
I 

M.I.T. Laboratory for Computer Science Local Network Note No. 25 
November 5, 1980 

Communication ring initialization without central control 

by Jerome H. Saltzer 

Introduction 

One of the more subtle problems of design in a digital communication ring 

is how to do ring initialization without assigning a special station to do 

housekeeping. Initialization is required both at startup and also following a 

failure that causes the access token to be lost. It is easy enough to insist 

that e-..:ery station be prepared to reinitialize the ring (and to detect the 

need for reinitialization) but this insistence introduces the danger that two 

or more stations will independently attempt reinitialization. These 

contending reinitializers can interfere with one another in such a way that 

none is successful. In a ring of 100 stations, one can imagine (in 

nightmares) an avalanche of contending attempts to reinitialize, none 

successful, going on indefinitely. 

Earlier solutions to this problem have not been systematic or even very 

satisfactory. Primenet, for example, offers some suggestions to software 

implementors concerning token management, but apparently does not provide a 

foolproof procedure [1]. The L.c.s. version one ring network relies on the 

software at each node testing for ring format correctness either periodically 

or before each message origination [2]~ The only protection against the 

reinitialization avalanche effect is that its probability is low with the 

WORKING PAPER -- Please do not reproduce without the author's permission 
and do not cite in other publications. 



2 

small number of stations (less than ten) in the net. This approach ignores 

the coordination problem rather than solving it. The original design of the 

L.C. S. version two ring network envisioned an automatic scheme based on 

placing reinitialization responsibility only on stations that discover the 

need for reinitialization while attempting to originate a message [3]. This 

scheme does not solve the contention problem, it merely attempts to reduce the 

typical number of contending stations to a level where a 

contention-backoff-retry algorithm has a greater chance of working. 

To do ring reinitialization systematically yet without central control, 

we here propose a novel, straightforward approach, and then describe in detail 

how this approach could be implemented in the version two ring network. The 

approach has three coordinated elements, · jamming, a virtual token, and a 

~-at-most-once rule. 

l) Jamming is a technique borrowed from the Ethernet, where it is used 

to insure that all contending stations agree that there was a collision [4). 

In the Ethernet, whenever an originating station detects a collision by 

analysis of the signal levels, that station impresses an easily recognizable 

jamming signal on the net for a time long enough to propagate to every other 

network station. This jamming guarantees that all contenders agree on the 

need to backo ff and retry. It also guarantees that all agree (to within a 

couple of propagation times) on when to begin the backoff timeout. It is this 

last property that is of interest in the ring. Therefore, the first step in 

systematic ring initialization is that whenever any station detects a need for 

ring reinitialization (generally by noticing that no format flags ha·.;e passed 

by for one ring transit time) that station jams the ring by transmitting a 

string of zeros for T milliseconds, where T is chosen to be a little longer 



------·. 

3 

than one ring transit time. The string of zeros contains no format flags, so 

every other station will, within one ring transit time, similarly detect that 

the ring needs reinitialization and emit T milliseconds worth of zeros. Thus 

a little more than 2*T milliseconds later all stations will have completed 

jamming and be in agreement, within about 2*T milliseconds, on when the entire 

procedure started. 

2) Orderly, contention-free initialization can now be accomplished 

simply by having exactly one station place a correctly formatted message on 

the ring. The trick is to find a distributed algorithm that chooses exactly 

one station from a collection of stations that cannot currently communicate 

and that are not even certain which other stations are participating in the 

exercise. The ring normally avoids contention for message origination by 

..--... circ'ulating a token, and requiring that a station not originate a message 

unless it possesses the token. A similar technique can be used for ring 

initialization, with the exception that since the ring is not operating yet, 

the circulation of the initialization token must be simulated. This simulated 

initialization token is called a virtual token. The virtual token technique 

is borrowed from the CHAOSNET, which uses it to reduce contention in retries 

of message origination [5]. 

In the ring, the virtual token works as follows: each station sets a 

timer to a value consisting of its station number times 2*T. When this timer 

finally goes off, it is this station's turn to initialize the ring. Of 

course, if some other station initializes the ring first, the flag presence 

detector in each station will terminate that station's interest in ring 

reinitialization, and operation will return to normal. 

- ··· · ·· -- ------- ---
· -·- · -------------



4 

Thus the virtual token in effect visits each station in the ring in the 

order of its station number. The lowest-numbered active station will first 

dcddP thnt it has possession of th<' vlrtunl tokc>n, nnd will reinltialize the 

ring. If thnt station is successful, the rest, waiting for their turn, will 

notice the success and will return to their usual activities. 

One interesting difference between this technique and that of the 

CHAOSNET is the time scale involved. In the CHAOSNET, multiples of the 

network propagation time, which is measured in microseconds, are used. In the 

ring, the transit time is measured in milliseconds. If, for example, a value 

of T m 0.5 ms. is chosen, and there are 200 stations on a network, one might 

wonder if it will often require the better part of a second for the 

initialization to complete. This concern is not really important, however, 

for two reasons. First, since reinitialization should occur relatively 

rarely, promptness is not so important a design criterion as is inevitability 

and accuracy of the automatic procedure. Second, it is very likely that some 

low-numbered station will be active (one might intentionally assign bridges, 

gateways, and other high-availability servers low network numbers) so that 

reinitialization normally will occur very rapidly. 

3) Some final, minor problems must be accounted for. Unless 

high-precision components are used the timers in different stations may be 

different enough to cause trouble. For example, if station 100 has a timer 

that is 1% slow, it may attempt reinitialization at the same time as station 

101. This problem will arise only if there are no low-numbered stations, and 

the high-numbered stations have closely-spaced numbers. Similarly, a station 

may happen to join the ring in the middle of an ongoing reinitialization 

sequence, notice no flags, and try to initiate yet another reinitialization 



5 

sequence • Both these problems are eliminated by providing one more degree of 

backoff. A node should try exactly once to do reinitialization with the 

virtual token. If that attempt fails, it should get out of the way to let 

some other node try. If, after a few seconds, no station has successfully 

reinitialized the ring, automatic reinitialization is probably a hopeless 

acti-.rity anyway, and manual intervention should be called for. Assuming the 

ring is not actually damaged and thus the only problems are new participants 

and off-beat clocks, this _gy-at-most-once rule provides a very high 

probability of eventual success. Every active station will get to try, while 

collision-type interference becomes less and less likely as more stations 

exhaust their try and back off. (This observation suggests that one could 

ev en replace the systematic timeouts of the virtual token with random 

timeouts, and still expect a high probability of eventual reinitialization 

success. That approach would probably work, though with 250 stations it might 

be the usual case that many collisions occur at every reinitialization 

attempt.) 

An Implication for interfaces 

One of the attractions of this method of automatic ring reinitialization 

is that it can be implemented entirely in hardware as part of the ring 

controller, without involving host-specific hardware or software. This 

isolation of implementation between the ring controller and the station allows 

the interface between the ring controller and the station to be more 

technology-independent than it would otherwise be. 

------ ---- ----- ----- -·-- - -·---· - --- ------ -- ... .. . --- ------ ---- --



6 

Application to the version 2 local network interface 

Implementation of jamming, the virtual token, and the try-at-most-once 

rule for automatic ring reinitialization would involve several changes and 

some substantial simplification to the previous ·.rersion 2 local network 

interface design [3]. The simplifications arise because in the previous 

design, ring reinitialization involved the ring controller card, the 

host-specific card, software in the host and four different timers. With this 

new approach automatic ring reinitialization can be carried out entirely by 

the ring controller card, and only two timers are required. Following is a 

list of mechanisms and procedures that would be implemented in each station 

interface. 

1. The four timers that provide flag detect timeout (1.2 ms), token detect 

timeout (300 ms), Originate timeout (300 ms), and lost message timeout 

(1. 2 ms), are replaced by two timers, all part of the control card. The 

first provides token detect timeout, and is set to a little more than the 

maximum possible token circulation time. The second provides flag detect 

timeout, and is set to a little more than the maximum ring transmit time. 

The principle of operation of the two timers is as follows: in a 

normally operating ring, the access token will · periodically circulate by 

each repeater. Lack of appearance of the token is a certain indication 

that the ring requires reinitialization, so the token detect timeout is 

set to elapse if the maximum token circulation time is exceeded; whenever 

the repeater notices the token passing it resets this timer. The token 

detect timeout by itself would be sufficient to trigger reinitialization, 

but the maximum token circulation time can be quite large. The token can 

be captured by each station in sequence for one maximum-length message 



7 

transmission time, 1 ms. in the 10Mb ring, so with 256 stations the 

token could take as long as 256 ms. to circulate. To detect ring 

failures more quickly, and to insure rapid agreement among all stations 

as to the starting time of the reinitialization procedure, a second timer 

is used. In a correctly operating ring, a flag sequence will appear at 

the beginning and end of every message and at the beginning of every 

token. Therefore, failure to see a flag within one ring transit time 

(determined by the repeater delay timer, the maximum number of repeaters, 

and the maximum length of wire connecting the repeaters--about 0.5 ms in 

the present design) is another certain indication that the ring requires 

reinitialization. The flag timeout detector therefore is set to elapse 

if more than one ring transit time is exceeded; whenever the repeater 

notices a flag passing it resets this timer. (The flag timeout detector 

by itself is not sufficient to detect all need for ring initialization, 

since a failure could in principle leave the ring with a circulating flag 

and all stations in repeat mode.) 

2. Whenever a station detects a token it loads a virtual token counter with 

the station address. A zero value in the virtual token counter inhibits 

entry to reinitialization mode. This zero-inhibit is the mechanism that 

implements the try-at-most-once rule. 

3. Elapsing of either timer causes the control card to enter a 

reinitialization sequence unless reinitialization is inhibited by a zero 

in the virtual token counter. The ring control card performs the 

following sequence: 



a. 

8 

I~ediately abandon any ongoing copy or originate operation 

returning error status to the host-specific board ("Message lost" on 

originate, "Bad format" on copy) • 

b. Continue as pending any pending originate operation. 

c. Force the transtnitter to idle (with PLL modem, send zeros) for one 

flag detect timeout time. (This idle ensures that every other flag 

detect titneout in the ring elapses.) Then return the transmitter 

and receiver to repeat mode. 

d. Inhibit the token detect tim·eout. 

e. Reset the flag detect timenut and allow it to run until it lapses or 

a flag is . detected. If a flag is detected, the control card resets 

both detector timeouts, leaves reinitialization mode, and returns to 

normal operation. 

f. If the flag detect timeout lapses, lower the virtual token counter . 

by one, and if greater than zero, repeat step e. 

g. If the virtual token counter reaches zero, reset both detector 

timeouts, originate a broadcast packet with no data, and after 

removing this packet return to normal operation. 

Note that trying to initialize the ring inhibits any future attempts to 

reinitialize until such time as a token is detected. Thus for a single 

ring failure each station makes no more than one attempt to reinitialize. 

4. If token detect timeout occurs while reinitialization is inhibited, this 

coincidence can be interpreted as failure of the ring reinitialization 



s. 

9 

procedure by all parties involved. This event should be reported as an 

error status to the host specific board. The line "ring not OK" is used 

for this purpose. Once asserted, the status "ring not OK" remains 

asserted until the next time a token is detected. (Note that this reuse 

of the token detect timeout is not strictly legitimate since the time 

normally required to complete the reinitialization procedure is only 

accidentally smaller than the the maximum token circulation time. 

However, it is very likely that if the ring is operating normally, some 

station will successfully reinitialize within that time. Further, the 

software response to this status is supposed only to log a status report 

and invoke external intervention. In the case that the ring later 

succeeds with reinitialization after this status is reported, the station 

can discover th.is fact by inspecting the status line.) 

Whenever a station powers up, or enables or disables its modem, it should 

also reset the two timers and enable initialization by loading the 

virtual token counter. With this provision, startup of an LNI proceeds 

as follows: 

a) Power is applied to the LNI, at which time it comes up in digital 

loopback mode with both timeout detectors reset but active, the 

virtual token counter loaded, and idle (zeros) circulating by 

.digital loopback. 

b) When the flag timeout detect elapses, reinitialization becomes 

active, should succeed, and digital loopback from then on circulates 

a token. The station can now test the LNI. 



10 

c) The station enables the LNI modem, cutting in the analog cable. A 

moment later the flag timer will elapse, and the analog loop will be 

initialized with a token. The station can now test the cable, artd 

because a taken is circulating reinitial ization is not inhibited. 

d) Now the station joins the ring, probably destroying the currently 

circulating ·ring token. Ring reinitialization automatically occurs, 

this time in conce·rt with other ring participants. 

If at any stage the stat ion decides to abort the start up sequence, 

disabling the modem will reload the virtual token counter, thereby 

allowing the sequence to be tried again without need to power down. 

6. Whenever ·a broadcast packet of zero length is received, it can be taken 

as a signal that the ring was just reinitialized. Individual stat ions 

may ignore this notice, log it, or investigate the status of their 

current connections, as appropriate. 

7. Following a ring failure all LNI's will be inhibiting reinitialization 

and awaiting further instructions. After the ring is thought to be 

repaired, some LNI should be run through its startup sequence. This 

sequence, if successful, will end with a circulating token, which will 

notify every station that the ring is again operating. If, while the 

ring awaits repair, soine new station attaches itself to the ring, it will 

attempt reinitialization and (presumably) fail. The token at the end of 

the broadcast message it launches may cause some set of stations to 

believe the ring is operating, time out, and reattempt initialization. 

These stations will soon reinhibit reinitialization, so such transients 

are harmless. 



-----

-~ 

11 

8. If joining the ring is accomplished by closing a relay, the jamming time 

T should be set to the larger of the ring transit time and the relay 

bounce time, so as to insure that reinitialization is not attempted until 

there is a chance it will work. 

Plans 

The initial implementation of the version two local network interface 

does not include automatic reinitialization, it uses instead the earlier 

design imrol·.ring software. As an experiment, two wirewrapped control cards 

will be modified to implement automatic reinitialization, and it will be tried 

out by running them in a ring also containing unmodified control cards, with 

initialization software disabled. If successful, this design will be 

incorporated in all later control card assemblies. 

Acknowledgements 

David Clark, David Reed, J. Noel Chiappa, and Kenneth Pogran participated 

in several rounds of intense discussions that laid the groundwork for the 

ideas suggested .here. 

References 

1. Farr, W., "Primenet Node Controller Specification," PE-T-307, August 24, 
1978 (working paper). 

2. Clark, D.D., Pogran, K.T., and Reed, D.P., "An Introduction to Local Area 
Networks," Proc. IEEE..§&_, 11 (November 1978) PP• 1497-1517. 

3. Saltzer, J.H., "Version Two Local Net Interface Design Considerations," 
Massachusetts Institute of Technology Laboratory for Computer Science, 
Network Implementation Note 1e, July 1979, (working paper). 

4. Metcalfe, R.M., and Boggs, D. R., "Ethernet: Distributed Packet Switching 
for Local Computer Networks," Comm. ACM l2_, 7 (July, 1976) pp. 395-404. 

S. The CHAOSNET is currently undocumC'nt<'d. 

- - -----------------------------




