisor can be implemented in layers which are
enforced,

the user can protect himself while debugging his own Cor
borrowed) programs.

The subset access property of rings of protection does not

provide for what may be called 11mutually suspicious programs"

50

M0126

operating under the control of a single process. But on the

other hand, it is just that subset property which imposes an

organization which is easy to understand and thus allows a system

or subsystem designer to convince himself that his implementation

is complete. Also, it is just the subset property which is the

basis for a hardware implementation that is integrated with

segmentation mechanisms, requiring very small additional costs in

hardware logic and processor speed.

The long-range effect of hardware protection mechanisms

which permit calls to protected subsystems that are no more

complex than calls to other procedures is bound to be

significant. In the interface to the supervisor of most systems

there are many examples of facilities whose interface design is

biased by the assumption that a call to the supervisor Is

relatively expensive; the usual result is to place several

closely related functions together in the supervisor, even though

only one of the group really needs protection. For example, in

the Multics typewriter 1/0 package, only the functions of copying

data in and out of shared buffer areas and of executing the

privileged instruction to initiate 1/0 channel operations need to

be protected. But, since these two functions are deeply tangled

with typewriter operation strategy and code conversion, the

typewriter 1/0 control package is currently implemented as a set

of procedures all located in the lowest numbered ring of the

system, thus increasing the quantity of code which has maximum

privilege.

51

M0126

A s1milar example is found in many file system designs,

where complex file search operations are carried out entirely by

protected supervisor routines rather than by unprotected library

packages, primarily because a complex file search requires many

individual file access operations, each of which would require

transfer to a protected service routine, which transfer is

presumed costly.

The initial implementation of Multics was carried out using

software simulated rings of protection. The result was a very

conservative use of the rings of protection: originally just two

supervisor rings and one user ring were employed, and the two

supervisor rfngs were temporarily collapsed into one (thus

exploiting the programming· generality objective referred to

before) while the ring crossing software mechanisms were tuned

up. Today~ although there are many obvious applications wafting,

multiple rings are just beginning to be exploited. The

availability with the new Multics processors of hardware

implemented rings of protection which make downward calls and

upward returns no more complex than calls and returns In the same

ring should significantly increase such exploitation.

Background ~ Acknowledgements

The concepts embodied in the mechanisms described here were

the result of seven years of maturing of ideas suggested by many

workers. The original idea of generalizing the supervisor/user

relationship to a multiple ring structure was suggested by R. M.

Graham, E. L. Glaser and F. J. Corbat6. An initial software

52

r ... jo 12 6

simulation of rings using multiple descriptor segments [1] was

worked out by Graham and R. C. Daley, and implemented by members

of the Multics system programming team. That implementation

makes use of hardware .access mode indicators stored in the

segment descriptor word of the Honeywell 645 computer. Graham

[3], in 1967, proposed a partial hardware implementation of rings

of protection which included three ring numbers embedded in

segment descriptor words, and a processor ring register, but

which still required software intervention on all ring crossings.

This hardware scheme, though a related scheme was implemented in

the HITAC 5020 time-sharing system [4], was never implemented in

Multics, which today (1971) still uses a version of the software

si-mulation. The complete automation of downward calls and upward

returns was proposed in a thesis· in 1969 [5]; the description In

this paper extends that thesis slightly with the addition of

rings numbers

registers, as

to indirect words and the

suggested by Daley. The

processor

CALL and

instructions proposed there have also been simplified.

pointer

RETURN

The hardware implemented call and return, and automatically

managed stacks, were at least partly inspired by similar

mechanisms which have long been used on computer systems of the

Burroughs Corporation [16,17].

In addition to those named above, D. D. Clark, C. T.

Cl ingen, R. J. Feiertag, J. M. Grochow, N. I. Morris, M. A.

Padlipsky, M. R. Thompson, V. L. Voydock, and V. A. Vyssotsky

contributed sig~ificant help in understanding and implementing

rings of protection.

53

M0126

References

[1] Mul tics Programmer'~ Manyal, M.l. T, Project MAC, 1969.

[2] Model ~ processor Reference Manual, Cambridge Information
Systems Laboratory, Honeywell Information Systems Inc., Apri 1,
1971.

[3] Graham, R. M., "Protection in an Information Processing
Utility", Communications ,gf ..t.b.e ACl1 ll, 5 (May, 1968), pp.
365-369.

[4] Motobayashf, S., T. Masuda, and N. Takahashi, "The Hitac
5020 Time-Sharing System", proceedings At!1 l.!l.t.b. Natjonal
Conference CACM Publication P-69), 1969, pp. 419-429.

[5] Schroeder, M. D., "Classroom Model of an Information and
Computing Service", S-.M. Thesis, M.I.T., February, 1969. (An
expanded version of this thesis is available as Project MAC
Technical Report MAC-TR-80.)

[6] Bensoussan, A., C. T. Clingen, and B. C. Daley, 11 The Multics
Virtual Memory", Second A.kM Symoosjym sm Operating Systems
principles (October, 1969), Princeton University, pp. 30-42.

[7] Apfelbaum, H., and G. Oppenheimer, "Design of Virtual Memory
Systems", Fifth Annual llE.E. Compyter Society Conference, Boston,
September, 1971.

[a] Arden, B. W., et al, "Program and Addressing Structure in a
Time-Sharing Environment", Joyrnal ,gf ~ At.M ll, 1 (January,
1966), pp. 1-16.

[9] Lampson, B. w., "An Overview of the CAL Time-Sharing
System", Computation Center, University of California, Berkeley
(September 5, 1969).

[10] Lampson. B. W., "Dynamic Protection Structures", AEIPS
Conference proceedings li (1969 FJCC), pp. 27-38.

[11] Evans, D. C., and J. Y. LeClerc, "Address Mapping and the
Control of Access in an Interactive Computer", AFIPS Conference
Proceedings ~ (1967 SJCC), pp. 23-30.

[12] Dennis, J. B., and E. C. VanHorn, "Programming Semantics for
Multiprogrammed Computations", Commynlcatlons .2.f ~ At.M _a; 3
(Ma r c h, 19 6 6) , p p • 14 3 - 15 5 •

[13] Fabry, B. S., "Preliminary Description of a Supervisor for a
Computer Organized around Capabilities", Quarterly Progress
Report HQ. ll, Section 1-B, Institute of Computer Research,
University of Chicago, 1968, pp. 1-97.

54

[14] Vande r b i 1 t, D • H • , "Con t r o 1 1 e d I n for rna t i on S h a r i n g i n a
Computer Uti 1 i ty", Project MAC Technical Report f·1AC-TR-67,
~1 • I • T • I 19 6 9 •

[15] D i j k s t r a , E • \'J • , 11 The S t r u c t u r e of the THE M u 1 t i pro g r a mm i n g
System", Communications .Q.f .the. AC.t1 .ll1 5 Cr~ay, 1968), _pp.
341-346.

[16] A Narrative Descriptjon .Qf ~ Burroughs 85500 Master
Control Program, Burroughs Corporation, Detroit, October, 1969.

[17] Hauck, E. A., and B. A. Dent, "Burroughs' B6500/B7500 Stack
Mechanisms", AEIPS Conferenc~ Proceedings 32 (1968 SJCC) 1 pp.
245-251.

55

