
·-

M.I.T. Laboratory for Computer Science 

ON NAMES IN NETWORKS--ONE MORE TRY 

by J. H. Saltzer 

Local Network Note No. 28 

March 3, 1981 

Despite the best efforts of John Shoch [1] to put confusion over 

names, addresses, and routes to rest, discussion continues to be confounded 

and confused by different perceptions of what names and addresses in 

networks mean. This confusion seems to stem at least partly from making 

too tight an association between various types of network objects and the 

most common form for their names. This note makes one more pass at trying 

to straighten things out. 

Operating systems have a similar potential for confusion concerning 

names and addresses, what with file names and unique identifiers, virtual 

and real memory addresses, page numbers, block numbers, disk addresses, 

and such, but most of that potential has long been rendered harmless by 

explicit recognition that the concept of binding provides a systematic way 

to think about naming. In an operating system, one does not argue about the 

distinction between a name and an address. One looks at both as an example 

of a single phenomenon, and asks instead where is the context in which a 

binding for this name (or address) will be found, and to what object, 

identified by what kind of name, is it therein bound? This same approach is 

equally workable in networks, as shall be seen. 

To start with, let's review Shoch's terminology: 

a name identifies what you want, 

an address identifies where it is, and 

a route identifies a way to get there. 

WORKING PAPER--Please do not reproduce without the author's permission and 
do not cite in other publications. 

- - - ------------ -- -~----·-- - · . - - --



-2-

There will be no need to directly tamper with those definitions, but it turns 

out that they leave a lot of room for (mis-) interpretation. 

In a n:etwrk, there are several types of things around for which there 

is ttiOlte that'~'< one' instance, and therefore it seems helpful to attach names to 

d:listi:n~:Esh one' instance from another. Of these several types, there are four 

tha>t t1.11!!11:' up quite often: 

I)' Service·s; and Use't's,. These are functions that one might want to use, 

and th'e" clients, tha>t might want to use them. Example of services are 

cine" tMG tells the' time of day, one that performs accounting, or one 

tltat fot"Wards packets. 

2) NOdes•. These are computers that can run services, or run user programs. 

two· examples a·re · a PDP-11/40 and an Alto. Some nodes are clients of the 

rtet'Wbrk, while others help implement the network by running forwarding 

senice·s. 

3') Network attachment points. These are the electrical connectors of a 

network, the places where a node can be attached. 

4.) Paths,. These run between network attaclunent points, traversing forwarding 

nodes and communication links. 

As men·eiorted, there are other concepts, but these four are the ones usually 

being discussed when confusion over naming strikes. We can make two observa

tions concerning these four types of objects. First, since for each type 

there are usually many instances, we want to name the instances, and are free 

to choose any form of name that seems helpful--unique identifiers, human

readable character strings, or hierarchical-looking names. Further, there 

may be more than one form of name for a single type of object--a node might, 

for example, have both a character string name and a unique binary identifier. 

Orte of the· worst sources of confusion comes from too closely identifying 



-3-

some conventional form of name for a particular type of object as a property 

of that type. For example, service names might be assumed to be named by 

character strings, nodes assumed to be named by unique !D's, and network 

attachment points assumed to be named by hierarchical addresses. When one 

participant in a discussion assumes identification of name form with object 

type and another doesn't, the resulting conversation can be very puzzling to 

all participants. 

The second observation is that most of the potential naming requirements 

in a network can be simply and concisely described in terms of bindings and 

binding dynamics among the four types of objects. To wit: 

1) A given service may be run at one or more 11odes, and may be moved from 

one node to another without losing its identity as a service. 

2) A given node may be connected to one or more network attachment points, 

and may be moved from one attachment point to another without losing its 

identity as a node. 

3) A given pair of attachment points may be connected by one or more paths, 

and those paths may change with time without affecting the identity 

of the attachment points. 

Whether or not all of the flexibility implied by these possibilities should 

be provided for in a particular network design is a matter of engineering 

judgement. A judgement that a particular binding can be made at network design 

time and will never be changed (e.g., a particular service might always run 

at a particular node,) should not be allowed to confuse the question of what 

names and bindings are in principle present. In principle, to get a message 

to a service one must make three bindings: 

1) 

2) 

choose a node on which the required service is operational, 

choose a network attachment point to which that node is connected, 

3) choose a path from this attachment point to that attachment point. 

------··-- - ----- ---------·-···-· - - ·---



-4-

There are, in turn, three conceptually distinct binding services that 

the network need-s to provide: 

1) Service name resolution, to identify the nodes that run the service 

2) node name location, to identify attachment points that reach the nodes 

found in 1) 

3) ro.ute se_rvi'ce, to identify the paths that lead from the requestor's 

attachment Point to the ones found in 2) 

and &t each level of binding, since there are generally several alternatives, 

4 choi'Ce .of which node, which attachment point, and which path must be made. 

These choices are distinct but interacting. For example, one might choose 

the node after fir·st looking over the various paths leading to the possible 

choices • 

. Q>nfusion 

We can find several examples in the network world of places where 

the tllllliittgmechanisms provided are an incomplete set, and some bindings are 

thereby permanen·t rather than flexible. The Xerox Ethernet protocols, for 

example, as:Sign a 48--'hit unique ID as the name of each node, but also make 

that same 48-bit unique ID part of the name of the network attachment point 

of the node. This required binding, together with the convention that the 

rest of the name of the network attachment point is the number of the network, 

ma.kes it impossible fo·r one node to connect to two attachment points on the 

same Ethernet. 

For aaother example, the ARPANET NCP style of protocol provides character 

S:tri'ftg n:ames that: appear, from their umemonics, to be node names or service 

names~ but in fact they are the names of network attachment points. Thus the 

characte-r s.trbtg name MIT-Multics is bound to the network attachment point at 

IMP ·6, port 0, so reattaching the node (the MIT 68/80 computer) to another 



-5-

network attachment point requires changing tables in every other node. Also, 

a parallel attachment of the MIT 68/80 to a second ARPANET port would be 

achievable only by assigning a second character string identity; this require

ment emphasizes that the name is really bound to the attachment point, not the 

node. Again, because of their mnemonic value, the ARPANET NCP host name 

mnemonics are often thought of as service names. Thus one expects that the 

MIT Multics service is operated on the node reached by the name MIT-Multics. 

That assumption doesn't produce any surprises. But any of the MIT ITS 

machines can accept mail for any of the others, as can the groups of TENEX's 

at BBN and lSI. If the one to which one tries to send mail to is down, the 

customer must realize that the same service is available by asking for a 

different node. The need to give a different name to get the same service 

when a node goes down comes about because in the ARPANET the name is not bound 

to the service but to the attachment point. 

Finally, confusion can arise because the three concept~lly distinct 

services (service name resolution, node name location, and route dispensing) 

have not been thought of as mechanically distinct. There is usually suggested 

only one identifiable service, a "name server". The name server starts with 

a service name and returns a list of network attachment points that can 

provide that service. It thereby performs both the first and second concep

tual services, and may leave to the customer the final choice of which 

attachment point to call. Path choice may be accomplished by a distributed 

routing algorithm that does not resemble a binding service at all. 

Co!E~spondence with names, ~ddre~~~~. ~nd routes 

W.Jth th!H mudt.d of hlndln14 nmon~ Ht.•rvkua, nudet:~, network attachment 

points, and paths firmly in mind, we can now interpret Shoch's names, addresses, 

and routes as follows: 



-6-

1) Any of the four kinds of objects (service, node, network attachment 

point, path) may have a name. 

2) '!'he ~~'dreafl of an object is the name of the thing it is bound to. Thus, 

•n a44ret~s of a s_ervice is the name of some node that runs it. An 

add~ees of a node is the name of some network attachment point to which 

:tt eOD,llects. An address of a network attachment point (a concept not 

usually diEJcussed) can be taken to be the name of a path that leads to it. 

l) A rpute is a 1110re sophisticated concept. A route to either a network 

at1;echaent point or a node is just a path. Because a single node can run 

sevel'el services et once, a route to a service has to be a path to the 

nettf()rk attachment point of a node that runs the service, plus some 

~nttficatian of wldch activity within that node runs the service 

(e.g., a socket identifier in PUP or IP.) But note that a route actually 

cOlUJists of a series of names, typically a list of forwarding nodes and 

the paths between them. 

Reference 

l. Shoc}l, J.F., "A Note on Inter-Network Naming, Addressing, and Routing," 
.AR:r~ Internet E:~q>eriment Note IEN-19, SRI International, Menlo Park, 
calif., January, 1978. 




