CC=-313
- : June, 1963
COMPUTATION CENTER
fNagsachusetts Ingtitute of Technology
Cambridge 39, Masasachusettis

TO: All Programaers
FROM: . J. Corbatd, J, Saltzer, N, Barta, T. Bastings
SUBJECT: An Abbreviated Description of the MAD Compiler Language

A, Introdt;ction

The MAD compiler was designed and prepared originally for the

IBM 704 computer by B, Arden, B, Galler and R, Graham at the University
of Michigan. The compiler has subsequeatly been converted to the IBM
7080 by the Michigan group and with their cooperation been adapted by

. the MIT Computation Center staff to work within the FERTRAN-PAP Monitor
-Systen used on many 7090 machines. The MAD language bas many of the
features found in FERTRAN II, ALGEL 08, ALGHL 60 and the soom-to-be-~
introduced FORTRAN IV, 8ince MAD has few restrictions and is highly
flexible, it is well-suited as an iaitial computer language, Moreover,
ance & programmer has mastered one language, ganeral exzperisnce has
shown that subsequent langusges are much easier to learn,

Only an essential subset of the FMAD languege is offered here but
this subset is sufficient for complete, corrsct prograss, The full
langusge specification is given in tbhe MAD Refereace Mamual (but with
the final definitiom of the language, of course, implicitly contained
in the MAD compiler program of appraximately 12,000 instructions.)

B. Types of Constants

1. Integer: of magnitude less than 227 and primarily used for
counting and integer arithmetic. Integer comstants
are written ia decimal with an optionsl plus sign
if positive or sp obligatory minus sign if negative
but without & point, Examples: 4, 49, =100

38 ¢ 10%®

2. Floating-point: of magnitude zero or in the approxzimate range 10
These numbers are primarily used in arithmetic
calculations, Floating-point constants say be
uritten with or without exponents, If writtem
without an exponent, the constant comtains from
ane to aeight digits and a decimsl point, which must
bo written, but vhxeh may appear anywbere in the
nusber.

It the number u written with an exponent, it
must contain from ome to eight digits with or without
a2 decimal point, followed by the letter E, followed
by the exponent of the power of 10 that multiplies
the number,

Examples: 3.0, 3, 4.3 -123.45389
3.084+2, 4+97,86E-30, 1008-8, ~,9E3

Page 2

C, Variables Bach variable muy be of cne of the two modes:
integer ox floating~point and only takes on value:
of the corresponding mode., (Strictly speaking thure
sxre $ nodeas in NAD but the remaining throe are
unnecessary liere.) Variable names may comsist of
1 to 6 letters or digits of which the u»ﬂun.»u
alphabetic, A variable is assumed to be of floatimg-~
poim mode unless declared othervise. (Sce section
3¢, below, for mode declaration statements,) Bxamples
of variable numes: ALPHA NAME ANSWER,LASP3

- D, Arxays ArTays are sots of variables in which each varisdle
as an plement of the array is distinguished by
particular integer subecri o ‘The arirdy nase
conventions used are same as for variables,

Fer typcgrapliical reasoas, subscripts are enclosed .
in parsntheses and separated by cosmas, REach arrsy
has 2 fixed but arbitrary number of dimensions,
Subscripts s of the ith dimension are integer mode
expressions ~§ Bxpressions below) which take on
values batween 1 and d, where d_ is the fixed maximum
subscript value to be dsed for tne ith dimension,
Subscript values of xerc (or negative values) sare pot
- allowed here with the exception of arrays of one
subscript (1,¢. vectors) where a subscript value of
zerc is allowed, Exanmples: ALPHA(J),TABLER(ESS,
M-l) , TABLE3(S,7) . . .

E. Bxternal Functions Function names follow the same rules as variable
names but must have a distinguishing terminal "."
added. (In additiom, all varisbles, arrays, and
functions must have unique names.) The value of &
function can be of any mode., Examples:

PRML, PFIRSTF, ABCD,

F. mumudnuubﬁn

Arithmetic expressions may be formed using parentheses and the operations:
Fo=9%o/,-P,; and ABS., for addition, subtraction, sultiplication, division,
exponentation; and absolute value respectively. The allowed integer or
flosting-point constituents of arithmetic expressions are variables, sub-
scripted elements of arrays, constants, and functions. In general, all com-
stituents must be of the same mode but with the exception that if integer
and 21dating-poist modes are mixed, the expression is evaluated im the
integer mode until couversion to thc floating mode Lecomes necessary.

For sxample ((X.P.N)./Y) 4 Q®.,ABS P-5,

represents the expression

.0
WI.. + alpl-s

Paga 3

in the usual slgebreic notation {whsre the vaivg will be of the floating~

‘potnt mode because of the floating-point rive), All operations must be

explicitly atoted, .e.g8. (A+B)C is not correct, but {(A+B)%C is correct.

The ragult of any integer mode calculation is an integer. When two
ioteger 2ods numabers are divided only the integer portion of the result
is kept 2% ths guotient; the fractional portion of the result is discarded
0.8, 7/3 = 2 ' '

Boolean expressions have the values true, or false., They Say be formed
using parenthesos and ths operators .NOT., .#R,, AND,, .THEN., and .BQV,,
for "negation”, "inclusive or”, "and","implication”, and "equivalence”,
respactively. The allowed constitutents of boolean expressions are relations
which have boolean values, Boolean-valuad reiations are > . X,w 4,2, and
vhich for typographical reasons are written as .0,, .GE;, .B., MB., LB,
and L, zespectively; these relations may occur betwesn any two aritimatic
axprossions and mixed wodes are allowed, For examsple

{(A.GE .B) .AND, (c,mun))omox(&s)ocganoooo
represents the boolean expression

({62b) f (edd)) V (e 45)> (8/1000.))

Statenents

A prograi consists of 2 collection of subprograms. Each subprogram
written in the MAD language consists of a sequence of MAD statoments,
These statements, which compile into segments of machine language instruc-
tions, fall into 4 categories:

1, Substitution Statements are of the fora
a=wb

wilere b 1is sn expression and a is a varizble. When executed the
new velue of the variable a (in the appropriate mode) is computed
by evaluating the expression b, Thus it is possible to transform
from fixed to floating vice~versa. Note that if the variable
a appesrs 1ib the expressicn b, the old value ¢f & is used in the

computation, Examples:

Ya ALPBA/ (BEC)~BETAHR . 0¢S8
Js J)

2, Control Statements

' TRAMNSFER 79 5 is a statement which when executed causes the
program to transfer to the statement lzbeled s in its left-margin
(cols, 1-10). Statements are labeled in the same way as variables
and each label must be distinct from all other statement labels,
variebles, arrays, or function names. Example:

TRANSFER 19 ALPHA

Ce

Page 4

WHENEVER b.8 is a simple conditional statement where b
is a boolean expression, and s is any executable statement wcepm
RHD £F PROGRAM, ancther WHENZVER, THRUGH or a function ENTRY. If
the boolean expressicn is trie the statement 8 will be executed.
Otherwise control will pass to the next statement following the
conditional, The comma in this statement zust be writtenm,
Examples:

WHENBVER X.L.100, TRANSFER T% STAP
WHENEVER ¥.G.33..90.8.8,X1, Wav

The sequaence
WHENEVER bﬁ

aono

6R WHENEVER b,
OR WHENEVER b, .
BTHERWISE

-3

END fF CANDITIRNAL

: i a coapound conditional ztatement vhere the .
b; are boolean oxptauims and the dots are any sequence of atalements,
The coapound conditional is a pattern of statements which allows the
conditional execution of just one of the program segments bracketed
by tho indicated statements. The sogment executed is determined

by the first boolean expression by which is trus, Amy or all of the
o WHENEVER statements or the ZTHERWISE stotement may be omitted,
After the conditional execution of one program ssegment, program
control automatically transfers to the statement logicalliy following
the required END #F CINDITISNAL statement, This compound conditicnal

. is distinguished from the simple conditiomal by the absence of &
_cozas following the poolea.n expressious.

Exanples:

Wi

WHENEVER X.LE.O
Y=0,
=,

#iR WHENEVER X.G.10,
Ys10,
Z=200,

OTHERWISE
YaX
Zed0, *X

- END #F CONDITIMNAL ™

WHENEVER W.L.10,
TRANSPER 19 18gP2

R WHENEVER W.L.20,
TRANSFER T8 L6gP3

END gF CHNDITIORAL

Page B

d, THROUGH 2, FOR v = 2., e, & is an iteration statement
which opsrates as follows:

1, The variable v iz set egual to the exprassion 21.
2., The boolean expmsaian b is tested, If b is true,

program control passes o the statemsnt after the
statenent labeled 8.

3. It b is false, the statements up to and including
8 (the scope) are executed.

4. g is incremented by the value of the expression e3;
raturn to step 2,

A THREXIGH statement may appear within the scope of any other
THRAUGH, provided that the scope "of the nested THRSUGH lies
entirely withip the scope of the higher level TERAUGH statement.
Note that the statement labeled 8 may not be a declaration

statement,
Example:s
THROUGH LSEP, FOR Mel,2,M.G.48
40P o o o
’I‘MGB LEgPL, FPAR Mwd K-1, M.G. N1 OR.K.E.O
o

THREUGH 18492, FPOR J=l,),J.G.M
THRAUGH L&6iP2, POR Kwl,l K.G.J

Lefeh®d

a. EXECUTE name, (ar at nst) is a statement which nnevat 3
a caliing sequence to % subprograr ncae. The iisted bo il
say beo expressions, For example EXKCU‘!‘E B BIM, (.5,%Y,2. P 5) creates
a calling sequence to the subprogram HIM, witk the values of the

three sxpressions as aArguments. The numes of subprograrz follow the
same rules as for oxternal functions. Example:

EXECUTE S@RT.(A)

£, CONTINUE 1s a dummy atatement which when exocuted causes no
action, The stetement normally has a label snd iz used to iladicate
& jeining point 1inm a program, to which another stitement may transfer,
it 18 somstinmes used &s the last statesent in the scope of a THROUGH,
tc indicate to the reader that the end of the scope bas bean reached,
Example:

LegP3 CANRTINUE

3, DECIARATION STATEMENTS

These statoments only coavey infeormetion to the MAD compiler and
would not appsar an & flow diagram of a program,

Co

Page 6

The following moaizor sontsol card {(fully defined
later) and statement:

2 MAD

éﬁﬁm PRAGRAM

bracket » “"Main" subprogram; upom subsequent loading of
& program compased of several asubprograms, the progras
is started at the beginnimg of the "Mein” subprogras,

Similarily the monitor cortrol caxd and statements
e MAD '

EXTERNAL FUMCTION (argument 1igt)

ENTRY 19 n.

o ¢ o

FUNCTIEN RETURH v
END #F FUNCTIEN

bracket an sxternal function subprograms which depending on
how it &8 programmed may be used in one of two different ways.
In the first case tke function named p, has a single value,

¥, 2and s used in an expression. An example is the function
8IN. in

Yo¥ 3.5 ®8IN, (x" 05)

in the second cese, the single value v is meaningless (e.g.
in a "function" to sort a table) and is omitted from the
FURCTISX RETURN statement which is still required. Thia type
of externa) function subprogran may only bs used by an EXECUTE
statement. In sither case, the arguments listsd (separated
by commas) in ap EXTERMAL FUHCTI@N statement must all be of
the simple form of variable -ames, unsubacripted array names
or function names (Without arguments). These names as they
occur in the defining function subprogram act as dumszies for
compilation purposes only. In the use of the function, the
arguments used may be expressions of the appropriste mode,

It also should be notad that, depending on the programning
of the function definition, tha argument list may not omly
contaip input values but also msy contain varisble and array
names which will contein output values of the exteramsl function
subprogram after it ig executed., Example:

EXECUTE 508T.{(TABLE3 NK) _
could sort the array nemed TABLE3, which has N elements.

Every array used in a program must have sdequate space reserved
for-it, For example, if the array A(J) may be used with J
betwoen 1 and 30, 50 locations must be set aside for the array
A. For vectors (ons-dimensional arrays) this settiing aside

®ay be done by the statement :
DIMENSISN v(d)

d,

Page 7

where V is the nams of ths vectoer and d is & constant ipteger
sgual o the amoun: of storage needed, Actually, ¢+l locations
will be reserved, to allow use of the subacript zero, Several
disension statements may be combined, as in the example:

DIMENSISN A(50), JARRAY(245), 21(24)

Arrays of 2 or more dimensions require a slightly more com~
plicated specification, including information about the structure
of the array. With every amltidimensional array is associated

8 vector (the "auxiliary vector") containing this information,
This vector’s name appears ia the dimension specification of

the multidimsnsional array. For example, if an array A(J K, L)
may have all three subscripts between 1 and 10, 1000 spacss

ars needed, The dimension statement msy appear as follows:

DIMENSIZN A(1000,AY) ,AV(3)

¥ote thkat the auxiliary vector must bave gpace morv«l for
it, also, thus its name appaars twice in the DIMENSISM stetement.
The numbers stored in the auxiliary vector aust be as follows:

AV(O) = nusber of dimensions in the arcay

AV(l) = location of (1,1,...,1) eiement, usually 1.
AV(2) = uxnun size ot second subscript.

AV(3) = " " third "

AVid) s " " " fourth "

etc,

In the example AV(3) would ba the laat entry, since the srray
bad only 3 dimensions. The maximum size of the first subscript
is not spacified in the auxiliary vector. 7The auxziliary
vector may be filled in by substitution statements at run time,
or preset with a VECTHR VALURS statement at compile time,

{eee balow)

It 15 often desirable to preset an array with constant values
at ths compilation time ©f & progrema, This may be dome by the
statesent:

whers v 18 the array naka and the ¢, are constants, all of the
sanoe lodoo If s is zero, the subseript on v may be oRitted,
Examples: '

VECTOR VALUES FiLE(23) = 15.5, 21,7, 3E2

It ia not necessary to provide a DIMENSISN statement for vectors
preset with a VECTOR VALUES statement, if the element with
the highest possible subscript has been praset,

A multidimensional array is stored in consecutive registers
in memory, Thus it is possible to calculate an equivalent
linear subscript using the following formula:

Pomd 4 ool (((s) 1) dy $08,71)) dy Foo0)- d s 1)

4.

Page 8

where the dy are the ith elsments in the srray’s auxiliary
vector (se«e above) «uil the 3; sre the values of the subscripts.

An example of muitidimensional to limear mapping 1is
tho presetting of entries in the middle of a aultidimensions)
array. The multidimensiocnal array & may be preset starting
with the rth linear element by:
VECTER VALUBS alr) = c'zuszs“”‘n
where r bas been calculated from the 84°s and the auxiliary
vector with the above formula. Example:

array B(J;K), 1lgJ<12, 1sEs6
. to preset B(4,3) = 18.5X10i2

DINENSISN B(72,8V)
VECTOR VALUES BVe 2,1,6
VECIWR VALUES B(21) = 15.5E12

The dimsnsion statesent rosexves 86X12«72 locations for B,
and names the auxiliary vector BV, The first VECTSR VALUES
presets the suxiliary vector for B: 2 dimensions, B(1,1)
is at 1, Max(K}) = 6 :
S8ince all entries of BV are preset, it is not dimensioned.
The second VECTSR VALUES presets B(4,3), The equivalent
linear subscript from the formula is

roedy +{81-1)dgega=1l ® M(4-1)7643-1 = 31

@. All variables are assumed to be of the node
unless explicitly declared otherwise, Mode declarations
hold for the entire subprogram and are made by the statement

INTEGER list

where 1igt consists of one or more variable Or array names,
separated by cosmas. dMNore than one mods declaration statemsnt
of a given type may be used. Example:

INTEGER A,B, IHAT

Input~Output Statements

Although it is possible to specify elaborate formats by which
izformation can be brought in and out of the computer, for simplicity
only three specific formate will be offered here, (The allowed formats
0f the Computation Center version of NAD are the sume as those of
FORTRAN II.) In all these statements, magnetic tape is used for iaput-
output efficiency on the 7090 cosputer; an JIBM 1401} computer is used
to preprocess input tapes from cards and to poat-ptoeen output tapes
to the printed page.

Page 9.

To print out one or mors Lines of cuipat (or read omne or
mor2 input data cards) of integers which are right-justified
in 4 adjacent fields 18 characters wide, one writes eitbher
of the statements:

PRINT PARMAT IRT, list
oy

READ FORMAT INT, list

where consecutive numbers oa the in/out medium correspond to
the varisbles and array elemonts specified in the list. A list

‘any contaln any number of variables, including nome, In addision,

whenever integers are printed or read hy & subprogram there must

- e aomewbere in the subprogram the format description statement:

a0ple:
Exaap VECTER VALUES INT = (4118)
PRINT PSRMAT INT,A,B(J),ARBAY(23),C,D,E
b, Similarly, to print (or read) oie or more lines of real numbers

Co

d,

~which ars right~justified in 4 ad,)accmt fields 18 characters wide,

the statements uged are:;

PRINT FERMAT REAL, 1ist
or
READ PARMAT REAL, 1ist

where list bas the same Reaning as for integers and somewhere in
the subprogrsa there is also the format statement:

VECTOR VALUES REAL = $(4E18.8)$

To print 2 one line message of arbitrary text one sust use the
statoment pair:

PRINT FERMAT £
Vﬁm VALU“ f - s(mxhzhso oohn)$

where n is an integer such that 15n<72 and the successive Hollerith
characters h, coutain the message. (The first character hi sust be
a blank,) ‘Iﬁo foraat vector name, f, may be any unique name such
as HOL1l, MESS), etc. Example:;

PRINT FORMAT END1
VECTER VALURS END1l = $(20H END £F cmm'mnon s

Preparstion of Source Subprograms

The statements of a subprogram are called a "source subprogram”
and are card-punched on ISM cards using the usual Hollerith codes
to reopresent the letterz of the alphabet, digits, and special
characters., Statements are punched anywhere in the field of columns
12-72 (blanks are ignored with the obvious axception of the text
included betwsen $ quote marks in VECTER VALUES statements.) If a
statement will not fit om one card it may be contibued to another

Page 10

card by punching consscutive digits from ! to 9 ia col, 11 of each
continuing card. Statement labels are punched snywhere in the field
of columns 1-10, If the letter "R" appsars in columsn 11, that card
will be ignored by the compiler, although it will be printed onh the
compilation listing (with the "R" deleted). This feature is usod
to make explanatory comments to a psrson reading the prograa, If a
comment iz to be continued "R"” must appear in column 11 of each
succaessive caxrd,

e. Processing of & Program

Compiling and execution of & program prepared for the MIT
Computation Center is usually done under the control of a system
called the FZRTRAN-FAP-MAD Monitor System (FMS), Control of the
mopitor is by means of speclal control cards which have an
asterisk punched in column 1 and key werds in the cols, 7-72 of
the card.

. NAD source subprograms sare compiled by the monitor using the
MAD compiler program. The compiler examines each subprogram for ‘
various syntactical errors and may give ocne or more "error diagnostics.”

When a subprogram does compile (it may still) centain logical
errors, boweverl) it is punched off-line as an "object subprogras”
in the form of relocatable binary cards., Off-line printed output
also is produced giving the machine language instructions of the
compiled subprogram as well as other referonce details useful in
debugging.

To operate & prograa in the most elemaentary sannex, the following
procedure is used. A run deck is prepared with the following
sectiong in sequence., (See attached example)

1. ldentification Card (ID) in a format given by the Center,

2, An FiMS control card ¢ XEQ indicating that, if all seurce
programs corractly translate, the program is to be
executed.

3. The FN3 control card ® NAD indicating that the following
program is to be coapiled by the MAD translator,

4. "Main" subprogram and all other subprograms (inm sither
source or object form) which are explicitly required by
BXECUTE statements in these subprograms and which are
not on the library tape.

{The FMS system automatically supplies all needed Library
subprograns including those implicitly required by input~
output statements such as PRINT, etc., and by external
functions such as SQRT, EXP., etc.)

8, The FiS control card 2 DATA

6. Data cards (if any) to be read from the input tape by the
progranm,

Page 11

This run deck is writter =2 the off-~iine imput tape (probably
along with severas)l other runs) and ths FHS system iz started, The
monitor works on one run at o time, first compiling all the subprograms
which are in source langusgs. If there are no compiling diagnoetics,
the monitor brings in the "BSS loader” which then proceeds to read in
esch object subprogram, storing them in sequence starting from a
lower address of core memory. During loading the loader maintains a
storage map giving the locatiocn and symbolic aame of each subprogram,
When the FMS control card "®DATA" is encountered, a second phase of
loader processing begine, The loader cxanines sach subprogram te
determine what other subprograms are needed by it (listed syabolically
in a "transfer vector" at the beginning of each subprogram), If
necessary, missing subprograms are cbtained from the library tape.
Using the completad storage map, the loader comverts each symbolic
nama in & transfer vactor to a corresponding transfer instruction to
the memory location of the specified subprogram, Thus, the satry
links between subprogrsms are established, and the program i3 started
at the entry point of the "main subprogram,

The MIT version of MAD automatically inserts at an END #F PROGRAM
statement the mecessary imstruction to return to the Monitor system,
¥hen the prugram reaches this point, control returns to the monitor,
and it then procesds to the next job,

LEVEL OF PRECEDENCE OF OPERATORS IN MAD

ABS, , + (unary)
Opﬂ
- (unary) USED IN

o,/ - ARITHMETIC

EXPRESS 1083
+ P

OEO , omo , ooo) ocgo) OLO 50“0 nsxn l’

EXPRESS IONS
oNOT,

-AND,
-OR,

- THEN,
-BQY,

Page 12

¥M2802=9000s FMSsDEBUGs 1915050 JOHN DOE, 18 JUNE,; 1963

*
*

SCAN

LIST

PLIST

XEQ

MAD

R JOHN DOE

R INTERCHANGE SORT

VECTOR VALUES INT = 3(4118)%
DIMENSION KVL (100)9KVA{100)

R READ IN INPUT

READ FORMAT INTsNsKVL(1)eceKVLIN)»
1 : KVALL) oo eKVALIN)
R SORT ON KvL

THROUGH LISTs FOR I=ly151.GeN
KMIN = KVL (1)
THROUGH SCANs FOR Jm]lslsJeGaeN
WHENEVER KVL{J)eLE«KMIN

KMIN = KVL(J)

IMIN = J
END OF CONDITIONAL
CONTINUE

TEMP = KVL(IMIN)

KVLIIMINY = KvL(I]}

KvL(I) = TEMP

TEMP = KVA(IMIN}

KVAUIMIN) = KVAL(I)

KVA(TIY = TEMP
R PRINT RESULTS

PRINT FORMAT MESS1.

VECTOR VALUES MESS1 = ${7H SORTED)S
THROUGH PLISTsy FOR K=131sKeGaN
PRINT FORMAT INTs KVL(K)sKVA(K)
END OF PROGRAM

DATA

