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ABSTRACT 

Pro.tection of computations and information is an important 
aspe.c-t .. of a computer uti 1 tty. In a system that uses segmentation 
as a memory addressing scheme, protection can be achieved ln part 
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with a computation. This paper describes processor mechanisms 
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mechanisms allow cross-ring calls and subsequent returns to occur 
withbut "traps". Automatic hardware validation of references 
across ring boundaries Is also performed. Thus, a call by a use~ 
procedure to a protected subsystem (Including the supervisor) is 
no more complex than a call to a companion user procedure. ihe 
complexity of ~assing and referencing arguments I$ the same in 
both cases as well. 
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lntrodyctlon 

The topic of this paper is the control of access to stored 

information In a computer utility. The paper describes a set of 

processor access control mechanisms that were devised as part of 

the second Iteration of the hardware base for the Multlcs system. 

These mechanisms provide a hardware implementation of protection 

"rings" which limit the access capability of an executing 

program. 

Multlcs is a general-purpose, multiple-user, Interactive 

computer system developed at Project MAC of M.I.T. in a joint 

effort with th~ Cambridge Information Systems Laboratory bf 

Hone~well Information Systems Inc. and, unti1. 19~~~ the Bell 

Telephone Labor~tori~~. It was built and.is' being ruri as an 

e~perlment ln.deslgntng, lmplem~~ttng, operating, and ~valuating 

a prototype computer utility. (See the b'tbllography In [ 1] for a 

complete list of publication~ on Multics.) 

Multlcs Is currently implemented on a Honeywell 645 computer 

system. The 645 represents a first attempt to define a suitable 

hardware base for a computer utility. ~~hi.le containing special . ' 

logic to support a segmented virtual memory, th~ 645 processors 

[2] provide only a limited set of access control mechanisms, 

forcing software intervention to implement protection rings. In 

·1967 Graham [3] proposed a way of supporting protection rings in 

hardware that would have required less software Intervention; 

mechanisms similar to those he proposed appear in the Hitachi 

5020 [4] •. In the course of Multlcs development a second 

2 



M0126 

iteration of the design of the hardware base has been undertaken 

and the resulting new hardware system is being built usihg the 

technology of the Honeywell 6000 series computer systems. The 

new processor includes an improved set of access control 

mechanisms, described here, that implement rings almost 

completely in hardware. These mechanisms developed from a scheme 

described in [5]. Although specifically designed for Multics1 

the mechanisms are applicable to any computer system which uses 

segmentation as a memory addressing scheme. 

This paper begins by establishing the general need to 

control access to stored information in a computer utility and by 

presenting several criteria for comparing different sets of 

access control mechanisms. Relevant aspects of the ortantzation 

of segmented memories are then sketched, and the processor 

mechanisms for implementing protection rings are described. The 

paper concludes by considering how rings can be used and 

evaluating the Impact of a hardware implementation of rfngs on 

software system design. 

Access Control ln a Comoyter Utjljty 

Protection of computations and information is an important 

aspect of a computer utility which arises because a computer 

utility serves multiple users with different goals and who are 

responsible to different authorities. Such a diverse group will 

use the same system only if it is possible for them to achieve 

independence from one another. On the other hand, a great 

potential benefit of a computer utility is its ability to allow 
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users to easily communicate, cooperate, and but ld upon one 

another's work. The rrile of protection in a computer utility is 

to control user interaction -- guaranteeing total user separation 

when desired, allowing unrestricted user cooperation when 

desired, and providing as many intermediate degrees of control as 

w i 11 .be usefu 1. 

While there are 

computer utility, 

stored information. 

many manifestations of protection in a 

most may be related to controlling a·ccess to 

Because stored information repre~ents both 

data and executable procedure, control of access to stored 

information serves to regulate information proc~ssing as well. 

·Four criteria can be ·app 1 i ed to a set of access centro 1 

mechanis~s to judge its usefulness in a computer utility: 

func~fons·l capabf 11 ty, economy, simpl i'ci ty, and programming 

generality. The first means that a set of access control 

mechanisms sh6uld have the functional capability to meet an 

interesting set of user protection needs in a natural way. The 

ability to meet interesting protection needs must be a quality of 

the basic mechanisms, while the ability to do so in a natural way 

is a quality of their user interface. An obvtous goal in 

designing new protection mechanisms is to maximize functional 

capability. 

The second criterion, economy, means that the cost of 

specifying and enforcing a particular kind ~f access constraint 

with a set of mechanisms should be so low that It is not an 

important consideration in determining the type of access control 
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to be used in a particular application. In addition, cost should 

be proportional to the functional capability actually used. The 

existence of access control mechanisms with sophisticated 

capabilities should cost.no extra to those with unsophisticated 

needs. Cost includes the subsystem complexity and user 

inconvenience that result from use of the access control 

mechanisms, as well as any associated extra storage space and 

execution time. 

Simplicity is the third criterion. While it is true that 

simplicity often leads to economy, spmething more is at stake 

here. For a set of access control mechanisms to be atcepted and 

used there must be a high degree of confidence that there exists 

no way to circumvent it. The best way to achieve confidence in 

the protection Is to keep the mechanisms simple so that they may 

be completely understood. With respect to access control 

mechanisms, lack of simplicity often implies lack of security. 

The fourth criterion, programming generality, Is often 

neglected. It means that individual procedures may be easily 

combined into larger units without understanding or altering 

their internal organizations. Programming generality allows 

sharing to be effective _in encouraging users to build upon one 

another's work. An implication of programming generality of 

r-elevance to access control mechanisms is that it be possible to 

change the protection environment of procedures and collections 

of procedures without altering their internal structure~ THe 

specific protection environment of a procedure should not be 
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reflected in its object code so that it may operate in different 

protection environments without recompilation. 

It clearly is difficult to design access control mechanisms 

that satisfy all four of these criteria simultaneously. 

Increases in functional capability come at the expense of 

economy, simplicity, and programming generality. The challenge 

in designing a set of access control mechanisms is to maximize 

functional capability within the constraints of the other three 

criteria. In the following sections a set of hardware access 

control mechanisms that was devised in the course of Multics 

development is described. These mechanisms appear to provide a 

significant improvement in the simultaneous satisfaction ·of the 

four criteria as compared· with the mechanisms in the Initial 

Mu 1 t i cs imp 1 emen tat ion. 

~Segmented Virtual Memorv Environment 

The processor access control mechanisms described here 

regulate the ability of an executing program 

information in a segmented virtual memory. As 

understanding these access control mechanisms 

to reference 

a basis for 

th.i s section 

briefly reviews the structure of a segmented virtual memory. 

(See [6-8] for detailed descriptions of several segmented virtual 

memories.) 

A machine language program for a segmented environment does 

not reference memory by absolute address. Rather, its memory 

consists of independent segments identified by number. Each 

segment Is a variable length array of words. A two-part address 
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(~,~) identifies word~ of the segment numbered~. 

The collection of segments in the virtual memory is defined 

by a descriptor segment. It contains an array of segment 

descriptor words (SOW's), .each of which can describe a single 

segment in the virtual memory. The number of a segment is just 

the index of the corresponding SOW in the descriptor segment. 

Among other things, an SOW contains the absolute address of the 

beginning of the corresponding segment in memory. The absolute 

address of the beginning of the. descripto~ segment is contained 

in the descriptor base register (OBR) of a processor. Each 

processor contains logic for automatically translating two-part 

addresses into the corresponding absolute addresses. Address 

translation, done with an lndexed retrieval of the ~ppropriate 

SOW from the descriptor segment, occurs each time a word in the 

virtual memory is referenced, I.e. each time an instructioh, 

indirect word, or instruction operand reference is made by an 

executing program. 

Storage for segments is usually allocated with a paging 

scheme in scattered fixed-length blocks. If used, paging is 

taken into account by the address translation logic as well as 

segmentation, but is totally transparent to an executing machine 

language program. Paging, if appropriately implemented, need not 

affect access control; it will be ignored in the remainder of 

this paper. 

Changing the absolute address in the OBR of a processor will 

cause the address translation logic to interpret two-part 
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addresses relative to a different descriptor segment. This 

facility can be used to provide each user of the system with a 

separate virtual memory. A single segment may be part of several 

virtual memories at the same time, allowing straightforward 

sharing of segments among users. 

For clarity, the following sections describe control of 

access in terms of the Multics implementation, although, as 

mentioned before, the techniques described are equally applicable 

to any system using segmentation •. 

Controlling Access ln £Virtual Memory 

A process with a new virtual memory is created for each user 

when he Jogs in to Multics, and the name of the user is 

associated with the proces~. The process is the active agent of 

the · user 1 and Is his on 1 y mean·s of referenc f ng and man i pu 1 at i ng 

information stored on-line. 

On-line storage in Multics is organized as a collection of 

segments of Information. A process can reference a segment of 

on-line storage only if the segment is first added to the virtual 

memory of the process. Adding a segment to a vi.rtual memory is 

an operation performed by supervisor programs. This operation 

provldes the initial opportunity for controlling access to 

informat1on stored on-line. The name of the user associated with 

a process must match some entry on the access control list of a 

segment before the supervisor will add that segment to the 

virtual memory of the process. 

Once a segment is included in the virtual memory, however, 
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finer control on access is required. (If a process could, say, 

write in any segment to which it had access, little sharing of 

information among users would occur.) If this finer control is 

to be effective agains~ arbitrary machine language pr~g~ams 

constructed by users, it must be implemented as hardware access 

validation on each reference. The structure of the virtual 

memory makes it natural to record these finer constraints in the 

SOW associated with each segment. Since t'he processor must 

retrieve the SOW for a segment each time that segment is· 

referenced by two-part address anyway, there is little time cost 

added to validate the intended access against constraints 

recorded there. With this structure it is also possible to 

change the allowed access to~ segment by changing the finer 

constraints recorded in the SOW, and to expect the change to be 

immediately effective. 

With the Honeywell 645, flags which enable a segment to be 

read, written, and. executed appear in each SOW. The value for 

each flag comes from the access control list entry which matched 

the name of the user associated with the process. An attempt by 

a process to change the contents of a word of a segment, for 

example, would be allowed by the processor only if the write flag 

were .QJ1 in the SOW for the segment. This mechanism provides 

individual control on the ability of·each user's process to read, 

write, a~d execute the words in each segment stored on-line. It 

also makes a segment the smallest unit of information that can be 

separately protected. 
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With the access control mechanisms described so far, all 

programs executed as part of some process have the same 

capability to access information. However, there seems to be an 

intrinsic need in many computations for the access capabilitY of 

a process to vary as the execution point passes through the 

various programs that direct the computation. The most obvious 

examples of this need are explicit invocations of supervisor 

programs during the course of a computation. The execution point 

may pass from a user program to a.supervisor program to initiate 

an tnput/output operation or change the access control list of a 

file, and then pass back to the user program. Presumably the 

executing supervisor program can access information· in some way 

that the\ user p·rogram cannot~ In a system 'that allows , and 

encourages sharing ·of informatiQn among users, other ex~mples 

appear. For instance, user A may wish to allow user· B to acc~ss 

a sensitive. data segment, but only through a sl)ecial program, 

provided by'A, that audits references to the segment. Doring the 

course of a computation in a process of ~ser B, ~ccess to the 

sensitive data segment should be allowed only when the execution 

point is in the special program provided by A. 

The word "domain" is frequently associated with a set of 

access capabilities. The examples above point to an Intrinsic 

need for multiple domains to be associated with a process and for 

the domain in which the process is executing to occaslohally 

change as the execution point passes from one program to another. 

A descriptor segment with read, write, and execute flags in the 
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SOW's defines a single domain. Additional mechanisms are 

required to allow multiple domains to be associated with a single 

Multics process. 

A very general set of access control mechanisms would place 

no restriction on the number of domains which could be associated 

with a process, and would force no restrictive relationships to 

exist among the sets of access capabilities included in the 

domains. Unfortunately, devising such a set of access control 

mechanisms that also meet the cri.teria of economy, simplicity, 

and programming generality is a difficult research problem. (See 

[9-14] for several approaches that have been explored.) In 

Multics the strategy was adopted of limiting the number of 

domains which may be associated with a process, and of forcing 

certain relationships to exist among the sets of access 

capabilities included in the domains. The result is protection 

rings. The extent to which this strategy results in a useful set 

of access control mechanisms will be discussed later. 

The characterization of rings as a restricted implementation 

of domains is the result of hindsight. When developed, rings 

were viewed as a natural generalization of the supervisor/user 

modes that provided protection In many computers. This path of 

development was chosen because it solved the most pressing 

problems of access control involved in the prototype computer 

utility and, because of the inherent simplicity of the idea, it 

was a path that the Multics designers felt confident they could 

successfully complete. Even today rings appear to provide an 
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effective trade-off among the criteria mentioned above. 

Protection Rings 

Associated with each Multics process are eight domains 

called protectlon rings. The protection rings are named by the 

integers 0 through 7. The access capabilities included in ring m 

are constrained to be a subset of those in ring n whenever m > n. 
Put another way, the sets of access capabilities represented by 

the various rings of a process form a collection of nested 

subsets, with ring 0 the largest set and ring 7 the smallest set 

in the collection. Thus, a process has the greatest access 

ability when executing in ring 0, and the least access ability 

when executing in ring 7. The total ordering of the sets of 

access capabilities defined by the consecutively numbered rings 

of a· process ts the property ·that allows a straightforward 

implementation of rings in hardware. 

As described earlfer, the permission flags of each segment 

in the virtual memory of a process simply indicate that the 

segment can or can not be read, written, or executed by the 

process. With the addition of rings, the flags must be extended 

to indicate which rings Include each access capability. Because 

of the nested subset property of rings, the capability, say, to 

write a particular segment, if allowed at all, is included in all 

rings numbered less than or equal to some value ~· The range of 

rings over which this write permission applies is called the 

write bracket of the segment for the process. Read and execute 

brackets for each segment can be established in the same way. A 
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process is permitted to read, write, or execute a segment in its 

virtual memory only if the ring of execution of the process is 

within the proper bracket. 

A partial hardware implementation of rings places numbers 

indicating the top of each bracket of a segment in the SOW of the 

segment, along with the read, write, and execute flags. If a 

flag is ~ then the number specifies the extent of the 

corresponding bracket. Turning a flag ~ indicates that the 

corresponding access capability. is not included in any ring of 

the process. For example, a data segment might have its execute 

flag turned~ or a procedure segment might have its write flag 

turned~. A register is added to the processor to record the 

current ring of execution of the process. The processor can then 

validate each reference to a segment by making the obvious 

comparisons when the SOW for the segment is retrieved for address 

translation. 

Figure 1 illustrates the flags and brackets that might be 

associated with a writeable data segment for some process. The 

segment can be written into when the process is executing in ring 

O, read from when the process is executing in any of rings 0 

through 4, and cannot be executed from any ring. 

The association of multiple domains of protection with a 

process generates the need for a new kind of access capability 

the capability to change the domain of execution of a process. 

Since changing the domain of execution has the potential to make 

additional access capabilities available to a process, it is an 
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Figure 1: Example access indicators for a writable data segment 
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Figure 2: Example access indicators for a pure procedure segment 
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Figure 3: Example access indicators for a procedure segment showing 
coincidence of bottom of execute bracket and top of potential 
write bracket. 
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operation that must be carefully controlled. An understanding of 

the sort of control required can be gained by reviewing the 

purpose of domains (and rings in particular). A domain provides 

the means to protect procedure and data segments from other 

procedures that are part of the same computation. Using domains 

it should be possible to make certain access capabilities 

available to a process only when particular programs are being 

executed. Restricting the start of execution in a particular 

domain to certain program locati~ns, called gates, provides this 

ability, for it gives the program sections that begin at those 

locations complete control over the use made of the access 

capabi·lities included in the domain. Thus, changing the domain 

of execution must be restrtcted to occur only as the result of 

transfering control to one of these gate locations of another 

domain. 

With a completely general implementation of domains, each 

domain could provide protection against the procedures executing 

in all other domains of a process. The corresponding property of 

rings is that the protection provided by a given ring of a 

process is effective against procedures executing in hJgher 

numbered rings. Switching the ring of execution to a lower 

number may make additional access capabilities available to a 

process, while switching the ring to a higher number can only 

reduce the available access capabilities. Thus, the downward 

ring switching capability must b~ coupled to a transfer of 

control to a gate into the lower numbered ring. Gates are 
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specified by. associating a (possibly empty) list of gate 

locations with each segment in the virtual memory of a process. 

If the execution point of the process is transferred to a segment 

while the ring of execution is above the top of the execute 

bracket for the segment, then the transfer must be directed to 

one of the gate locations in the segment. If the transfer is to 

a gate, then the ring of execution of the process will switch 

down to the top of the execute bracket of the segment as the 

transfer occurs. If the transfer. is not directed to one of the 

gate locations, then the transfer is not allowed. 

To provide control of this downward ring switching 

capab.lity which is consistent with the subset property of rings, 

a gate extension to the execute bracket of a segment is defined. 

The gate extension specifies the consecutively numbered rings 

above the execute. bracket of the segment that include the 

"transfer to a gate and change ring" capability for the segment. 

The gate list and the gate extension to the execute bracket 

can both be specified with additional fields in the SOW for each 

segment. Certain restrictions on the form of the gate list, to 

be described later, allow its specification in a fixed-length 

field. 

In contrast to downward ring changes, switching the ring of 

execution to a higher numbered ring can only decrease the 

available access capabilities of a process. Thus, an upward ring 

switch is an unrestricted operation that can be performed by any 

executing procedure. (Care must be taken, however, to insure 
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that the instruction to be executed immediately following an 

upward ring switch will come from a segment that is executable in 

the new, higher numbered ring.) For programming convehience the 

upward ring switch may be coupled to a special transfer 

instruction. 

A specific example will help clarify the meaning of the 

execute bracket, the gate extension, and the gate list of a 

segment. Figure 2 illustrates the way the access capabilities to 

a pure procedure segment (one which does not modify itself when 

executed) might be distributed to the various rings of some 

process. When the process is executing in any of rings 0 through 

4, any words of this segment may be executed as machine 

instructions. When the process is executing in rings 5 or 6, 

only transfers of the execution point to words 0 or 1 of the 

segment will be allowed. These transfers will result in the ring 

of execution switching down to 4. From ring 7 no attempt to 

execute in the segment will be allowed. The s~gment may be read 

from any ring In which it will execute. 

The abstract description of rings is now one step from 

completion. The last step comes from the observation that for 

each procedure segment in the virtual memory of each process 

there is a lowest numbered ring in which that procedure is 

intended to execute. Further, that ring is not always zero. For 

example, user- procedures are not intended to execute in ring 0, 

the ring of a process containing the most access capabilities. 

Allowing a non-zero bottom on the execute bracket would provide 
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the means to prevent the accidental transfer to and execution of 

a procedure in a ring numbered lower than intended. Violating 

the nested subset property with respect to execute access 

capability by allowing a non~zero bottom on the execute bratket 

of a segmant turns out to make rings no more difficult to 

implement, and is thus desireable in view of the protection 

against errors it provides. 

The non-zero bottom on the execute bracket of a segment can 

be provided without adding another field to the SOW. The method 

is to use the field which specifies the top of the write bracket 

to specify the bottom of the execute bracket as well. The double 

use of this field does not appear to remove any interesting 

functional capability from the access control mechanisms. In 

fact, It eliminates an unwanted degree of freedom in access 

specification, thereby removing the potential to make certain 

types of errors. There are two cases to consider in support of 

this contention. For a seiment with a write bracket but no 

execute bracket, or vice versa, nothing is los.t by double use of 

the field. For a segment with both a write bracket and an 

execute bracket the double use of the SOW field constrains these 

brackets to overlap by exactly one ring. Overlap by more than 

one ring is not interesting because executing a procedure in a 

~ing lower than the highest ring from which it can be written 

invalidates the protection provided by the lower ring. The 

forced single ring overlap guarantees that writable procedures 

will execute in only one ring. Finally, there is no obvious 
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application for segments with disjoint write and execute 

brackets. 

As redefined, then, the execute bracket of a segment for a 

process can be any consec~tively numbered group of rings, ·and 

need not begin with ring 0. If the segment also has a write 

bracket, then the bottom of the execute bracket must coincide 

with the top of the write bracket. When the ring of execution is 

below the execute bracket the process cannot execute words of the 

segment as machine instructions, although the process can use 

the unrestricted upward ring switch capability to execute the 

segment in a higher ring that is within the execute bracket. For 

many ~rocedure segments the execute bracket includes exactly one 

ring the ring in which the procedure segment is intended to 

execute. Procedure segments with wider execute brackets usually 

contain commonly used library subroutines that are certified as 

acceptable for execution in any of the rings from which they may 

be called. 

Figure 3 illustrates the relationship of the execute bracket 

and the potential write bracket for a typical pure procedure 

segment in the virtual memory of some process. This segment is 

executable in ring 4 and contains gates into ring 4 for rings 5 

and 6. It may be read from rings 0 through 4. If the procedure 

were also writable then the write flag would be gn, and execution 

and modification could occur in ring 4. 

The gate list and the numbers specifying the read, write, 

and execute brackets, and gate extension for a segment all come 
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from the access control list entry which permitted the process to 

include the segment in its virtual memory, as did the values for 

the read, write, and execute flags • 

.C.S..U .aw:L Return 

In the case of general domains, a change in the domain of 

execution of a process occurs when the executing procedure 

transfers control to a gate of another domain. In the context of 

most programming languages an interprocedure transfer represents 

a subroutine call, a. return following a call, or a non-local 

goto. Linguistically, all three operations produce a change in 

the environment of the execution point; this change affects the 

binding of variable names to virtual storage locations. The call 

operation has the additional function of transmitting arguments 

and ·recordIng a return point. Producing the correct change in 

the environment- (as we 11 as transmitting arguments and recording 

a return point In the case .of a call} generally r~quires the 

cooperation of both the procedure initiating the operation and 

the procedure receiving control. If a call, return, or goto 

changes the domain of execution because It happens to be directed 

to a gate location of another domain, then the situation becomes 

more complicated, for neither procedure can depend upon the other 

to cooperate. An important simplification introduced by 

restricting domains to a ring structure is that a procedure may 

assume the cooperation of procedures in lower numbered rings. 

When procedures are shared among different processes and 

different domains, the addressing environment is usually defined 
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is not convenient to embed 

themselves. In Multics, pure 

procedures are used with a per process call stack, and the stack 

pointer regiSter provides the required environment definitton. 

The call stack of a process is implemented with a separate 

segment for each ring being used. The stack segment for 

procedures executing in ring n has read and write brackets that 

end at ring n. Thus, stack areas for these procedures are not 

accessible to procedures executing in any ring m > n. Part of 

the function of the call, return, and goto operations is to 

properly update the stack pointer register. 

The most common ways of changing the ring of execution of a 

process are a call to a gate of a lower numbered ring and the 

subsequent upward return. A downward call represents the 

invocatlon of a user-provided protected subsystem or a supervisor 

procedure. Because the Honeywell 645 was designed around the 

usual supervisor/user protection method, the Multics 

implementation for this machine simulates rings by 11 trapptng" to 

special ring-changing software when downward calls and upward 

returns are performed. The hardware mechanisms detailed in the 

next section eliminate the need to "trap" in these cases. Using 

these improved hardware access control mechanisms, downward calls 

and upward returns occur without the intervention of special 

softw~re and are performed by the same object code sequences that 

perform calls and returns that do not change the ring of 

execution. 
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It is the nested subset property of rings that makes a 

straightforward hardware implementation of downward calls and 

upward returns possible. Because of this property the called 

procedure automatically has all access capabilities required to 

reference any arguments that the calling procedure can 

legitimately specify and to return to the calling procedure in 

the ring from which it called. Furthermore, it is reasonable to 

trust the called procedure to properly restore the stack pointer 

on return since it has access c~pabilities which allow· It to 

cause the calling procedure to malfunction in many other ways 

anyway. However, three problems remain. First, the called 

procedure must be able to calculate the correct new stack 

pointer. Second, the called procedure must have a way of 

validating references to arguments so that it cannot be tricked 

into reading or writing an·argument that the caller. could not 

also read or write. Finally, the called procedure must have a 

way of knowing for certain the ring in which the calling 

procedure was executing so that the called procedure cannot be 

tricked into returning control to a ring not as high as that of 

the calling procedure. 

The key to solving the first problem, creation of a new 

stack pointer, is a rule relating the segment number of the stack 

_segment for a ring to the ring number. Using this rule, the 

processor automatically calculates the segment number of the 

proper stack segment for the called procedure's ring of 

execution. By convention, word zero of each Multics stack 
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segment points to the beginning of the next available stack area. 

Thus, the stack segment number alone provides the called 

procedure with enough information from which to construct its own 

stack pointer. Because the processor provides the stack segment 

number, no procedure executing in a higher numbered ring, e.g. 

the calling procedure, can affect the value of the stack pointer 

for the called procedure. 

The second problem, validation of argument references, is 

solved by providing processor meGhanisms which allow a procedure 

to assume the more restricted access capabilities of any higher 

numbered ring when convenient. Using these mechanisms the called 

proc~dure can validate access when referencing arguments as 

though execution were occurring in the (higher numbered) ring of 

the calling procedure. Thus, the called procedure, even though 

it is executing in a ring with more access capabilities than the 

ring of the calling procedure, can prevent itself from reading or 

writing any argument that the calling procedure could not also 

read or write. 

The final problem, knowing the rlng of the caller, is solved 

by having the processor leave in a program accessible register 

the number of the ring in which execution was occuring before the 

downward call was made. The subsequent return is made to that 

ring. Thus, the calling procedure has no opportunity to lower 

the number of the ring to which the return is made. 

The next two sections describe in more detail how downward 

calls, argument referencing and validation, and upward returns 
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are implemented. Before proceeding to that description, however, 

there is another possibility to consider: an upward call and the 

subsequent downward return. 

An upward call occur~ when a procedure executing in ring n 
calls an entry point in another procedure segment whose execute 

bracket bottom ism> n. When the call occurs the ring of 

execution will change tom. The subsequent return is downward, 

resetting the ring of execution to~· This case exhibits two 

unpleasant characteristics of .a general cross-domain call and 

return that were not present in the case of the downward call and 

upward return. 

~The first is that the calling procedure 

arguments that cannot be referenced from the ring of 

may 

the 

specify 

called 

procedure. (In the case of the downward call, the nested subset ~ 

property of rings guaranteed that this could not happen.) There 

are at least three possible solUtions to this problem. One Is to 

require that th~ calling procedure specify only arguments that 

are accessible in the higher numbered ring of the called 

procedure. This compromises programming generality by forcing 

the calling procedure to take special precautions in the case of 

an upward call. Another possible solution is to dynamically 

include in the ring of the called procedure the capabilities to 

reference the arguments. Because a segment is the smallest unit 

of information for which access can be individually controlled, 

this forces segments which contain arguments to contain no other 

information that should be protected differently, again 
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compromising programming generality, unless segments are 

inexpensive enough that, as a matter of course, every data item 

is placed in its own segment. It may also be expensive to 

dynamically include anq remove the argument referencing 

capabilities from the called ring. The third possible solution 

is copying arguments into segments that are accessible in the 

called ring, and then copying them back to their original 

locations on return. This solution restricts the possibility of 

sharing arguments with parallel processes. None of the three 

solutions lend themselves well to a straightforward hardware 

imp 1 emen tat ion. 

The second unpleasant characteristic is that a gate must be 

provided for the downward ·return. (In the case of the upward 

return the nested subset property of rings made a return gate 

unnecessary.) The return gate must be created at the time of the 

upward call and must be destroyed when the subsequent return 

occurs. If recursive calls into a ring are allowed, then this 

gate must behave as though it were stored in a push-down stack, 

so that only the gate at the top of the stack can be used. The 

gates specified in SOW's seem poorly suited to this sort of 

dynamic behavior. Processor mechanisms to provide dynamic, 

stacked return gates are not obvious at this time. 

Because of these two problems, the hardware implementation 

of rings described in the next section does not automatically 

perform upward calls and downward returns. When an attempt to 

perform an upward call or downward return is detected by the 
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hardware it "traps" to a supervisor procedure that executes in 

ring 0 and which performs the necessary addressing and protection 

environment adjustments. 

~Hardware ImplementatiOn Qf Rings 

In this section the ideas presented in the previous sections 

are gathered into a description of a design for processor 

hardware to implement rings. The description only touches upon 

those aspects of the processor organization that are relevant to 

access control. The segmented addressing hardware described 

earlier serves as the foundation of the ring implementation 

mechanisms. 

Figure 4 presents a schematic description of segment 

descriptor words, ins true t ion words, indirect words, and 

processor registers that are r~levant to the discussion which 

follows. The descriptor base register (DBR) contains the 

absolute address and lengt~ of the descriptor segment. 

Segment descriptor words (SOW's) are the entries in the 

descriptor segment. If the validity bit (SDW.V) is~ then the 

SOW contains the absolute address and length of some segment tn 

the virtual memory of the process. The access indicator portion 

of an SOW specifies the brackets, flags, and gate locations for 

the segment. The three 3-bit ring numbers (SDW.Rl, SOW.R2, and 

SOW.R3) delimit the read, write, and execute brackets and the 

gate extension. The write bracket is rings 0 through SDW.Rl; the 

execute bracket SDW.Rl through SOW.R2; and the gate extension 

SDW.R2+1 through SDW.R3. Rather than providing a fourth number 
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Descriptor base register 
DBR ~, ~AD-D~R-E-S~S--~-1-E_N_G_TH--~ 

Segment descriptor word (stored in memor ) 

SDW ADDRESS LENGTH 

access indicator 
Instruction point~e_r __ r_e~g~i_s_t+e_r--------~------r------------------4 

IPR . . I RING ·I SEGNO WORD NO 

Instruction word (stored in memory) 

INST I PRNUM OFFSET OPCODE I I 
Program accessible pointer registers 

PRO 

PRl 

PR2 

(argument pointer) 

PR3 

PR4 

PR5 

PR6 

PR7 

~-------+----------------~----------------~ 

r--------r--------------~----------------~(stack pointer) 
(stack base pointer) 

~ ~----S-EG,....N_O __ _,, "- wORimo 

Indirect word (stored in memory) 
IND ~~-R-I_N_G---r)------S-E-GN-0----~-----W-ORD __ N_O __________ l_ 

Temporary pointer register 
TPR ~~-R~IN--G--~~------S-E-GN-O----~------WO-·RD.N---~0----~ 

Figure 4: Schematic description of segment descriptor 
words, instruction words, indirect words, and 
relevant processor registers 

27 



M0126 

to specify the top of the read bracket, SDW.R2 is reused for this 

purpose. Forcing the top of the read and execute brackets to 

coincide in this manner does not seem to preclude any important 

cases, and saves one ring number in the SDW. Supervisor code for 

cbnstructing SOW's guarantees that SDW.Rl ~ SDW.R2 ~ SDW.R3 is 

true. The single-bit read, write, and execute flags (SDW.R, 

SDW.W, and SDW.E) also appear. Finally, the list of gate 

locations of a segment is compressed to a single fixed-length 

field CSDW.GATE) by requiring all gate locations to be gathered 

together beginning at location 0 of a segment. Thus, SDW.GATE 

need only contain the number of gate locations present. 

The instruction pointer register (IPR) specifies the current 

ring of execution and the two-part address of the next 

instruction to be executed. The general format of an Instruction 

word in memory (INST) Is also shown for later reference. 

Ther• are eight program accessible pointer registers (PRO 

through PR7). All can contain a two-part address and a ring 

number. Because most procedure segments in Multics are pure and 

segment numbers cannot be known at the time a procedure segment 

is compiled, machine instructions specify two-part operand 

addresses by giving an offset (in INST.OFFSET) relative to one of 

the PR's (specified by INST.PRNUM) or IPR. The ring number in a 

pointer register (PRn.RING) is used to specify a validation level 

for the address, and is part of the mechanism that allows an 

executing procedure to assume the access capabilities of a higher 

numbered ring for referencing arguments. The processor is 
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designed .so that it is never possible for any PRn.RING to contain 

a number that is less that the ring of execution found in 

IPR.RING. 

Indirect addressing m~y be specified in an instruction by 

s~tting the indirect flag (INST.I). Indirect words (IND) contain 

the same information as PR's, and may also indtcate further 

indirection with an indirect flag (IND.I). 

The final item in Figure 4 is the temporary pointer register 

(TPR). The TPR is an internal pr~cessor register that is not 

program accessible. It is used to form the two-part address of 

each virtual memory reference made. The ring number CTPR.RING) 

provides the value with respect to which permission to reference 

the virtual ~emory location is validated. 

There are two aspects to the implementation of rings in 

hardware. The first is access checking logic, integrated with 

the segmented addressing hardware, that validates eaeh virtual 

memory reference. The second is special Instructions for 

changing the ring of execution. The best way to describe the 

first aspect is to walk through the processor instruction cycle, 

paying particular attention to the places where operations 

related to access validation occur. The second aspect will be 

discussed when·the description of the instruction cycle reaches 

the point where the instruction is actually performed. 

The first phase of the instruction cycle, retrieving the 

next instruction to be executed, is described in Figure 5. 

(Refer to Figure 4 for the abbreviations used in the flow charts 
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TPR -E- IPR 

Fetch SDW for segment 
containing ne~t instruc
tion. (Segment number is 

TPR.SEGNO) 

SDW.Rl ~ TPR.RING ~ SDW.R2 

yes 

Finish instruction fetch. 
(Word number is TPR.WORDNO) 

Missing segment 
no --~ ... so!Ewire-Iiifervertt!o 

re uired 

AcceRR v42 1 ation no .......... ~------·•••- t: ::. -~·- ·--·-
not in execute 
bracket 

Figure 5: Retrieval of next. instruction tq be executed 

* This check forsegment presence must occur each time an SDW is retrieved. 
To avoid cluttering the flow charts, it is left out of Figures 6•10. 
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of Figures 5 through 10.) The two-part address of the next 

instruction along with the ring of execution are loaded into TPR 

from IPR. At the point during address translation that the SOW 

becomes available, the ring of execution (now in TPR.RING) is 

matched against the execute bracket of the segment containing the 

instruction and the execute flag is checked. If the segment may 

be executed from the current ring of execution the instruction 

fetch is completed. Otherwise, the access violation derails the 

instruction cycle into the fault mechanism of the processor. The 

action of a fault is discussed later in this section. 

The next phase of the instruction cycle, calculating the 

effective address of the instruction's operand, is described in 

Figure 6. This phase occurs only if the instruction has an 

operand in memory. The effective address is the final two-part 

address of the operand (after all address modifications and 

indirections have taken place) together with an effective ring 

number. The effective ring number is used to validate the actual 

reference to the operand. The effective address i~ formed In TPR 

which, as a result of the preceding instruction retrieval phase, 

begins the effective address calculation containing the two-part 

address of the instruction being executed and the current ring of 

execution. 

The formation of the segment number and word number portions 

of the effective address in TPR.SEGNO and TPR.WORONO is very 

straightforward and is described by Figure 6. The calculation of 

the ring number portion of the effective address in TPR.RING and 
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Access violation 

(n = INST. PRNUM) 
TPR.SEGNO <= PRn.SEGNO 
TPR.WORDNO <= PRn.WORDNO+INST.OFFSET 
TPR.RING <= max(TPR.RING,PRn.RING) 

Does instruction 
specify operand address 

indirectly? 

yes 

Fetch SDW for sei~ent 
containing indirect 

word. (Segment number 
is TPR 

>---no 

effective ring not ·no 
ithin read bracket of 

segment containing in
direct word. 

ccess violation 
~-~---~--~-------~----
ead flag ~ and in-
irec t word not in sam no 

segment as instruction. 

yes 

SDW.R = ~ yes 

no 

IPR.SEGNO 

Finish indirect word fetch 
(Word number is 

TPR.WORDNO.) 

TPR.SEGNO <= IND.SEGNO 
TPR.WORDNO <= IND.WORDNO 
TPR.RING <= max(TPR.RING,SDW.Rl IND.RING) 

no 

')-.-----yes -

~(TPR no.w contains effective 
~ address of instruction 

operand.) 

Figure 6: Formation in TPR of effective address of instruction operand. 
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the access validation performed before retrieving indirect words, 

also shown in Figure 6, need further comment. 

The effective ring portion of the effective address provides 

a procedure with the means of voluntarily assuming the access 

capabilities of a higher numbered ring when making an instruction 

operand reference. The effective ring number also is used to 

record the highest numbered ring from which an executing 

procedure possi.bly could have influenced the effective address 

calculation. One opportunity for the value of TPR.RING to change 

during effective address calculation occurs if the Instruction 

contains an address that is an offset relative to some PRn. In 

this case TPR.RING is updated with the larger of its current 

value and the ring number· In the specified pointer register 

(PRn.RING). Thus, if PRn.RING contains a value that Is greater 

than the current ring of execution, validation of the operand 

reference will be as though execution were occuring in this 

higher numbered ring. 

The remaining opportunities to change the value of TPR.RING 

occur in conjunction with the processing of indirect words 

involved in the effective address calculation. Each time an 

indirect word is retrieved TPR.RING ts updated with the larger of 

its current value, the ring number in the ind1rect word 

(IND.RING), and the top of the wrfte bracket for the segment 

containing the indirect word (SDW.Rl). The ring number in the 

indirect word has the same purpose as the ring number in a 

pointer register forcing validation of the operand reference 
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relative to 

calculation 

some higher 

the top of 

numbered ring. Including in the 

the write bracket of the segment 

containing the indirect word, however, has another purpose. The 

top of the write bracket represents the highest numbered ring 

from which an executing procedure could alter the contents of the 

indirect word and thereby influence the result of the effective 

address calculation. Taking into account SDW.Rl when updating 

TPR.RING guarantees that the operand reference will be validated 

with respect to the highest numbered ring which could have 

influenced the effective address. 

The capability to read an indirect word during effective 

address formation must be validated before the indirect word is 

retrieved. Validation is w~th respect to the value in TPR.RING 

at the time the indirect word is encountered. 

At the conclusio~ of the effective address calculation 

described In F1gure 6, TPR contains the effective address of the 

instruction operand, including the effective ring number with 

respect to which the reference to the operand will be validated. 

The next phase of the instruction cycle is to perform the 

instruction. For the purpose of access validation, the possible 

instructions may be broken into three groups according to the 

type of reference made to the operand. Figure 7 shows the access 

validation for the straightforward cases of instructions which 

read their operands and instructions which write their operands. 

The third group, instructions which do not reference their 

operands, is illustrated in Figure 8. One set in this group is 
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instruction 
reads 
operand 

Fetch SDW for segment 
containing operand 
(Segment number in 

TPR.SEGNO) 

no 

yes ~gge§§_Y!2!!ti2U 
effective ring 
not in read 
bracket 

no 

Branch on type of 
· refcerence to 

operand 

yes TPR.SEGNO = IPR.SEGNO 

no 

Access violation 
----------------~---read flag not on 
and operand no~in 
same segment as 
instruction. 

M0126 

instruction 
writes 
operand 

Fetch SDW for segment 
containing operand 
(Segment number in 

TPR.SEGNO) 

yes 

yes 

s SDW.Rl 

6c~eaa.YiQltt1QD 
effective ring 
not in write 
bracket 

-~£~~~~-Y!Q_!~!2~--
write flag not .2!1 

Figure 7: Access validation for instructions which 
read or write their operands. 
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CALL 

Branch on 
instruction 

instruction transfer 
instruction 

Access violation 
~------------------

Fetch SDW for seg
ment containing oper 
and (Segment number 
in TPR.SEGNO) 

effective ring not~ --~ s: TPR.RING s: SDW.R2 
in execute · no ---------r----------------------' 
bracket yes 

Access violation 
-------------------execute flag ~no ------~ 
~ '-------~--~ 

yes 
Access violation 
-------------------attempt to change ~no -----< 
~ing with transfer '-------~---------J 

- -t~~J"dil(~~ ~ 

Figure 8: Access validation for instructions which do not 
reference their operand 
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the "Effective Address to Pointer Register"-type (EAP-type) 

instructions which load the RING, SEGNO, and WORDNO fields of PRn 

with the corresponding fields of TPR. The operand is not 

referenced so no access validation is required. Instructions of 

this type are important for they are the only way to load PR's. 

The remaining instructions illustrated in Fi?.ure 8 are 

transfer instructions. To provide some protection against 

changing the ring of execution by accident, all transfer 

instructions except two, CALL ~nd RETURN, are constrained from 

doing so. Since a transfer instruction does not reference its 

operand, but just loads the address of its operand into the 

instruction counter, no access validation is really required. 

However, an advance check on-whether reloading IPR from TPR will 

result in a fault on the next instruction cycle is very useful 

from the standpoint of debugging, for it catches the access 

v i o 1 a t i on w h I 1 e I t i s s t · i , 1 1 po s s i b 1 e to i den t i f y the t n s t r u c t I on 

which made the illegal transfer. Figure 8 describes the advance 

check for transfer instructions other than CALL and RETURN. 

The two instructions that remain to be considered are the 

instructions which can change the ring of execution: CALL and 

RETURN. They are intended to be used to implement the same-named 

linguistic operations.* CALL will automatically switch the ring 

of execution to a lower number and RETURN to a higher number if 

the occasion requires it. When used to perform an upward call or 

* RETURN may also be used to implement the non-local goto 
ope rat ion. 
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a downward return the instructions cause faults which allow 

software intervention to complete the operations. 

Figure 9 describes the access validation and performance of 

the CALL instruction. Several points require further 

~xplanation. The first concerns gates. From Figure 9 it is 

apparent that a CALL must be directed at a gate location even 

when the called procedure will execute in the same ring as the 

calling procedure. The rationale for this use of the gate list 

of a segment is that it can provide protection against accidental 

calls to locations that are not entry points, even when the call 

comes from within the same ring. Thus, SDW.GATE for a procedure 

segment usually specifies the number of externally defined entry 

points in the procedure segment. These become gates for higher 

numbered rings in the sense described in the previous sections 

only if the top of the gate extension of the segment i,s above the 

top of the execute bracket, i.e. only if SDW.R3 > SOW.R2 for the 

segment. The price paid for this error detection ability is that 

if any externally defined entry point in a procedure segment is a 

gate for a higher numbered ring, then all are. From within the 

execute· bracket of a procedure segment the gate restriction can 

be ~y-passed by using a normal traMsfer instruction rather than a 

CALL to pass control to the segment. 

The only exception to having the CALL instruction respect 

the gate list of the operand segment occurs if the operand is in 

the same segment as the instruction. Allowing a CALL instruction 

to ignore the gate list of the segment containing the instruction 
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Access violation 

execute flag off 

Access violation -------------------

Fetch SDW for segment 
co~taining operand. 
(Segment number in 

TPR.SEGNO) 

r.=-- no ----~ 

= IPR.SEGNO 

attempt to call a 1--r-- no -----< 
non-gate location ~-P----------------------J 

Fault - software in-

t:~~~~~!~-~~~~~El'! ~no-----<. ~ SDW.Rl 
attempt to make an ~-----------------J 
upward call 

Access violation 
-------------------effective ring 
gate extension 

Access violation 

yes 

no-------t s; SDW.R3 

~no ~ IPR.RING 

M0126 

es 

attempt to make an 
upward call result
ing from effective 
ring being higher 
than ring of 
execution PR7. SEGNO <= TPR.RING 1(create stack 

PR7.RING <= TPR.RlNG 
PR7 .WORDNO <= 0 base pointer) 

Figure 9: Access validation and performance of CALL instruction. 

39 



M0126 

permits i·t to be used to implement calls to internal procedures. 

The access validation for the CALL instruction is made 

relative to the ring number computed as part of the effective 

address. Since, as a result of PR-relative addressing and 

indirection, the effective ring value can be higher than the 

current ring of execution (IPR.RING), what would appear to be a 

call within the same ring or to a lower ring with respect to 

TPR.RING can in fact be an upward call with respect to IPR.RING. 

Because in normal circumstances this situation represents an 

error, the decision is made to generate an access violation when 

it occurs, even if the current ring of execution is within the 

execute bracket of the called procedure segment. 

The new ring of execution is calculated in TPR.RING. 
* Following this calculation, CALL generates in PR7, a register 

chosen by system convention, a pointer to word 0 of the stack 

segment for the new ring of execution. The segment number of the 

appropriate stack segment is the new ring number.•. In addition, 

PR7.WORDNO is set to 0 and PR7.RING is set to the new ring of 

* Two subtle features may be included at this point by changing 
the way the new stack segment number is derived. If the CALL 
instruction~~ change the ring of execution then the new 
stack segment number is taken directly from the current stack 
pointer register (PR6, by convention), allowing the use of 
non-standard stack segments for procedures executing in the 
same ring. If the CALL instruction~ change the ring of 
execution then the new stack segment number is calculated by 
adding the new ring number to an additional DBR field that 
specifies the eight consecutively numbered segments that are 
the standard stack segments of the process. The use of the 
additional DBR field allows more flexibility in stack segment 
assignment, facilitating the preservation of stack history 
following an error and the implementation of forked stacks. 
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execution·. 

Finally, the transfer of control is achieved by reloading 

IPR.RING, IPR.SEGNO, and IPR.WORDNO from the corresponding fields 

of TPR. 

The RETURN inst~uction is described by Figure 10. The 

access validation is the same as for other transfer instructions. 

The ring to which the return is made is specified by the 

effective ring portion of the effective address generated by the 

RETURN instruction. In the case that the return is upward, the 

ring number fields in all pointer registers are replaced with the 

larger of their current values and the new ring of execution. 

This replacement, together wlth the fact that PR's can only be 

loaded with EAP-type instructions, guarantees that PRn.RING can 

never contain a value that is. less than IPR.RING, a fact which 

proves very useful when passing arguments on a downward call and 

which makes it easy to perform an upward return to the proper 

ring. (See the next section for details.) 

This almost completes the description of the processor 

hardware for Implementing rings. One of the final items to 

consider is the action of a fault or Interrupt. Access 

violations generate faults, as do a variety of other conditions, 

e.g. missing page, missing segment, or processor timer runout. 

An interrupt is the recognition by the processor of an external 

signal. A fault or interrupt causes an unconditional transfer of 

control to a pre-specified location and the change of the number 

of the ring of execution to zero. A special instruction allows 
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:; 

Fetch SDW for segment 
containing operand 
(Segment number in 

TPR.SE NO 

SDW.Rl ~ TPR.RING ~ SDW.R2 

TPR.RING : IPR.RING 
··f. (u.p~ard :r.~urn) 

PRn.R G <• 
max(PRn.RING,TPR.RING) fo 

n = 0. 1 7 

Access violation 
------------------effective ring not 

no~ in execute bracket 

Access violation 
~ ------------------no execute flag off -

Fault - software 
intervention re-

attempt to make 
downward RETURN 

Figure 10: Access validation and performance of RETURN instruction 
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the state of the processor at the time of the fault or interrupt 

to be restored later if appropriate, continuing the faulted or 

interrupted instruction. The program that executes· in ring 0 

which gains control in the event of a fault or interrupt is part 

of the supervisor. 

The final point concerns privileged instructions. Certain 

instructions, if executable by all procedure segments, could 

invalidate the protection provided by the ring mechanisms. Among 

these are the instructions to load the DBR, 1/0 instructions, and 

the instruction to restore the processor state after a fault or 

interrupt. Any instruction designated as privileged will be 

performed only if the process is executing in ring 0. This 

convention restricts their use to supervisor procedures • 

.ka.ll .Q.W1 Retyrn Reylslted 

The intended use of the hardware mechanisms just described 

is illustrated by considering again two key aspects of the 

linguistic meaning of the operations call and return. 

The first aspect to be reconsidered is the way arguments are 

passed and referenced. A procedure making a call constructs an 

array of indirect words containing the addresses of the various 

arguments to be passed with the call. Each indirect word is 

generated by forming the address of the corresponding argument in 

some pointer register using an EAP-type instruction and then 

storing the contents of that pointer register as the indirect 

word; To inform the called procedure of the location of this 

argument list, the calling procedure loads a specific pointer 
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register,· designated by software convention to be PRO, with the 

address of the beginning of the argument list. An instruction of 

the called procedure can reference the n~ argument as its 

operand by using an indirect address. The location of the 

indirect word is specified in the instruction as PRO offset by n. 

If this operand reference constitutes an upward cross-ring 

argument reference then the proper validation is automatic, for 

PRO.RING, as set by the calling procedure, must contain a number 

that is greater than o~ equal to· the number of the ring in which 

the calling procedure was executing when the call was made. 

Thus, validation of all argument references by the called 

procedure will be with respect ·to an effective ring that Is at 

least as high as the ring of the caller. 

The ring number in the . argument pointer register, then, 

allows the called procedure to automatically assume the fewer 

access capabilities of the calling procedure in the case of an 

upward cross-ring argument reference via PRO and the argument 

list. Not all argument references, however, will be via PRO and 

the argument list. For example, if an argument Is an array, then 

the corresponding argument list indirect word will address the 

first element. The called procedure may find it convenient to 

load, say, PRl with the actual two-part address of the beginning 

of that array argument so that array Indexing can be more easily 

accomplished. If PRl Is loaded with an EAP-type instruction 

whose operand address is specified via PRO and the argument list, 

then the proper effective ring number will automatically be put 
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in PRl.RING, and subsequent references to the argument via PRl 

will also be validated with respect to an effective ring that is 

at least as high as the ring of the caller. If PRl is then 

stored as an indirect word, this effective ring is put into the 

RING field of the indirect word. In fact, as long as the called 

procedure does not make an explicit effort to lower the effective 

ring associated with an argument address, e.g. by zeroing the 

RING field of an indirect word, then all manipulations of the 

argument address are safe, and al1 argument references will be 

validated with respect to an effective ring that is at least as 

high as the ring of the caller. 

One further comment needs to be made about argument passing 

and referencing with respect to downward calls. The scheme just 

described naturally extends to a. sequence of downward calls. For 

example, assume that procedure A executing in ring 4 calls 

procedure B to execute in ring 1 which then calls procedure C to 

execute in ring 0. Assume further that an argument passed from A 

to 8 is passed on from B to c. When C references this argument, 

the reference will automatically be validated with respect to 

ring 4, not ring 1 as might be expected. The reason follows from 

the way in which B constructs the argument list for C. Using the 

normal pattern of forming an argument address in some PRn with an 

EAP-type Instruction and then storing that PR as an argument list 

indirect word, an indirect word for an argument to C wi 11 have 4 

in its RING field if the corresponding argument happens to have 

been originally provided by A. Thus, when C references this 
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argument, an effective ring number of 4 will be used to validate 

the reference. B could force validation of references to this 

argument by C to be relative to ring 1 simply by resettin~ the 

ring field of the corresponding argument list indirect word to 1. 

The second aspect to be reconsidered with respect to call 

and return is the way that the stack pointer register (PR6) is 

manipulated and the return address is recorded. Before a 

procedure calls another, the return address is recorded as an 

indirect word in a standard location of the stack area of the 

calling procedure. When the call occurs, PR6 remains pointing to 

the stack area of the calling procedure. Only after the called 

procedure has located its new stack area (using the address in 

PR7 provided by the CALL instruction) and the contents of PR6 are 

saved in that new stack area, is PR6 reset to address the stack 

area of the called procedure. When it comes time to return, the 

called procedure restores PR6 with the saved pointer value. PR6 

is then used to address the indirect word containing the return 

point that is the operand of the actual RETURN instruction. 

Because PR6.RING as restored was initially set by the calling 

procedure, it must contain the number of the ring in which the 

calling procedure was executing (or some higher value). Thus, 

the RETURN instruction is guaranteed to generate an effective 

ring number no lower than the ring of the calling procedure, and 

will return control to the ring of the caller or some higher 

numbered ring. 
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~ .Qf Ri·ngs 

Some insight into the functional capabilities of rings can 

be gained by considering briefly the way the basic mechanisms 

described in the previous .sections are used in ti1u 1 tics. 

The ring protection scheme allows a layered supervisor to be 

included in the virtual memory of each process. In r~ultics, the 

lowest level supervisor procedures, such as those implementjng 

the primitive operations of access control, input/output, memory 

multiplexing, and processor multiplexing~ execute in ring 0. The 

remaining supervisor procedures execute in ring 1. Examples of 

ring 1 supervisor procedures are those performing accounting, 

input/output stream management, and file system search direction. 

(Deciding how many layers to use and which procedures should 

execute In each layer is an interesting engineering design 

problem.) Supervisor data segments have read and write brackets 

that end at ring 0 or ring 1, depending on which layer of the 

supervisor needs to access each. 

Implicit invocation of certain ring 0 supervisor procedures 

occurs as a result of a fault or an interrupt. Explicit 

invocation of selected ring 0 and ring 1 supervisor procedures by 

procedures executing in rings 2 through 7 of a process is by 

standard subroutine calls to gates. No other access to 

supervisor segments by procedures executing in higher numbered 

rings is allowed. 

Because separate access control lists for each segment and 

separate descriptor segments for each process provide the means 
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to control separately the use of each segment by each user's 

process, not all gates into supervisor rings need be available to 

the processes of all users and not all gates need have the same 

gate extension associated with them. For example, some gates 

into ring 0 are accessible to the processes of all users, but 

only to procedures executing in ring 1. Such gates provide the 

internal interfaces between the two layers of the supervisor. 

Some gates into ring 1 are accessible to procedures executing in 

rings 2 through 7 in the processes of selected users, but not 

accessible at all from the processes of other users. An example 

of the latter kind is a gate for registering new users that is 

available only from the processes of system administrators. 

As pointed out by Dijkstra [15], the layered supervisor 

allowed by the ring protection scheme has several advantages. 

Constructing the supervisor in enforced layers limits the 

propagation of errors, thereby making the supervisor easier to 

modify correctly and increasing the level of confidence that the 

supervisor functions correctly. For example, changes can be made 

in ring 1 without having to recertify the correet operation of 

the procedures in ring 0. 

By arranging for most user procedures to execute in ring 4, 

rings 2 and 3 become available for the protection of subsystems 

constructed by members of the user community. Subsystems 

executing in rings 2 and 3 of a process can be protected from 

procedures executing in ring 4 through 7 in the same way that the 

supervisor is protected from procedures executing in rings 2 
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through 7. All comments made about a supervisor implemented in 

rings 0 and 1 of each process apply to protected subsystems 

implemented in rings 2 and 3. Different protected subsystems may 

be operated simultaneously in rings 2 and 3 of different 

processes and several processes may share the use of the same 

protected subsystem simultaneously. The ring protection scheme 

allows the operation of user-constructed protected subsystems 

without auditing them for inclusion in the supervisor. Examples 

of protected subsystems that might be provided by various users 

are a personnel records subsystem, a proprietary compiler, or a 

subsystem to play "moo" and safely record in a central data base 

the result of every game of every player for later publication. 

With most user procedures executing in ring 4, rings 5, 6, 

and 7 are available for user. self-protection. For example, a 

user may debug a program by executing it in ring 5 where only 

procedure and data segments intended to be accessed by the 

program would be accessible. The ring protection mechanisms 

would detect many of the possible addressing errors that could be 

made by the program and would also prevent the untested program 

from damaging other user segments accessible from ring 4. In the 

same way ring 5 can be used for the execution of a program 

borrowed from another user when the program is not trusted. 

Supervisor gates are not accessible from rings 6 and 7 of 

any process in Multics. Thus, procedures executed in these rings 

have no explicit· access to supervisor functions; they may, 

however, call user-provided gates into rings 4 or s. Ring 6 of a 
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process might be used, for example, to provide a suitably 

isolated environment for student programs being evaluated by a 

grading program executing in ring 4. 

The complete description of a software access control 

facility based on rings that allows them to be used in the manner 

just outlined would require another paper. Although a given ring 

may simultaneously protect different subsystems in different 

processes, each ring of each process can protect only one 

subsystem at a time. A useable software access control facility 

must constrain each user's ability to dynamically set and modify 

access control specifications so that this sole occupant property 

can be verified and enforced when necessary. 

Conclusions 

·The hardware mechanisms de~ived and described in this paper 

implement a methodical generalization of the traditional 

supervisor/user protection scheme that is compatable with a 

shared virtual memory based on segmentation. This generalization 

solves three significant kinds of problems of a general purpose 

system to be used as a computer utility: 

users can create arbitrary, but protected, subsystems for 
use by others, 

the supervisor can be implemented in layers which are 
enforced, 

the user can protect himself while debugging his own Cor 
borrowed) programs. 

The subset access property of rings of protection does not 

provide for what may be called 11mutually suspicious programs" 
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operating under the control of a single process. But on the 

other hand, it is just that subset property which imposes an 

organization which is easy to understand and thus allows a system 

or subsystem designer to convince himself that his implementation 

is complete. Also, it is just the subset property which is the 

basis for a hardware implementation that is integrated with 

segmentation mechanisms, requiring very small additional costs in 

hardware logic and processor speed. 

The long-range effect of hardware protection mechanisms 

which permit calls to protected subsystems that are no more 

complex than calls to other procedures is bound to be 

significant. In the interface to the supervisor of most systems 

there are many examples of facilities whose interface design is 

biased by the assumption that a call to the supervisor Is 

relatively expensive; the usual result is to place several 

closely related functions together in the supervisor, even though 

only one of the group really needs protection. For example, in 

the Multics typewriter 1/0 package, only the functions of copying 

data in and out of shared buffer areas and of executing the 

privileged instruction to initiate 1/0 channel operations need to 

be protected. But, since these two functions are deeply tangled 

with typewriter operation strategy and code conversion, the 

typewriter 1/0 control package is currently implemented as a set 

of procedures all located in the lowest numbered ring of the 

system, thus increasing the quantity of code which has maximum 

privilege. 
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A s1milar example is found in many file system designs, 

where complex file search operations are carried out entirely by 

protected supervisor routines rather than by unprotected library 

packages, primarily because a complex file search requires many 

individual file access operations, each of which would require 

transfer to a protected service routine, which transfer is 

presumed costly. 

The initial implementation of Multics was carried out using 

software simulated rings of protection. The result was a very 

conservative use of the rings of protection: originally just two 

supervisor rings and one user ring were employed, and the two 

supervisor rfngs were temporarily collapsed into one (thus 

exploiting the programming· generality objective referred to 

before) while the ring crossing software mechanisms were tuned 

up. Today~ although there are many obvious applications wafting, 

multiple rings are just beginning to be exploited. The 

availability with the new Multics processors of hardware 

implemented rings of protection which make downward calls and 

upward returns no more complex than calls and returns In the same 

ring should significantly increase such exploitation. 

Background ~ Acknowledgements 

The concepts embodied in the mechanisms described here were 

the result of seven years of maturing of ideas suggested by many 

workers. The original idea of generalizing the supervisor/user 

relationship to a multiple ring structure was suggested by R. M. 

Graham, E. L. Glaser and F. J. Corbat6. An initial software 
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simulation of rings using multiple descriptor segments [1] was 

worked out by Graham and R. C. Daley, and implemented by members 

of the Multics system programming team. That implementation 

makes use of hardware .access mode indicators stored in the 

segment descriptor word of the Honeywell 645 computer. Graham 

[3], in 1967, proposed a partial hardware implementation of rings 

of protection which included three ring numbers embedded in 

segment descriptor words, and a processor ring register, but 

which still required software intervention on all ring crossings. 

This hardware scheme, though a related scheme was implemented in 

the HITAC 5020 time-sharing system [4], was never implemented in 

Multics, which today (1971) still uses a version of the software 

si-mulation. The complete automation of downward calls and upward 

returns was proposed in a thesis· in 1969 [5]; the description In 

this paper extends that thesis slightly with the addition of 

rings numbers 

registers, as 

to indirect words and the 

suggested by Daley. The 

processor 

CALL and 

instructions proposed there have also been simplified. 

pointer 

RETURN 

The hardware implemented call and return, and automatically 

managed stacks, were at least partly inspired by similar 

mechanisms which have long been used on computer systems of the 

Burroughs Corporation [16,17]. 

In addition to those named above, D. D. Clark, C. T. 

Cl ingen, R. J. Feiertag, J. M. Grochow, N. I. Morris, M. A. 

Padlipsky, M. R. Thompson, V. L. Voydock, and V. A. Vyssotsky 

contributed sig~ificant help in understanding and implementing 

rings of protection. 
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