
1. Abstract

PROJECT ATHENA TECHNICAL PLAN

Section E.1

Service Management System
Peter Levine

Michael R. Gretzinger
Jean Marie Diaz
Bill Sommerfeld

Ken Raeburn

The problem of maintaining, managing, and supporting an increasing number of
distributed network services with multiple server instances requires development and
integration of centralized data management and automated information distribution. This
paper presents the Athena Service Management System, focusing on the system
components and interface design. The system provides centralized data administration, a
protocol for interface to the database, tools for accessing and modifying the database and an
automated mechanism of data distribution.

2. Purpose

The primary purpose of SMS is to provide a single point of contact for administrative
changes that affect more than one Athena service. The secondary purpose is to provide a
single point of contact for authoritative information about Athena administration.

3. Introduction

Currently, many update tasks and routine service issues are managed manually. As the
number of users and machines grows, managing the Athena system becomes significantly
more difficult and more economically unfeasible. The Athena Service Management System
is being developed in direct response to the problem of supporting the management of an
increasing number . of independent workstations. A network based, centralized data
administrator, SMS provides update and maintenance of system servers.

The development of SMS addresses centralized administration, distributed data services,
and routine system updates:

• Conceptually, SMS provides mechanisms for managing Athena servers and
services. This aspect comprises the fundamental design of SMS.

• Economically, SMS provides a replacement for the labor-intensive, hand
management now associated with maintaining services.

Service Management System Draft--6 August 1987
Copyright@ 1987 by the Massachusetts Institute of Technology

Page 2, Section E.1 Athena Technical Plan

• Technically, SMS consists of a database, an SMS server and protocol interface, a
data distribution manager, and tools for accessing and changing SMS data.

SMS provides a single coherent point of contact for the access and update of data. The
access of data is performed by means of a standard application interface. Programs
designed to update network servers, edit mailing lists, and manage group members all talk
to the application interface. The programs which update servers are commonly driven by
crontab and act as a server stuffing mechanism. Applications which are used as
administrative tools are invoked by users.

Two examples of SMS use:
• The simplest example is to run a database administration program on the host

running SMS. The program will use the SMS application library as its interface
to the database. At a later time, a different application is executed to retrieve the
SMS information and distribute it to the specific servers.

• Another example is to run an application (i.e., a mailing list administration
program) on a workstation.. In this case, the program transmit requests to the
SMS application library using the SMS network protocol. A server running on
the SMS host interprets the application's request. The database is queried or
updated (depending on the client's request), and database information is sent
back to the application.

This technical plan discusses SMS from a functional standpoint. Its intention is to
establish a relationship between the design of SMS and the clients which use SMS.

4. Requirements

The design criteria and requirements are influenced by the following:
• Simplicity and clarity of the design are more important than complexity or speed.

A clear, simple design will guarantee that SMS will be a well structured product
capable of being integrated with other system resources. Other systems, such as
Hesiod, will provide a speedy interface to the data kept by SMS; the purpose of
SMS is to be the authoritative keeper of the database, updating slave systems
such as Hesiod as needed.

• A simple interface based on existing, tested products. Wherever possible, SMS
uses existing products.

• SMS must be independent of individual services. Each server rece1vmg
information from SMS requires information with particular data format and
structure. However, the SMS database stores data in one coherent format.
Through its own knowledge of each server's needs, a data control manager will
access SMS data and convert it to server-appropriate structure.

• Clients must not touch the database directly; that is, they should not see the
database system actually used by SMS. An application must talk to an
application library. This library is a collection of functions allowing access to the
database. The application library communicates with the SMS server via a
network protocol.

• Maximize local processing in applications. SMS is a centralized information

Service Management System Draft---6 August 1987

Athena Technical Plan Section E.1, page 3

manager. It is not a computing service for local processors. For efficiency, the
SMS protocol supports simple methods of requesting information; it is not
responsible for processing complex requests. Applications can select pieces of the
supplied information, or produce simple requests for change.

• Ability for expansion and routine upgrades. SMS is explicitly responsible for
supporting new information requirements; as new services are added, the
mechanism which supports those services must be easily added.

• The system must provide no direct services, i.e. none at user level, so that an
environment can exist with or without SMS. (Without it, however, the economic
consequence of managing system services by hand must be recognized.) SMS
should be reasonably easy to install at other sites.

• SMS must be tamper-proof. It should be safe from denial-of-service attacks and
malicious network attacks (such as replay of transactions, or arbitrary
"deathgrams").

• SMS must be secure. Authentication will be done using Athena's Kerberos [2]
private-key authentication system. Once the identity of the user is verified, their
right to view or modify data is determined according to the contents of access
control lists (acl's) which reside with the data.

• Fail gracefully.

• SMS does not have to be 100% available. SMS provides timely information to
other services which are 100% available (Hesiod, Zephyr, NFS). Once agafu, the
purpose is to provide a centralized source of authoritative information.

5. System Model

The model is derived from requirements listed in the previous section. As previously
mentioned, SMS is composed of six components.

• The database.

• The SMS server.

• The application library.

• The SMS protocol.

• The Data Control Manager, DCM.

• The server-specific files.

Because SMS has a variety of interfaces, a distinction must be maintained between
applications which directly read and write to SMS (i.e., administrative programs) and
services which use information distributed from SMS (i.e. name server). In both cases the
interface to SMS database is through the SMS server, using the SMS protocol. The
significant difference is that server update is handled automatically through a data control
manager; administrative programs are executed by users.

Service Management System Draft-6 August 1987

------------ ---- ---------------------- - -----

Page 4, Section E. 1 Athena Technical Plan

0
0

\]

\:}

THE SMS SYSTEM STRUCTURE

In all cases, a client of SMS uses the application library. The library communicates with
the SMS server via a network protocol. The server will process database specific requests
to retrieve or update information.

5.1. System Assumptions

The support and function of sms is derived exclusively in response to the environment
which it supports. This section presents factors of the design dealing with considerations
such as scalability, size, deployment, and support.

A. The . system is designed optimally for 10,000 active users. The database has
been designed to delineate between active and non-active status. Active refers to
those individuals who have permission to use the system.

B. SMS supports a number of system services. To date there are six system
services which are supported. They are:

• Hesiod
•RVD
•NFS
• Mail Service
• MDQS - not fully supported

Service Management System Draft~ August 1987

Athena Technical Plan Section E.1, page 5

• Zephyr- to date, not supported
These services are, however, each supported by a collection of server-specific data
flies. To date, there are over 20 separate flies used to support the above services.

C. Each service is supported by a collection of database fields. Over 100 query
handles provide efficient, database independent methods of accessing data. All
applications use this method.

D. The system is designed to allow futher expansion of the current database, with
the ultimate capability of sms supporting multiple databases through the same
query mechanism. Provision for many more services is recognized through this
design.

E. The distribution of server-specific flies can occur every 15 minutes, with an
optimal time interval being greater than 6 hours. The data control manager is
designed to only generate and propagate new files if the database has changed

. ~ ~t _wi~~the previous time interval.

~ "'.,..,, ----F. The
4
system supports three hesiod servers, 10 library servers running RVD, 20

. ~;J...ut: locker servers running NFS, five class libraries nmning NFS, one /usr/lib/aliases
!\J 1\ v / propagation. A hesiod server requires 9 separate files; Each hesiod server will

receive the same 9 files. Each RVD server requires one file, each file being
different. Each NFS server requires two files, one identical file to all NFS
servers, one different file to each filesystem on each server. Usr/lib/aliases is one
file.

G .
. -·

.~.

/
File Organization

Prop~ Interval "· I

(
Service File Size N

Hesiod cluster.db 22300 1 3 6hours

service.db 10100 1 3 6hours

printers.db 3833 1 3 6hours

lpr.db 3250 1 3 6hours

printcap.db 9800 1 3 6hours

pobox. db 325000 1 3 6hours

sloe. db 300 1 3 6hours

filesys.db 36000 1 3 6hours

passwd.db 880000 1 3 6hours

RVD /site/rvddb 2000(90%)- 10 10 15 minutes
20000 {'. ·k'-"

/site/rvdlacl/OP .acl small 10 10 15miD1 ' :,._, , I

/site/rvdlacl/AD.acl small 10 10 15min v>-o
/site/rvdlacl/SH.acl small 10 10 15min

/site/rvdlacl/file.acl small 10 10 15min

NFS /site/nfsid 880000 1 25 6hours

/mit/quota 35000 25 25 6 hours

Service Management System Dratt-6 August 1987

,

Page 6, Section E.1 Athena Technical Plan

Mail /usr/lib/aliases 445000 1 1 24hours

86 110 TOTAL

H. NOTE: The above files will only be generated and propagated if the
data has changed during the time interval. For example,
although the RVD interval is 15 minutes, there is no effect on
system resources unless the information relevant to RVD's
changed during the previous 15 minute interval.

I. Application interfaces provide all the mechanisms to change database fields.
There will be no need for any sms updating to be done by directly manipulating
the database. For each service, there is at least one application interface.
Currently there are twelve interface programs.

5.2. The Database

The database is the core of SMS. It provides the storage mechanism for the complete
system.

The database is written using RTI INGRES, a commercially available database toolkit.
Its advantage is that it is available and it works. INGRES provides the Athena plant with
a complete query system, a C library of routines, and a command interface language. SMS
does not depend on any special feature of INGRES. In fact, SMS can easily utilize other
relational databases.

A complete description of the INGRES design can be found in RTI's INGRES users'
manuals; this paper does not discuss the structure of INGRES. This documentation does,
however, describe, in detail the structure of the SMS database.

The database contains the following:

• User information

• Machine information

• General service information (service location, /etc/services)

• File system information (RVD, NFS)

• Printer information (Berkeley, MDQS)

• Post office information

• Lists (mail, acl, groups)

• Aliases

The database field are described in the section Database Fields, described later in this
document.

The database is a completely independent entity from the sms system. The Ingres query ~,

Service Management System Draft--6 August 1987

(}
I

Athena Technical Plan section E.1, page 7

bindings and database specific routines are layered at. the low_er levels _of _the sms serve~.
All cgJPlications are independent of the database spec~fic routmes. This mdependence 1s
ac~ through the use of query handles, sms specifice functions provi~ data access
and updating. An application passes query handles~ the sms server w~ch then resol~es
the request. This request is passed to the database Vla a database spec1fic c~. Allo~g
for additional data and future expansions, sms can use other databases for information.
This mechanism, although not functional at this time, is achieved by having a set of query
handles for each accessable database. Then, the application merely passes a query handle
to a function, which then resolves the database and query.

The current database supports all activities inherent to operation and data requirements
of the previously listed ems-supported services. No attempt is made to circumvent sms as
the central point of contact. When needed and where applicable, as more services are
required, new fields and query handles will be provided for support.

_,J
!\ ~ ,~~-. ~ ,,

r,yl-
5.2.1. Input Data Checklng 1/

Without proper checks on input values, a user could easily enter data of the wrong jype or
of a nonsensical value for that type into SMS. For example, consider the case of up4a~ a
user's mail address. If, instead of typing e40-po (a valid post office server), ~typed
in e40-p0 (a nonexistant machine), all the user's mail would be "returned to sender" as

')~ undeliv~ble.

---- ----lnJfUt checking is done by both the SMS server and by applications using SMS. Each
query supported by the server may have a validation routine supplied which checks that
the arguments to the query are legitimate. Queries which do not A8:"1& siQ.Q e~ete 011 the
database do not need a validation routine. .:...\,1:..--y---

Some checks are better done in applications programs; for example, the SMS server is not
in a good position to tell if a user's new choice for a login shell exists. However, other
checks, such as verifying that a user's home directory is a valid :filesystem name, are
conducted by the server. An error condition will be returned if the value specified is
incorrect. The list of predefined queries (Section 9) defines those fields which require .I.AJ.>t

explicit data checking. ------------ --~··~.,.o-~
5.2_·~-_Bsclcu~ ~ ~ ~~;---
-iit is not absolutely. critical that the SMS database be .8.ilable 24 h. ours a day; what · t"'\' '" ../', _;
important is that the database remain internally consi , and that the bulk of the data (w) i ,.

not be lost. With that in mind, the database backups stem for SMS has been set up to " '
maximize recoverability in the event of damage to the database. '-"'---

'l'wo programs (smsbackup and smsrestore) are generated automatically (using an awk
script) from the database description file sms/db/dbbuild1. smsbackup copies each
relation of the current SMS database into an ASCII file. Each row of the database is
converted into a single line of text; each line consists of several colon separated fields
followed by a newline character (ASCII code 10 decimal). Colons and backslashes inside
fields are repla~ by \: and \\, respectively. Non-printing characters are replaced by
\nnn, where nnn 1s the octal value of the ASCII code for the non-printing character. The
full database dump takes roughly 12 minutes with the current (albeit partially-populated)

1All pathnames are relative to the root of the SMS source tree

Service Management System Draft-6 August 1987

· 't_

Athena Technical Plan

:k~~ ~ b . ~ •1 I .J V1 ~.,. ~~ <~~ "'-· "Li...·--:·,.,'
~~ ~ .;-.-.. ~ ' iv'-. . ''('~

Page 8, Section E.1

take up a out 3.2 MB of space. It is intended that smsbackup oe .
invoked by a shel cript run peri dically by the cron daemon; this shell script (currently c"---'

2 ::::::/ called nightly. sh) maintains last three backups on line . It is intended that these f'J~
backup!f~lie p~-pn a separate__ s~~al disk drive from the drive containing the actual 'l.....i ~
databas~ey shoul6e-dumped~ tape using tar, or copied to another machine, on ~ ·-~
a regular basis. Whether ~e dumped to TK50 or reel-to-reel tape is open to i..- -~
discussion at this point. '7(.

smsrestore does the inverse of smsbackup. It requires the e:xist_:-,;ce of .f_~mpty .:_'),_... ,_ , !.......
database named "smstemp"a, created as follows: C::/" e ~ i (,,.;...-

'-·, . -1
v~" # createdb smstemp ,.........,..-)

quel smstemp '"·I -r f"·(
* \i /ul/sms/db/dbbuild
* \g
* \q
smsrestore

load DB definition
execute DB definition
quit

Do you *REALLY* want to wipe the SMS database? (yes or no) : yes
Have you initialized an empty database named smstemp? (yes or no) : yes
Opening database ... done . · · ·
Prefix of backup to restore: /site/sms/backup_l/
Are you sure? (yes or no) : yes
Working on /site/sms/backup_l/users

This system by itself provides recovery with the loss of no . more than roughly a day's
transactions. To improve this, the log file kept by the SMS server daemon contains a
listing of all transactions with the server4•

RTI lngres provides some checkpointing and journalling facilities. However, past
experience with them has shown that they are not particularly reliable. Also, a common
failure mode, at least with version 3 of RTI ingres, has been corruption in the binary
structure of the database. Since the checkpointing mechanism used is simply a tar format
copy of the database directory, restoring from the checkpoint will probably not cure the
corruption, particularly since~ may go for days without being noticed. The only known
cure is to dump the entire database to text files, and recreate it from scratch from the text
files. Because of this dubious history, it was decided that the RTI checkpoint and
journa11ing mechanism was not sufficiently reliable for use with SMS.

5.3. The SMS Protocol

The SMS protocol is a remote procedure call protocol layered on top ofTCPIIP. Clients of
SMS ~e a connection to a well known port (T.B.S.), send requests over that stream, and
recei~eplies. Note: the precise byte-level encoding of the protocol is not yet specified

2nris is not running automatically yet

Slrhe eventual production version will work on a database named "sms"; however, for test use,
"smstemp" is used instead

4A small change to the server would cause only transactions which side-effected the database to be
logged in a separate journal, in a format readable by a recovery program; this would reduce the
number lost transactions to virtually none in the event of a disk head crash

il
I ~

~~,
.t-' .

·~

Service Management System Draft--6 August 1987

Athena Technical Plan •·f + . c...---) Section E.1, page 9
; l,~· ,~ ·
l ' . ' ~

~----- -- - - ·-

Each request consists of a major -request number, and several counted strings of bytes.
Each reply consists of a single number (an error code) followed by zero or more "tuples" (the
result of a query) each of which consists of several counted strings of bytes. Requests and
replies also contain a version number, to allow clean handling of version skew.

The following major requests are defined for SMS. It should be noted that each "handle"
(named database action) defines its own signature of arguments and results. Also, the
server may refuse to perform any of these actions based on the authenticated identity of the
user making the request.

Noop Do nothing. This is useful for testing and profiling of the RPC layer and
the server in general.

Authenticate There is one argument, a Kerberos [2] authenticator. All requests
received after this request should be performed on behalf of the
principal identified by the authenticator.

Query There are a variable number of arguments. The first is the name of a
pre-defined query (a "query handle"), and the rest are arguments to that
query. If the query is allowed, any retrieved data are passed back as
several return values, each with an error code of SMS_MORE_DATA
indicating that there are more tuples coming.

Access There are a variable number of arguments. The first is the name of a .
pre-defined query useable for the "query" request, and the rest are query
arguments. The server returns a reply with a zero error code if the
query would have been allowed, or a reply with a non-zero error code
explaining the reason why the query was rejected.

Shut down server Requests that the server cleanly shut down. This gets one argument, a
string, which is entered into the server log before the server shuts down
as an explanation for the shutdown.

5.4. The SMS Server

All remote5 communication with the SMS database is done through the SMS server, using
a remote procedure call protocol built on top of GDB [1]. The. SMS server runs as a single
UNIX processes on the SMS database machine. It listens for TCPIIP connections on a well
known service port (T.B.D.), and processes remote procedure call requests on each
connection it accepts.

One of the major concerns for efficiency in SMS is the time it takes to start up an
application's connection to the server. One of the limiting factors for Athenareg, SMS's
predecessor, is the time it takes to start up the lngres back end subprocess which it uses to
access the database. This was done for every client connection to the database. As starting
up a backend process is a rather heavyweight operation, the SMS server will do this only
once, at the start up time of the daemon.

&rhe DCM and the SMS backup programs, which run on the host where the SMS database is
located, do go through the server, both for performance reasons and to avoid clogging the server

Service Management System Draft--6 August 1987

--- ----------- ------ - ----------- ---

Page 1 0, Section E.1 Athena Technical Plan

GDB, through the use of BSD UNIX non-blocking I/0, allows the programmer to set up a
single process server which handles multiple simultaneous TCP connections. The SMS
server will be able to make progress reading new RPC requests and sending old replies
simultaneously, which is important if a reasonably large amount of data is to be sent back.

SUN RPC was also considered for use in the RPC layer, but was rejected because it
cannot handle large return values, such as might be returned by a complex query._~_·_ · ·- .·,

!

5.5. Access control ~-~"::~ ' ~
The ~erver pe~o~s access control on ~ queries whic? might s~e-e#Jct the database. Aa ~ ./' .

most information m the database will be loaded mto the ~erver, and/or othe~ ' /
configuration rlles, lacing access control on read-only queries is unnecessa~ ~If'

- -~
Because one of the requests that the server supports is a request to check access to a

particular query, it is expected that many access checks will have to be performed twice:
once to allow the client to find out that it should prompt the user for information, and again
when the query is actually executed. It is expected that some form of access caching will
eventually be worked into the server for performance reasons.

5.6. The Application Library >. b '
The SMS application library provides access to SMS through a simpl~ef remote

procedure calls to the SMS server. The library is layered on top of Noah Men , on's GDB
library, and also uses Ken Raeburn's com_err library to provide a coheran y to return
error status codes to applications.

For use by the DCM and other utilities, there exists a version of the library which does
direct calls to Ingres, rather than going through the server. Use of this library should
result in significantly higher throughput, and will also reduce the load on the server itself.
The direct "glue" library provides the exact same interface as the RPC library, except that
it does not use Kerberos authentication.

5.6. 1. Error Handling

Because of all the possible failure points in a networked application, we decided to use
Ken Raeburn's libcom err library. Com_err allows several different sets of error codes to
be used in a program simultaneously- every error code is an integer, and each error table
reserves a subrange of the integers (based on a hash function of the table name). UNIX
system call error codes are included in this system. By convention, zero indicates success,
or no error. The following routines may be useful to applications programmers who wish to
display the reasons for failure of a routine.

char *error_u.aaaqe(code)
:i.nt code;

Returns the error message string associated with code.

voi.d. ccm err (whoami., code, meaaaqe)
chu *whoami.; I* what routi.ne encountered. the error *I
:i.nt coda;/* An error code */
char *meaaaqe; /* pr:i.nted. after the error meaaage */
i.nt code;

Service Management System Draft-6 August 1987

Athena Technical Plan

By default, prints a message of the form

whoami: error _message(code) message newline

If code is zero, nothing is printed for the error message.

void set cam err hook(hook)
void (*hook) 0; I* Function

Section E.1 , page 11

* to ca~~ instead o£ printing to stderr *I

If this routine is called with a non-NULL argument, it will cause future calls to com err
to be directed into the hook function instead. This can be used to, for example, route error
messages to s y s 1 og or to display them using a dialogue box in a window-system
environment.

5.6.2. SMS application library calls

The SMS library contains the following routines:

int sms_connect();

Connects to the SMS server. This returns an error code, or zero on success. This does not
attempt to authenticate the user, since for simple read-only queries which may not need
authentication, the overhead of authentication can be comparable to that of the query. This
can retum a number of operational error conditions, such as ECONNREFUSED
(Connection refused), ETIMEDOUT (Connection timed out), or
SMS_ALREADY_ CONNECTED if a connection already exists.

int sms_auth ();

Attempts to authenticate the user to the system. It can retum Kerberos failures, either
local or remote (for example, "can't find ticket" or "ticket expired"),
SMS_NOT_CONNECTED if sms_connect was not called or was not successful, or
SMS_ABORTED if the attempt to send or recieve data failed (and the connection is now
closed).

int sms_diaconnect();

This drops the connection to SMS. The only error code it currently can retum is
SMS_NOT_CONNECTED, if no connection was there in the first place.

int sms_noop 0 ;

This attempts to do a handshake with SMS (for testing and performance measurement).
It can retum SMS_NOT_CONNECTED or SMS_ABORTED if not successful.

int sms_access(name,
c::ha.r *name;
int argc;
char *argv [] ;

argc, argv)
I* Name o£ query *I

I* Number o£ arguments provided *I
I* Argument vector *I

This routine checks the user's access to an SMS query named name, with arguments
argv [0 J ••• argv [argc-1] . It does not actually process the query. This is included to give
applications a "hint" as to whether or not the particular query will succeed, so that they
won't bother to prompt the user for a large number of arguments if the query is doomed to
failure.

Service Management System Draft-6 August 1987

Page 12, Section E.1 Athena Technical Plan

i.nt sms_query(nama, argc, arqv, ca~~proc, ca~~arq)

char *name; I* Name of query *I
i.nt argc; I* Number of argumenta provi.ded *I
char *argv[]; I* Arqument vector *I
i.nt (*ca~~proc)(); Routi.ne to ca~~ on each rep~y *I
caddr _ t ca~~arq; I* Addi. ti.ona~ arqument

* to c~Lback routi.ne *I

This runs an SMS query named name with arguments argv [0] ... argv [argc-1]. For
each returned tuple of data, callproc is called with three arguments: the number of
elements in the tuple, a pointer to an array of characters (the data), and callarg.

Comment[$Source: /u2/sms/doc/RCS/dcm.mss,v $$Author: pjlevine $$Header: dcm.mss,v
1.14 87/08/05 18:02:04 pjlevine Locked$

$Log: dcm.mss,v $Revision 1.14 87/08/05 18:02:04 pjlevine changed dcm definition.

Revision 1.13 87/08/05 17:19:52 pjlevine ***empty log message*** ------ -------

Revision 1.12 87/06/19 16:20:55 spook Removed update stuff (moving to update.mss).

Revision 1.1187/06/19 11:27:34 pjlevine pjlevine adds words ofwisdom

Revision 1.10 87/06/02 15:42:45 ambar spelling fixes.

Revision 1.9 87/06/0116:27:39 ambar consistency checks.

Revision 1.8 87/06/0110:51:22 spook Merged update.mss into dcm.mss where it belongs.

Revision 1. 7 87/05/29 18:26:53 am.bar fixed scribe error.

Revision 1.6 87/05/29 17:57:42 ambar added to the section on security ofdatagrams.

Revision 1.5 87/05/2917:47:48 am.bar replaced "dcm" with "DCM" for consistency.

Revision 1.4 87/05/29 14:29:29 am.bar more changes from Peter.

Revision 1.3 87/05/29 03:27:37 ambar fixed scribe error

Revision 1.2 87/05/29 03:14:20 am.bar Added in Peter's changes.

Revision 1.1 87/05/20 14:42:38 wesommer Initial revision

5. 7. The Data Control Manager

The data control manager, or DCM, is a program responsible for distributing information
to servers. Basically, the DCM is invoked by cron at times which are relevant to the data
update needs of each server. The update frequency is stored in the SMS database. A
server/host relationship is unique to each update time. Through the SMS query
mechanism, the DCM extracts SMS data and converts it to server dependent form. The
conversion of database specific information to site specific information is done through a
server description file, a SMS-unique language which is used to describe the personality of
a target service.

Service Management System Draft~ August 1987

'::) tft\ S€'
Elt~ott

(tvl1r
'~'"'"'cl

/1'1 '-..---'
rexr]

Athena Technical Plan Section E.1, page 13

When invoked the DCM will perform some preliminary operations to establish the
relationship between the SMS data and each server. The very first time the DCM is called,
a table is constructed (as a disk file) describing the relationship between servers and
update frequency. The table will be the primary mechanism used by the DCM for
recognizing the servers which need updating at given times. AB a note here, crontab will
invoke the DCM at a pre-established time interval, say every 15 minutes. Obviously, the
maximum update time will be limited to the time interval the DCM is being invoked at.
Every interval, the DCM will search the constructed table and determine whether or not a
server's update time is within the current time range. The table has the following
components:

Last time I Success I Time I Server I Hostname I Target I Override 1 J:nab1e 1
tried I I interva11 I Pathname I I I
update I I I I I I I

A description of each field follows:
• Last Time of Update - This field holds the time when a last successful update

occurred. This time will be used against the current time to determine if the
interval criteria has been met.

• Success - Flag for indicating whether or not the last time tried was successful.
0-fail, 1-success

• Time interval - Derived from the SMS database. Gives the interval update time
for each server's information needs.

• Server - This is the server name. Derived from SMS database.
• Hostname - This is the host name where the server resides. Derived from the SMS

database.
• Target Pathname - Gives the location of the file which needs to be updated on the

target or server end. Derived from the SMS database.
• Override - Provides an automatic facility for the authorized user to invoke a used

once mechanism for overriding the established time interval. The facility will be
very useful when a server has received bogus data and needs updating
immediately. After the DCM uses this value, the field is reset to -1. Value: -1-
Use established time interval. 0 and greater - New once-used interval.

• Enable • This switch allows the authorized user to turn the update facility on or
off. Value: 0- Off, Non-zero- On.

Each time the DCM is invoked, a search through this table will indicate which servers
need updating. Once located, the DCM will use the server/hostname combination to
identify the server description files to process. Of course, if the enable switch is off, the
update will not occur.

5. 7.1. DCM Operation

The data control manager acts as an interpreter on the SDF's, or as an initiator of
executable programs. The basic mechanism is for the DCM to read the above entry table,
determine which servers need updating and then locate the appropriate SDF for
interpretation. The breakdown of the SDF is a procedure based primarily on the associated
query handle and it's associated input and output structure. The output of the DCM is a
file stored on the SMS host which is exactly the same format of the server-based file. The
update mechanism takes this localized data and ships it over the net.

The DCM is capable of accepting either SDF or executable format. Currently all

Service Management System Draft--6 August 1987

Page 14, Section E.1 Athena Technical Plan

programs the DCM calls are written in C.

The DCM, therefore, is an application program designed to orchestrate the distribution
and generation of server-specific files.

5. 7.2. Server Description Flies

The server description files, or SDF, are flles which contains a unique description of each
server SMS updates. The SDF description has been developed to make support of SMS and
the addition of new services a reasonably easy process. The demand of SMS support is
clearly rising. Without an easy method of adding new servers, SMS is circumvented in
search for easier methods of service support. To date, there are over 15 different files which
need generation and propagation. With the support of zephyr this number will likely
double (propagation of at least 20 more different acls).

Hand created, these flles hold information, in English-like syntax, which the DCM uses
for manipulating generic data into server specific form. Accommodating additional servers
of primary server type requires, simply, adding a new SDF to the system. The purpose of
the server description files is to provide a parseable, readable text files for determining the
structure and personality of a given server. The three reasons for SDF:

• To provide a local, uniform and expandable method of providing server
information to the Data Control Manager.

• To maintain simplicity and readability.
• To present a regular way of describing many models of servers.

Each SDF will be accessed by a hostname/server combination. This combination will, in
fact, be the search path on the source machine. When the DCM needs a SDF to process, it
will find a unique server description file in the directory: /hostname/server

Part of the DCM is an interpreter which will parse the SDF and run a generalized syntax
and logic check. Assuming the file is syntactically correct, the DCM will use the format of
the SDF to generate a server specific file.

The SDF is comprised of a generalized syntax which allows the user to create the
information needs of any system server. The limitations are that the data must be in
character format.

The Server Description Language consistS of key words and commands which the DCM
interprets. The format of the files is line oriented and parseable. An example of an SDF is:

#one sharp sign is :for thi.s :fi1e on1y
##two sharp signs puts data in the target :fi1e too

#variab1es to be used

var name, attribute

begin header

<"thi.s is verbatim in:foJ:m&tion">
<"thi.s is the header">

end header
##query 1, a11 print c1usters
begin query

Service Management System Draft~ August 1987

Athena Technical Plan Section E.1, page 15

#get all pr~nt clusters

handle = 1 #th~s ~s the assoc~ated query handle
~nput : NULL

#no ~nput
output : name

#name ~s a declared var~&ble hav~ng the
#structure of the query's assoc~ated
#output structure.

<"cluster= ", name.prcluster>
#verbatim ~nfo w~th passed ~n
#output var~able

end query
#the above query will cont~nue to query unt~l
#all f~elds are found.

##query 2, printers by cluster
beg~n query #another query

handle = 1 #get all print clusters
~nput : NULL
output : name
beg~n query

handle = 2 #get pr~nters by cluster
~nput : prcluster = name.prcluster
#~nput the output of the prev~ous query
output : attr~bute

<"pr~nt cluster= ", name.prcluster
"pr~nter name= ", attr~ute.pr~nter
"pr~nter type = " , attr~ute. type>

end query
end query

The target file would look like the following:

#two sharp s~gns puts data ~n the target ~~le too
#query 1, all pr~nt clusters
cluster = e40
cluster = sloan
cluster = admin

#query 2, pr~nters by cluater
pr~nt cluster = e40
pr~nter name = ln03-bldge40-3
pr~nter type = laser
pr~nter name = ln03-bldge40-2
pr~nter type = laser
pr~nter name = ln03-bldge40-4
pr~nter type = laser
pr~nt cluster • sloan
pr~nter name = ln03-sloan-1
printer type = laser
pr~nt cluster admin
pr~nter name = juk~-admin-1
printer type = daisy

From a generic database the DCM will take the information, process it into localized form,

Service Management System Draft-6 August 1987

Page 16, Section E.1 Athena Technical Plan

and cache it locally. From here, the server update mechanism grabs the file and serves it
over the net.

5.8. Server Arrangement

Currently, sms acts to update a variety of servers. Although the data control manager
performs this update task, each server requires a different set of update parameters. To
date, the DCM uses c programs, not SDFs, to implement the construction of the server
specific files. Each c program is checked in via the dcm_maint program. The DCM then
calls the appropriate module when thy_ update interval is reached.

For each server file propagated, t:.~;~;s at least one application interface which provides
the capability to manipulate the s~tabase. Since the sms database acts as a single
point of contact, the changes made to the database are reflected in the contents of recipient
servers.

The following diagram:

1 - - - - ,
' \

' M'f'£1t JlttiDN
SM.c; \ , .. Ill·

• .. - 1)1\TJ\~~ ' ,

' \ '

' Set.VER \
;:> ' '

This section focusses on the above component contained within the dotted-lined box. This
section of the system is the server side, receiving propagated data. Reference, however, is
made to each application interface which ultimately effects the server contents.

The services which sms now supports are:

• Hesiod - The(~yhena nameserver.

• RVD - Remote virtual disk.

• NFS -Network file system.

• /usrllib/aliases- Mail Service.
. . ~

• MDQS - Multiple device queueing system. (currently not a~le)

• Zephyr- The athena notification service. (currently not available)

Service Management System Draft-6 August 1987

"--../

Athena Technical Plan Section E.1 , page 17

5.8.1. Server Assumptions

The requirements of each server suggests a level of detail describing the following:
• Service name.

• Service description.

• Propagation interval.

• Data format.

• Target location.

• Generated files.

• File description.

• Queries used to generate the file (including fields queried).

• How the file is modified (application interface).

• Example of file contents.
• Semce: Hes10d

• Description: The hesiod server is a primary source of contact for many athena
operations. It is reponsible for providing information reliably and quickly. SMS's
responsibility to hesiod is to provide authoritative data. Hesiod uses a BIND data
format in all of it's data files. SMS will provide BIND format to hesiod. There are
several files which hesiod uses. 'Pe fi&te, tftT,e lme"WB to include the following:

• clust:er.db ._X 1~ ~1 ~_.. .A-..
• semce.db . - - \
• printers.db
•lpr.db
• pobox.db
• sloc.db
• rvdtab.db
• passwd.db
• printcap.db

• Each of these files are described in detail belo The hesiod server uses these
files from virtual memory on the target mac · e. The server automatically loads
the files from disk into memo w. _ • SMS will propagate hesiod
files to the target disk and th run a shell scri t hich will kill the nmning server
and then restart it, causing the new y updated files to be read into memory.

• With hesiod, all target machines receive identical files. Practically, therefore, the
DCM will prepare only one set of files and then will propagate to several target
hosts.

• For additional technical information on hesiod, please refer to the Hesiod
technical plan.

Service Management System Dratt--6 August 1987

Page 18, Section E.1 Athena Technical Plan

• Propagation interval : 6 Hours, 0:00, 6:00, 12:00, 18:00

• Data format : BIND

• Target locations :

JASON.MIT.EDU: /etc/athena/nameserver
ZEUS.MIT.EDU: /etc/athena/nameserver
MENELAUS.MIT .EDU: /etc/athena/nameserver

• Files:

HESIOD.DB- Hesiod data

Description:
Contaill.~ hesiod.specific dats.. - -----"

Queries used: ~
(' NOT CREATED FROM SMS QUERY ,/

_ H()w modified: . . . L , ' /

~--1!?~ by system a~~

Client(s):
Hesiod

Example contents:

; Hesiod-specific cache data (for ATHENAMIT.EDU)

$Source: /u2/sms/doc/RCS/server_arrang.mss, v $
; $Header: server_arrang.mss,v 1.8 87/08/05 23:14:05 mike Locked$
; pointers to Hesiod name servers
NS.ATHENAMIT.EDU. 99999999 HS NS JASON.MIT.EDU.
NS.ATHENAMIT.EDU. 99999999 HS NS ZEUS.MIT.EDU.
NS.ATHENAMIT.EDU. 99999999 HS NS MENELAUS.MIT.EDU.
; Hesiod address records (simply duplicates of IN address records)
JASON.MIT.EDU. 99999999 HS A 18.71.0.7
ZEUS.MIT.EDU. 99999999 HS A 18.58.0.2
MENELAUS.MIT.EDU. 99999999 HS A 18.72.0.7
; Internet address records for the same Hesiod servers
; required because of implementations of gethostbyname() which use
; C_ANYtr_A queries.
JASON.MIT.EDU. 99999999 IN
ZEUS.MIT.EDU. 99999999 IN
MENELAUS.MIT.EDU. 99999999

A
A
IN

18.71.0.7
18.58.0.2

A 18.72.0.7

/

Service Management System Draft-6 August 1987

Athena Technical Plan

CLUSTER.DB - Cluster data

Description:
Cluster .db holds the relationships between machines,
clusters, and services to service clusters.

Queries used:
get_all_service_clusers() ->

(cluster, service_label, service_cluster)
get_machine_to_cluster_map(*,*) ·>(machine, cluster)

How modified:
cluster_maint

Client(s):

Example contents:

; Cluster info for timesharing machines and workstations
; format is:
; lines for per-cluster info (both vs and rt) (type UNSPECA)
; followed by line for each machine (CNAME referring to one
; of the lines above) .
' ; E40 cluster

Section E.1, page 19

bldge40-vstesters.cluster HS UNSPECA "zephyr neskaya.mit.edu"
bldge40-rttesters.cluster HS UNSPECA "zephyr nesk.aya.mit.edu"
bldge40-vstesters.cluster HS UNSPECA '1pr e40"
bldge40-rttesters.cluster HS UNSPECA "lpr e40"

Service Management System Draft~ August 1987

Page 20, Section E.1 Athena Technical Plan

SERVICE.DB - services

Description:
Holds the relationship between a canonical service name and
its physical protocol, port, and tranlation.

Queries used:
get_all_services -> (service, protocol, port, description)
get_alias(*, service)-> (name, type, translation)

How modified:
service_maint

Client(s):

Example contents:

' ; Network services, Internet style .
' echo.service HS
echo.service HS
discard.service HS
sink.service HS
null.service HS

. discard.service HS
systat.service HS
users.service HS
daytime.service HS

Service Management System

UNSPECA"echo tcp 7"
UNSPECA "echo udp T'
UNSPECA "discard tcp 9 sink null"

CNAME discard.service
CNAME discard.service

UNSPECA "discard udp 9 sink null"
UNSPECA "systat tcp 11 users"
CNAME systat.service

UNSPECA "daytime tcp 13"

Draft-6 August 1987

Athena Technical Plan

PASSWD.DB - username and group information

Description:
This file is used as a template for toehold. Its contents
are username, uid, gid (all users get gid = 101), fullname,
home fllesys (now limited to /mitl<Username>), and shell.

Queries used:
get_all_passwds() -> returns all active logins.

How modified:
ueser_maint
userreg -> initial info
attach_maint

Client(s):
Toehold

Example contents:
pjlevine. passwd HS UNSPECA "pjlevine:*: 1:101:

Peter J. Levine,,:lmitlpjlevine:/binlcsh"

PRINTERS.DB - MDQS printer info

Description:
Maps printer clusters to physical locations.

Queries used:
get_all_printer_clusters() ·>(cluster)
get_printers_of_cluster(cluster) ->

(pname,qname,serverhost,abili~,h~e)

How modified:
printer_maint

Client(s):
MDQS

Example contents:
MDQS Hesiod printer info .
' ; prclusterlist returns all print clusters .
' * .prclusterlist HS UNSPECA bldge40
* .prclusterlist HS UNSPECA bldg1
* .prclusterlist HS UNSPECA bldgw20

Service Management System

Section E.1, page 21

Draft-6 August 1987

Page 22, Section E.1 Athena Technical Plan

LPR.DB - lpr printer info

Description:
Line printer information.

Queries used:
NOT GENERATED BY SMS

How modified:
HAND

Example contents:

PRINTCAP.DB -line printer information

Description:
Line printer info, derived from /etc/printcap

Queries used:
NOT GENERATED BY SMS

How modified:
HAND

Example contents:

Service Management System Draft--6 August 1987

Athena Technical Plan

POBOX.DB- post office info

Description:
Contains a usemame to post office mapping.

Queries used:
get_poboxes_pop(*)
get_poboxes_local(*)
get_poboxes_foreign(*) -> (login, type, machine, box)

How modified:
userreg
usermaint
chpobox

Client(s):

Example contents:

Section E.1, page 23

abbate.pobox HS
ackerman.pobox HS
ajericks.pobox HS
ambar.pobox HS
andrew.pobox HS
annette. pobox HS
austin.pobox HS

UNSPECA "POP E40-PO.MIT.EDU abbate"
UNSPECA "POP E40-PO.MIT.EDU ackerman"

UNSPECA "POP E40-PO.MIT.EDU ajericks"
UNSPECA "POP E40-PO.MIT.EDU ambar"
UNSPECA "POP E40-PO.MIT.EDU andrew"
UNSPECA "POP E40-PO.MIT .EDU annette"

UNSPECA "POP E40-PO.MIT.EDU austin"

SLOC.DB - service location

Description:
This file maps a service name to a machine name.

Queries used:
get_server_location(*) ->(server, location)

How modified:
dcm_maint

Client(s):

Example contents:
lcprimaryhost.sloc
olctesthost.sloc
kerberos.sloc HS

zephyr.sloc HS
zephyr.sloc HS
zephyr.sloc HS
zephyr.sloc HS

Service Management System

HS UNSPECA matisse.MIT.EDU
HS UNSPECA castor.MIT.EDU

UNSPECA kerberos.MIT.EDU

UNSPECA NESKAYAMIT .EDU
UNSPECA ARll.INN.MIT.EDU
UNSPECA HOBBES.MIT.EDU
UNSPECA ORPHEUS.MIT.EDU

Draft~ August 1987

Page 24, Section E.1

FILESYS.DB - Filesystem info

Description:
This file contains all the fllesystems and their related
information. The information presented in this file

Athena Technical Plan

is a filesystem name relating to the following information:
filesystem type, server name, filesystem name, default mount
point, and access mode.

Queries used:
get_all_filesys() -> (label, type, machine, name, mount, access)
get_ alias(*, FILESYS) -> (name, type, trans)

How modified:
attach_maint
user_reg ->associates user to a new filesys.

Client(s):
attach

Example contents:

N ewrtStaftTool.fllsys HS UNSPECA
"RVD NewrtStaflTool helen r /mit/StaflTools"

NewvsStaftTool.filsys HS UNSPECA
"RVD NewvsStaffl'ool helen r /mit/Staffl'ools"

Saltzer.filsys HS UNSPECA "RVD Saltzer helen r /mnt"
athena-backup.filsys HS UNSPECA

"RVD athena-backup castor r /mnt"

• Update mechanism: Updating hesiod is a relatively simple process. Every six
hours the DCM will initiate a build on each of the above files(assuming the
informtion has changed). Once a :file is constructed, the update mechanism will
transport the file to each of the above machine.

• Service : RVD

• Description: The nature ofRVD servers recognizes a very different ·approach from
that of the hesiod discussion. The RVD mechanism is updated through two
different means. The first method is for RVD_MAINT (an application interface)
to talk to the RVD server directly. This program is described in detail in the
section Specialized Management Interfaces. The important note here is that the
RVD is updated by feeding the server directly with specific information, not
complete files. The current program vdbdb performs the updating process to each
RVD server. RVD_MAINT will use the same protocol. This process affords
instantaneous changes to RVD's.

Secondly, when invoked, RVD_MAINT will also communicate with the sms database.
This communication path will allow the updating of all the fields necessary to create rvddb,
a RVD server specific file. The generation of this file is inherent to the DCM. If
information has changed (via RVD_MAINT), the dcm will invoke a module which creates
an rvddb file. This flle is then propagated to the relevant RVD server. This file resides on "---'

Service Management System Draft--6 August 1987

Athena Technical Plan Section E.1, page 25

the target disk and is used in the event of server failure.

During a session with RVD_MAINT an administrator may make several changes to the
RVD server. These changes will go into effect immediately. In addition to rvddb, a few acls
must be present with the propagation. These files are:

• /site/rvd/acl!AD.acl /site/rvd/acl/OP.acl /site/rvd/acl/SH.acl /site/rvd/acl/file.acl -
where file is host-packname.

RVD support can best be illustrated by the following diagram:

M .. MA\MT r------.....,.;....._~

l\VDb8

The discussion which follows describes the generation and contents of the rvddb file.
• Propagation interval: 15 minutes, hour aligned

• Data Format : RVD specific, ASCII

• Target Machines:

andromache
gaea
hactar
helen
jinx
m4-035-s
m4-035-v
m4-035-w
oath
persephone
prak
slartibartfast
socrates
zarquon
calliope
polyhymnia

• Target Path: /site/rvd/rvddb

Service Management System Draft-6 August 1987

Page 26, Section E.1 Athena Technical Plan

• File(s):

•

RVDDB - RVD specific file

Description:
RVDDB is athe rvd specific file which is used by an rvd server.
This file is only used in the event of a catastrophic failure
with the rvd server. Nonetheless, this rue represents all of the
information integral to rvd servers.

Queries used:
get_rvd_servers(machine) -> (oper, admin, shutdown)
get_rvd_physical(machine) ->(device, size, created, modified)
get_all_rvd_virtual(machine) ->(name, device, packid, owner, rocap

excap, shcap, modes, offset, size, created, modified, ownhost)
get_members_of_list(list) -> (member_type, member_name)

How modified:
rvd_maint

Client(s):
RVD server.

Content example:

operation = add_physical I
filename = /dev/ I
blocks= I - This is the header
created= I unique to each
modified= I physical disk on

a machine

operation=add_ virtual
physical= I
name= I
owner= I
rocap= I -This is the information
excap= I unique to each virtual
shcap= I disk.
modes= I
offset= I Block gets repeated n
blocks= I times.
created= I Where n is the number
modified= I of allocated RVDs on a
ownhost= I physical disk.
uid=

• Service: NFS

Service Management System Draft~ August 1987

Athena Technical Plan Section E.1, page 27

• Description: Sms supports two files which are necessary components ofNFS
operation. These files are:

• /site/nfsid

• /mit/quota

• These flles reside on the NFS target machine and are used to allocate NFS
directories on a per user basis. The mechanism employed is for all programs to
communicate to the sms database, and then for the dcm to handle the propagation
and creating of NFS lockers. The best illustration of this process is indicated by
the following example:

/ . 1 / L

1
. , • _D_uring.__.qew ~ser r~gistration, a pers~n will sit down ~ a workstation ~d type

~ tA , .,r ~:...--{ 'userreg' for his logm name. When validated the user will type a 'real' logm name
/ ,A -~- and a password. In addition, the userreg program will allocate, automatically, for
;___---· the user a post office and an NFS directory. However, the user will not benefit

·from this allocation for a maximum of six hours. This lag time is due to the
operation of sms and its creation of NFS lockers. During registration, the userreg
program communicates exclusively with the sms database for NFS allocation.
Since the NFS file generation is started by the DCM every 6 hours, the real
change is not noticed for a period of time. When the 6 hour time is reached the
DCM will create the above two files and send them to the appropriate target
servers. Once on the target machine, the dcm will invoke a shell script which
reads the /mit/quota file and then creates the NFS directory. The basic operation

,.---..... ..

•

of the script is:__ ~ ~--- ----------. .
mk~· s us· /mit) uota file ,a-- t ~ ~ !(~'-' ('
cho · 4RP~ - sing s1 s1 U
setquota <quota> - usmg mit/quota

• Propagation interval : 6 hours, 0:00, 6:00, 12:00, 18:00

• Data Format : ASCII

• Client(s):

NFS server
sms shell script for creating directories

and user quotas.

• Files updated:

Service Management System Draft-6 August 1987

Page 28, Section E.1 Athena Technical Plan

•

/SITE/NFSID- username to uid/gid mapping.

Description:
This file is used for both the nfs server information and
for the sms shell script. It provides a username to uid/gid
mapping. The file is distributed to every NFS server and
is identical on all.

Queries used:
get_all_logins() ->

(login, uid, shell, home, last, first, middle)

How updated:
created at registation time with userreg.
maintained with user_maint.

Contents example:

<username> <UlD> <GIDl, GID2, ... GID32>

where: username is the user's login name (Ex: pjlevine)
UID is the users id number (Ex: 123456)
GIDn are the groups in which the user is a member

(max32)

/MIT/QUOTA- file containing usernam,e to quota mapping.

Description:
This flle contains the mapping between username and quota.
The file is distributed to each filesystem on the recipient
machine. The contents of this file is used to create
the NFS directory on the target machine. Each of the file's
contents is unique to the filesystem which it represents.

Queries used:
get_all_nfsphys() ->(machine, dir, status, allocated, size)
get_nfs_quotas(machine, device) -> (login, quota)

How updated:
created at regi.station time with userreg.
maintained with user_maint.

Contents example:

<username> <quota>

where: username is the user's login name (Ex. pjlevine)
quota is the per user allocation (in Mbytes)

• Service: Mail (/usr/lib/aliases)

Service Management System Draft-6 August 1987

···.__......·

.~

Athena Technical Plan Section E.1, page 29

• Description: The generation of /usrllib/aliases is a process which makes use
of a currently existing program aliasbld.c. This program is called by the dcm
every 24 hours. The hooks into the sms database are the significant changes
made to aliasbld.c. The /usrllib/aliases file is created and propagated to
athena.mit.edu. Only one file and one propagation is required. The use of
/usrllib/alaises file is done manually by executing a shell script
extract_aliases. The use, however, is not an sms-related function or
responsibility.

• Data Type: ASCII

• Propagation interval: 24 hours, 3:00

• Target: ATHENA.MIT.EDU

• File(s):

/USR/Lffi/ALIASES - mail forwarding information

Description:

Queries Used:
get_all_mail_lists() -> (list)
get_members_of_list(list) -> (member_type, member_name)
get_all_poboxes() -> (login, type, machine, box)

How updated:
listmaint -> for all mail list info.
user_maint -> for pobox info.
userreg ->initial info for poboxes.

Contents example:

5.9. SMS-to-Server Update Protocol

SMS provides a reliable mechanism for updating the servers it manages. The use of an
update protocol allows the servers to be reliably managed. The goals of the server update
protocol are: ·

• Completely automatic update for normal cases and expected kinds of failures.

• Survives clean server crashes.

• Survives clean SMS crashes.

• Easy to understand state and recovery by hand.

General approach: perform updates using atomic operations only. All updates should be
of a nature such that a reboot will fix an inconsistent database. (For example, the RVD
database is sent to the server upon booting, so if the machine crashes between installation
of the file and delivery of the information to the server, no harm is done.) Updates not
received will be retried at a later point until they succeed. All actions are initiated by the
SMS.

Service Management System Dratt-6 August 1987

Page 30, Section E.1 Athena Technical Plan

Strategy
A. Preparation phase. This phase is initiated by the SMS when it determines that
an update should be performed. This can be triggered by a change in data, by an
administrator, by a timer (run by cron), or by a restart of the SMS machine.

1. Check whether a data file is being constructed for transmission. If so, do
nothing and report the fact. Otherwise, build a data file from the SMS
database. (Building the data file is handled with a locking strategy that
ensures that "the" data file available for distribution is not an incomplete
one. The new data file is placed in position for transfer once it is complete
using the rename system call.)

2. Extract from SMS the list of server machines to update, and the
-instructions · for installing the file. Perform the remaining steps
independently for each host.

3. Connect to the server host and send authentication.

4. Transfer the files to be installed to the server. These are stored in
fi.~ename. sms update until the update is actually performed. At the same
time, the existing file is linked to fi~ename. ama _backup for later
deinstallations, and to minimize the overhead required in the actual
installation (freeing disk pages). (The locking strategy employed throughout
also ensures that this will not occur twice simultaneously.) A checksum is
also transmitted to insure integrity of the data.

5. Transfer the installation instruction sequence to the server.

6~ Flush all data on the server to disk.

B. Execution phase. If all portions of the preparation phase are completed
without error, the execution phase is initiated by the SMS.

On a single command from the SMS, the server begins execution of the
instruction sequence supplied. These can include the following:

1. Swap new data files in. This is done using atomic filesystem rename
operations. The cost of this step is kept to an absolute minimum by keeping
both files in the same directory and by retaining the fi.~enazM~. ama _backup
link to the file.

2. Revert the file - identical to swapping in the new data file, but instead
uses fi~enazDII. backup. May be useful in the case of an erroneous
installation. -

3. Send a signal to a specified process. The process_id is assumed to be
recorded in a file; the pathname of this file is a parameter to this instruction.
The process_id is read out of the file at the time of execution of this
instruction.

4. Execute a supplied command.

C. Confirm installation. The server sends back a reply indicating that the
installation was successful. The SMS then updates the last-update-tried field of
the update table, clears the override value, and sets the 'success' flag.

Service Management System Draft--6 August 1987

Athena Technical Plan Section E.1, page 31

Trouble Recovery Procedures

A. Server fails to perform action.

If an error is detected in the update procedure, the information is relayed back to
the SMS. The last-update-tried flag is set, and the 'success' flag is cleared, in the
update table. The override value may be set, depending on the error condition
and the default update interval.

The error value returned is logged to the appropriate file; at some point it may be
desirable to use Zephyr to notify the system maintainers when failures occur.

A timeout is used in both sides of the connection during the preparation phase,
and during the actual installation on the SMS. If any single operation takes

· longer than a reasonable amount of time, the connection is closed, and the
installation assumed to have failed. This is to prevent network lossage and
machine crashes from causing arbitrarily long delays, and instead falls back to
the errfr condition, so that the installation will .~ attempted again later. (Since

\theLall-' the data illes being prepared are ~~. extra installations are not
har'inful.) / L

C Ca-yL.L 1 J.__ ,f ·· (:36 l L-.J s I •~r· .
B. Server crashes.

If a server crashes, it may fail to respond to the next attempted SMS update. In
this case, it is (generally) tagged for retry at a later time, say ten or fifteen
minutes later. This retry interval will be repeated until an attempt to update the
server succeeds (or fails due to another error).

If a server crashes while it is receiving an update, either the file will have been
installed or it will not have been installed. If it has been installed, normal system
startup procedures should take care of any followup operations that would have
been performed as part of the update (such as [re]starting the server using the
data file). If the flle has not been installed, it will be updated again from the
SMS, and the existing £i.l.ename. ama update file will be deleted (as it may be
incomplete) when the next update starts.

C. SMS crashes.

Since the SMS update table is driven by absolute times and offsets, crashes of the
SMS machine will result in (at worst) delays in updates. If updates were in
progress when the SMS crashed, those that did not have the install command sent
will have a few extra files on the servers, which will be deleted in the update that
will be started the first time the update table is scanned for updates due to be
performed. Updates for which the install command had been issued may get
repeated if notification of completion was not returned to the SMS.

Considerations

What happens if the SMS broadcasts an invalid data file to servers? In the case of name
service, the SMS may not be able to locate the servers again if the name service is lost.
Also, if the server machine crashes, it may not be able to come up to full operational
capacity if it relies on the databases which have been corrupted; in this case, it is possible
that the database may not be · easily replaceable. Manual intervention would be required
for recovery.

Service Management System Draft-6 August 1987

Page 32, Section E.1 Athena Technical Plan

5.9.1. Catastrophic Crashes- Robustness Engineering

In the event of a catostrophic system crash, SMS must have the capability to be brought
up with consistent data. There are a list of scenarios which indicate that a complete set of
recovery tools are needed to address this isssue. Thought will be given in order that the
system reliably is restored. In many cases, the answer to a catastrophic crash will be
manual intervention. For worst case scenario preparation, subsection 11.2 presents
guidlines and mechanisms for catasrophic recovery procedure.

5.9.2. Data Transport Security

Each datagram which is transmitted over the network is secure using Kerberos, the
Athena authentication system. Encyphered information headers will proceed each
datagram. The servers decrypt the header information and use the packet accordingly.

Data going over the net will be checksummed before it is sent. This checksum will be put
in a small encrypted "header", which will be decoded on the receiving side. This will allow
detection of lost or damaged packets, as well as detection of deliberate attempts to damage
or change data while it is in transit.

5.1 0. New User Registration

A new student must be able to get an athena account without any intervention from
Athena user accounts staff. This is important, because otherwise, the user accounts people
would be faced with having to give out -1000 accounts or more at the beginning of each
term.

With athenareg, a special program (userreg) was run on certain terminals connected to ·
\,f\-';t-0

timesharing systems in several of the terminal rooms. It prompted the user for his name
and ID number, looked him up in the athenareg database, and gave him an account if he ··v J
did not have one already. Userreg has been rewr.J.tteri~W'Qr~_ with SMS; in appearan~- '
is virtually identical to the athenareg version ~cept in speed).' -------- < ..).;)~

Athena obtains a copy of the Registrar'~of. 4.te~-;;dents shortly before ~0 l

registration day each term. Each student on the registrar's tape who has not been \ -~
registered for an Athena account is added to the "users" relation of the database, and y;
assigned a unique userid; the student is not assigned a login name, and is not known to \ j

kerberos. An e form of the student's ID number is stored along with the name; the
encryption al is the UNIX library crypt() function (also used for passwords in
/etc/passwd); the ast seven c acters f the ID number are encrypted using the first letter
of the first name an e r of the last name as the "salt". No other database
resources are allocated at that ·me. ' fl_ "l 1

The SMS database server ma~~ :::s a s~ial "registration server" process, which
listens on a well known UDP port for user registration requests. There are currently three
defined requests:

Service Management System Draft-6 August 1987

Athena Technical Plan

verify_user, First Last, {IDnum.ber, hashiDnum.ber}baahiDnumber
grab_login, First Last, {IDnum.ber, hashiDnum.ber, login}hashiDnumber
set_password, First Last, {IDnum.ber, hashiDnumber, password}hashlDnumber

where
First Last is the student's name,
IDnumber is the student's id number (for example: 123456789)
hashiDnum.ber is the encrypted ID number (for example: lflenQqC/0/0E)

Section E.1, page 33

({a, b }K means that 'a, b' is encrypted using the error propagating cypher-block-chaining
mode of DES, as described in the Kerberos document).

The registration server communicates with the kerberos admin_server, and sets up a
secure communication channel using "srvtab-srvtab" authentication. In all cases, the
server first retrieves each ..v\.. ~~

.r/ (/
When the student decides to register with athena, (he walks up to a workstation and logs

in using the usemame of "userreg" (no password is 'ne'cessary). This pops up a forms-like
interface which prompts him for his first name, middle initial, last name, and student ID
number. It calculates the hashed id number using crypt(), and sends a verify_user request
to the registration server. The server responds with one of already_registered, not_found,
or OK

·"'~"' DI.;-
If the ~~i he6m •Jalidaied; userreg then prompts him for his choice in login names. It

then goes through a two-step process to verify the login name: first, it tries to get initial
tickets for the user name from Kerberos; if this fails (indicating that the usemame is free
and may be registered), it then sends a grab_login request. On receiving a grab_login

-~ reque..~. th~_!~g!_str!!_tion s~er ~en proceeds to register the login name with kerberos; if
. _.---/ tlie login .name is already in use, it returns a failure code to u~rreg. Otherwise, it allocates

/- · " a home directory for the user on the least-loaded fileserver, builds a post office entry for the
/ y-;< ~ '<"' ; user, sets an initial quota for the user, and returns a success code to userreg.
0

. ..~ Userreg then prompts the user for an initial password, and sends a set_password request
):-,.... ~\,... i to the registration server, which decrypts it and forwards it to Kerberos. At this point,
. i.-)~ \ pending propagation of information to hesiod, the mail hub, and the user's home fileserver,

-.t-'.,.,. \ the user has been established.
)v, .v- ~ ' 1 \. ? •

./ }\ {

)· .,.... .v ~ / 6. Deployment, Integration, and Scheduling
~ - ;

------. .----

The integration of SMS into the existing environment is as important as the design of
SMS itself. The factors involved in deploying SMS into the current system revolve around
the system's changing environment and increased demand for system resources. For SMS
to be a functional tool in the Athena environment, it must allow the system administrator,
from the start, a method of accessing and controlling data.

SMS's deployment will occur in conjunction with the existing administrative process. The
current database will be used as SMS begins to take on responsibiliy. Basically, SMS will
take on more responsibility as the current system relinquishes responsibility.
Administrative changes, therefore, must be carefully monitored so that the SMS fields
which are "on-line" receive the most relevant data.

~~

Because Athena will not support time sharing systems in the future, SMS will not support ·
time sharing. This then assumes that the old database will support the time sharing
environment as long as it still exists.

Service Management System Draft-6 August 1987

Page 34, Section E.1 Athena Technical Plan

6.0.1. Deployment

SMS is a system which does not operate in peices. For every service, there is a
corresponding application interface. For every service, there is a field in the database; and,
for every service, there is a consumer. The deployment and testing of SMS is a difficult and
sensitive process. Basically, once SMS is committed to support Athena, everything must be
in place. There is no redundancy. For example, the support ofhesiod alone requires.a~vtrn
application programs and the generation and propagation of nine different f:Ues. ~~ng
the system components individually is a relatively straight forward process; testmg the
complete system and simulating real usage patterns is much more difficult. At this time, a
plan is being drafted which will present the testing and deployment schedule for SMS.

A suitable plan, under consideration, is to provide a dummy database which will be a test
bed for SMS. Staff members at Athena will be notified of this database. For a week's time
this database will be tested as a dummy, allowing staff time to flush out bugs. ALL
CHANGES MADE TO THIS DATABASE WILL NOT BE PERMANENT. This means that
if I change my 'finger' information in this dummy database, it will not be affected in the
real world. Testing must first occur in a closed-cell environment, where potential snags
will not disrupt the day-to-day.operations of Athena. Each application program will be
tested in as realistic of an environment as possible. Userreg, the new student registration
program, is especially important. This program will see great demand during the first
week of school and therefore must work without a problem. There will be no time for
debugging userreg after school starts. Therefore, userreg will be stressed by having many
staff members try to use the program all at the same time. This will attempt to simulate a
worst case scenario of operation.

The deployment plan will be flushed out forthcoming.

7. Long Term Support Strategy

The eventual users of SMS will be the operations component of the Athena organization.
The support of SMS will be left to the operations and informations systems groups.

~'---- ~"'\- L ~ ~ I~ / ~ ,__p tv--- ,i~~ L /L .~

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1, page 35

8. Data Fields and Relationships

The knowledge base of SMS enables system services and servers to be updated with
correct information. The database has the reponsibility of storing information which will be
transmitted to the services. The database will not, however, be responsible for knowing the
format of data to be sent. This information will be inherent to the Data Control Manager.
Specific fields of the database are organized to represent the needs of system. The current
SMS database is comprised of the following tables:

Table

USERS

FINGER

Fields and Description

User Information. There are two types of user required information:
information necessary to identify a user and enable a user to obtain a
service (e.g. to login), and personal information about the user (finger).

login

users_id

uid

a unique username, equivalent to the user's Kerberos
principal name.

an internal database indentifier for the user record.
This is not the same as the Unix uid.

Unix uid. Temporarily necessary due to NFS client
code problems. Ultimately, this field will be removed
and uids will be assigned arbitrarily for each client
server connection.

last, first, middle The user's full name, broken down for convenient
indexing.

shell

home

status

mit_id

mit _year

expdate

modtime

the user's default shell.

name of the users home file system.

contains flags for the user. The only currently
defined flag is bit 0, which when set indicates that
the user is active. (An active user is one who has
been assigned system resources such as a mailbox, a
home directory, and who may be a member of one or
more lists.)

the user's encrypted MIT id.

a student's academic year, not modifiable by the
student. Used for Athean administrative purposes.

the expiration date of the user and the user's
resources (the user becomes inactive.)

the time that the user record was last modified (or
created).

See Section 9.0.1 for the list of queries associated with this table.

There are no entries for password and primary gid because these are
being subsumed by other services (Kerberos, ACLS).

This table contains the "finger" information for users.

users_id

full name

corresponds to the users_id in the users table.

the user's full name.

Service Management System Draft-6 August 1987

Page 36, Section E.1

MACHINE

CLUSTER

MACHCLUMAP

nickname

home_address

home _phone

mit_address

mit _phone

office

affiliation

department

year

modtime

the user's nickname.

home address.

home phone.

Athena Technical Plan

MIT address; this is for on-campus students' living
addresses.

MIT phone.

office address.

one ofundergraduate, graduate, staff, faculty, other.

student's major or employee's department.

student's year or "G".

time finger record was last modified.

See Section 9.0.2 for the list of queries associated with this table.

Machine Information.

name

machine_id

type

model

status

serial

sys_type

the canonical hostname.

an internal database id for this record.

machine type: VS, RTPC, VAX

machine model: VS2, VS2000, RTFLOOR, RTDESK,
750, 785.

machine status: PUBLIC, PRIVATE, SERVER,
TIMESHARE.

serial number.

system type (for use by release engineering and
operations).

See Section 9.0.3 for the list of queries associated with this table.

Cluster Infomation. There are several named clusters throughout
Athena that correspond roughly to subnets and/or geographical areas.

name

description

location

cluster_id

cluster name.

cluster description.

cluster location.

internal database identifier for this record.

See Section 9.0.4 for the list of queries associated with this table.

Machine-Cluster Map. This tables is used to assign machines to
clusters.

cluster _id

machine_id

cluster id.

machine id.

See Section 9.0.4 for the list of queries associated with this table.

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1, page 37

svc

PRCLUMAP

SERVERS

HOSTS

For each cluster there is a set of services that serve the machines in that
cluster. These services are described by an environment variable (to be
set on client workstations at login) and a service cluster name. Use of
the service cluster name is service dependent but in general refers to a
group of entities that provide the named service in the particular
cluster.

cluster _id

serv_label

references an entry in the cluster table.

label of a service cluster type (e.g. "prcluster",
"usrlib", "syslib")

serv_cluster specific service cluster name (e.g. "e40-prcluster")

See Section 9.0.5 for the list of queries associated with this table.

This table provides a mapping between printer service cluster names
and printer names.

prcluster

p_id

printer cluster name

printer id.

See Section 9.0.6 for the list of queries associated with this table.

Server Information. This table contains information needed by the Data
Control Manager or applications for each known server.

service_name name of service.

update_int server update interval in minutes (for DCM).

target_file target file on server for DCM generated server files.

dfgen time of server file generation

script shell script used by servers for particular use.

See Section 9.0. 7 for the list of queries associated with this table.

Server to Host mapping table. Used by the Data Control Manager to
map a server to a list of server hosts.

service_name

mach_id

enable

override

ltt

name of service.

Machine id for a host containing the service.

Enable switch for DCM. This switch controls
whether or not the DCM updates a server. (0- Do not
Update, 1 - Update)

Override time (minutes). Used by DCM and update
mechanism to indicate that an update has failed.
This time is used to update services at a different
time from the default update interval time. (-1- Use
the default interval time, 0 or greater - Use the
override interval).

Last time tried. Used by dcm, this field is adjusted
each time a service is attemted to be updated,
regardless of success or failure.

Service Management System Draft-6 August 1987

Page 38, Section E.1

success

valuel

value2

Athena Technical Plan

Flag indicating successful completion of server
update.

server-specific data used by applications (i.e.,
number of servers permitted per machine).

additional server-specific data.

See Section 9.0. 7 for the list of queries associated with this table.]

SERVICES TCPIUDP Port Information. This is the information currently in
/etc/services. In a workstation environment with SMS and the Hesiod
name server, service information will be obtained from the name server.

FILESYS

RVDSRV

RVDPHYS

service

protocol

port

description

service name.

protocol: oneofTCP, UDP.

port number.

description of service.

See Section 9.0.8 for the list of queries associated with this table.

File System Information. This section desribes the file system
information necessary for a workstation to attach a file system.

label

type

machine_id

name

mount

a unique name for an attachable file system.

currently one ofRVD, NFS, or RFS.

file server machine.

name of file system on the server.

default mount point for file system.

access default access mode for file system.

See Section 9.0.9 for the list of queries associated with this table.

RVD Server Information. This table contains the top level access
control lists for each rvd server. Any other per-server information
should be added here.

machine_id

operations_acl

admin_acl

shutdown_acl

server machine.

operations access control list.

administrative access control list.

shutdown access control list.

See Section 9.0.10 for the list of queries associated with this table.

Physical device partition table.

machine_id

device

size

created

server machine.

rvd physical device.

size in 512-byte blocks.

creation time.

Service Management System Draft--6 August 1987

Athena Technical Plan Section E.1, page 39

RVDVIRT

NFSPHYS

modified modification time.

See Section 9.0.10 for the list of queries associated with this table.

Virtual device table. This table contains the list of virtual devices for
each rvd server machine. Information per device includes the rvd
physical device it resides on, its name, unique pack id, owner (users id),
access control lists for the device (rocap, excap, shcap), allowable access
modes, the offset within the physical device, its size, a machine id for a
host that has default access to the device, and the creation and
modifications dates for the device.

machine_id

device

name

packid

owner

server machine.

rvd physical device.

virtual device name.

unique pack id.

owner (currently an arbitrary string, should be a
USERS entry id.)

rocap, excap, shcapcurrently three passwords providing read-only,
exclusive, and shared accesss to the file system.
These should be condensed into one access control
list id. The access control list would indicate read
and write access (shared access has never been ·
implemented).

modes

offset

blocks

ownhost

created

modified

allowable access modes for device.

offset of virtual device into physical device (in
blocks).

size of virtual device.

name of host from which device may be mounted
without a password (not used with acl's?).

creation time.

modification time.

See Section 9.0.10 for the list of queries associated with this table.

NFS Server Information. This table contains for each nfs server
machine a list of the physical device partitions from which directories
may be exported. For each such partition an access control list is
provided.

machine_id

device

dir

allocated

size

server machine.

file system name.

top-level directory of device.

number of quota units allocated to this device.

capacity of this device in quota units.

See Section 9.0.11 for the list of queries associated with this table.

Service Management System Draft-6 August 1987

Page 40, Section E.1

NFSQUOTA

PRINTER

QUEUE

PQM

QDEV

Athena Technical Plan

NFS Server Quota Information. This table contains per user per server
quota information.

machine_id

device

users_id

quota

nfs server machine.

nfs server flle system.

user id.

user quota in quota units.

See Section 9.0.11 for the list of queries associated with this table.

Printer Information.

name

printer_id

type

description

a unique printer name.

internal database identifier for this record.

printer hardware type: one of LPS40, 3812, LN03,
LN01, etc.

description of this printer.

See Section 9.0.12 for the list of queries associated with this table.

Printer queues. This table contains a list of unique queue names and
the attributes of each queue. Attributes of queue are its ability, a status
string (used by MDQS servers), and an access control list.

name

queue_id

machine_id

abilities

default

status

unique queue name.

internal database id for this queue.

server machine.

printer abilities associated with this queue (stored as
an integer bitmask).

flag indicating whether this printer should be
treated as a default printer.

queue status string (used by MDQS).

See Section 9.0.12 for the list of queries associated with this table.

Printer to queue mapping. This table provides the mapping between
printers and queues.

printer_id

queue_id

printer id.

queue id.

See Section 9.0.12 for the list of queries associated with this table.

MDQS device information. Each MDQS server has a device table that
assigns a logical name and status information to each known physical
printer device.

machine_id MDQS server machine.

qdev_id

name

internal database id for this device.

logical name of device.

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1, page 41

QDM

POBOX

LIST

device

status

physcial device name (e.g.: /devllpO)

status string kept by MDQS.

See Section 9.0.12 for the list of queries associated with this table.

MDQS queue to device mapping. This table ties together the queue and
device information for each MDQS server. Printer names are not
actually known to MDQS; printer to queue mapping is handled by
Hesiod using the PQM table information described above.

machine_id

queue_id

device_id

server

MDQS server machine.

queue id.

device id.

name of a server program to invoke for jobs using
this queue and device.

See Section 9.0.12 for the list of queries associated with this table.

Post Office Information. This list matches users with one or more post
office boxes. A post office box is identified by its type (POP, LOCAL),
the machine on which the box resides, and the box name on that
machine.

users_id

type

machine_id

box

id for a USERS entry.

mailbox type: one of POP, LOCAL, or FOREIGN.

post office server machine (or string_id if type is
FOREIGN).

mailbox name on server.

See Section 9.0.13 for the list of queries associated with this table.

Lists are used as a general purpose means of grouping serveral objects
togther. This table contains descriptive information for each list; the
MEMBERS table contains the the list of objects that are in the list. The
ability to add or delete objects in a list is controlled by an access control
list associated with the list. An access control list, which is itself a list,
contains as members a set of users who have the capability . to
manipulate the object specifying the access control list.

name

list_id

flags

description

acl_id

creator

expdate

modtime

list name.

internal database id for this list.

currently one or more of ACTIVE, PUBLIC,
IDDDEN. (These flags are used for mailing lists.)

description of list.

a list id for the administrators' list.

users id of the creator of this list.

expiration date of list.

time list was last modified (LIST entry or MEMBERS
entry).

Service Management System Draft-6 August 1987

--- ------·-----·----

Page 42, Section E.1

MEMBERS

STRINGS

MAILLISTS

GROUPS

ACLS

CAPACLS

Athena Technical Plan

See Section 9.0.14 for the list of queries associated with this table.

List members. Members are specified by a member type and a member
id pair.

list_id

member _type

id of a list.

member type: one of USER, LIST, STRING.

member _id id of a member (a USERS id, LIST id, or STRING id.)

See Section 9.0.14 for the list of queries associated with this table.

Used for list members of string type. An optimization for dealing with
(usually long) foreign mail addresses.

string_id member id.

string

refc

string.

Reference count. A single string can be a member of
multiple lists. When the reference count goes to
zero, the string is deleted.

See Section 9.0.14 for the list of queries associated with this table.

This table contains the set of list ids for the lists which are to be used as
mailing lists.

list_id a list id.

See Section 9.0.14 for the list of queries associated with this table.

This table contains the set of list ids for the lists which are to be used as
groups.

list_id

gid

a list id.

unixgid.

See Section 9.0.14 for the list of queries associated with this table.

This table contains a set of service, list id pairs which define the access
control lists that are needed for each service.

service service name.

list_id a list id.

See Section 9.0.14 for the list of queries associated with this table.

This table associates access control lists with particular capabilities. An
important use of this table is for defining the access allowed for
executing each of the SMS predefined queries. Each query name
appears as a capability name in this list.

capability

tag

list_id

a string.

four character tag name for this capability.

a list id.

See Section 9.0.14 for the list of queries associated with this table.

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1, page 43

ALIAS

VALUES

TBLSTATS

Aliases are used by several different services to provide alternative
names for objects or a mapping one type of object and another. Some
examples of alias usage are printer aliases, service aliases, cluster
aliases, file system aliases, and print cluster to printer maps. As an
integrity constraint it is required that all aliases be of a known type.
The list of known alias types is actually stored in the database as the set
of translations of aliases with name "alias" and type "type". Therefore,

· it is also quite easy to add new alias types. Another use of the "type"
alias type is for storing known field values for validated table fields.

name

type

trans

alias name.

alias type: currently one of TYPE, PRINTER,
SERVICE, CLUSTER, FILESYS, PRCLUSTER,
MACH-CLU-MAP.

alias translation.

See Section 9.0.15 for the list of queries associated with this table.

Values needed by the server or application programs.

name

value

value name.

value.

See Section 9.0.16 for the list of queries associated with this table.

Table Statistics. For each table in the SMS database statistics are kept
for the number of retrieves, appends, updates, and delete performed on
the table. In addition, the last modification time is kept.

table

retrieves

appends

updates

deletes

mod time

table name.

count of retrievals on this table.

count of additions to this table.

count of updates to this table.

count of deletions to this table.

time of last modification (append, update, or delete).

See Section 9.0.17 for the list of queries associated with this table.

8.0.1. Predenned DstabBse Queries

All access to the database is provided through the application library/database server
interface. This interface provides a limited set of predefmed, named queries, which allows
for tightly controlled access to database information. Queries fall into four classes: retrieve,
update, delete, and append. An attempt has been made to define a set of queries that
provide sufficient flexibility to meet all of the needs of the Data Control Manager and each
of the indivual application programs. However, since the database can be modified and
extended in the future, the server and application library have been designed to allow for
the easy addtion of queries.

Providing a generallized layer of functions affords SMS the capability of being database
independent. Today, we are using INGRES; however, in the future, if a different database
is required, the application interface will not change. The only change needed at that point

Service Management System Draft-6 August 1987

Page 44, Section E.1 Athena Technical Plan

will be a new SMS server, linking the pre-defined queries to a new set of data manipulation
procedures.

See Section 9 for a complete list and description of the predefmed queries.

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1, page 45

9. Predefined Queries • List of Database Interfaces

The following list of queries are a predefmed list. This list provides the mechanism for
reading, writing, updating, and deleting information in the database.

In each query description below there are descriptions of the required arguments, the
return values, integrity constraints, possible error codes, and side effects, if any. In
addition to the error codes specifically listed for each query, the following two error codes
may be returned by any query: SMS_SUCCESS for successful completion of the query, and
SMS_PERM indicating that permission was denied for the query.

9.0.1. Users

get_all_logins
Args: none
Returns: {login, uid, shell, home, last, first, middle}

get_all_active_logins
Args: none
Returns: {login, uid, shell, home, last, first, middle}

get_all_active_users
Args: none
Returns: {login, uid}

get_user_by _login
Args: (login(*))
Returns: {login, uid, shell, home, last, first, middle, status,

mit_id, mit_year, e.zpdate, modti.me}
Errors: SMS_NO_MATCH, SMS_NOT_ONIQOJ:

get_user_by _firstname
Args: (firstname(*))
Returns: {login, uid, shell, home, last, first, middle, status,

mi.t_id, mi.t_year, expdate, modti.me}
Errors: SMS NO MATCH

get_ user _by _lastname
Args: (lastname(*))
Returns: {login, uid, shell, home, last, first, middle, status,

mi.t_id, mi.t_year, expdate, modti.me}
Errors: SMS _NO_ MATCH

get_user_by _first_and_last
Args: (firstname(*), lastname(*))
Returns: {login, uid, shell, home, last, first, middle, status,

mit_id, mi.t_year, expdate, modti.me}
Errors: SMS NO MATCH

get_user_by _mitid
Arqs: (mit id)
Returns: {ioqin, uid, shell, home, last, first, middle, status,

mi.t_id, mit_year, expdate, modti.me}

get_user_by _year
Args: (year)

Service Management System Draft--6 August 1987

Page 46, Section E.1 Athena Technical Plan

Returns: {log~n, uid, shell, home, last, f~rst, middle, status,
mit_~d, mit_year, expdate, modtime}

Errors: SMS NO MATCH

update_user_shell
Args: (log~n, shell)
Returns: none
Zntegr~ty: appl~cat~on should check for val~d shell program
Errors: SMS_NO_MATCB, SMS_NOT_UNZQOE

update_user_status
Args: (log~n, status)
Returns: none
Zntegr~ty: appl~cat~on should check for val~d status value
Errors: SMS _NO_ MATCH, SMS _NOT_ UNIQUE

update_user_home
Args: (log~n, home)
Returns: none
Zntegr~ty: home must be a known f~lesys entry
Errors: SMS_NO_MATCH, SMS~NOT_UNZQOE, SMS I'ZLESYS

add_ user
Args: (log~n, uid, shell, home, last, f~rst, middle, status,

mit_~d, mit_year, expdate)
Returns: none
Zntegr~ty: appl~cat~on must check for val~d shell and status

values; home must be a val~d f~lesys entry; ezpdate must
be reasonable; modtime ~s set by the server.

Errors: SMS_EXZSTS, SMS_I'ZLESYS, SMS DATE
S~de Effects: blank f~nger entry created

update_user
Args: (log~n, newlog~n, uid, shell, home, last, f~rst, middle,

status, mit_~d, mit_year, expdate)
Returns : none
Zntegr~ty: appl~cat~on must check for val~d shell and status

values; home must be a val~d f~lesys entry; expdate must
be reasonable; modtime ~s set by the server.

Errors: SMS_NO_MATCH, SMS_NOT_UNIQOE, SMS_I'ILESYS, SMS DATE

delete_user
Args: (log~n)

Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_UNIQOE
S~de Effects: f~nger entry deleted

9.0.2. Rnger

get_finger_by _login
Args: (log~n (*))
Returns: { log~n, fullname, ni.ckname, home_ addr, home yhone,

off~ce_addr, off~ceyhone, mit_dept, mit_year, modtime}
Errors £ SMS _NO_ MATCH, SMS USER

get_finger _by _first_last

Service Management System Draft-6 August 1987

Athena Technical Plan Section E.1 , page 47

Args: (first(*), last(*))
Returns: {login, fullname, nickname, home_addr, home_phone,

office_ add.r, office _phone, mit_ dept, mit _year, modtime}
Errors: SMS NO MATCH

update_finger_by _login
Args: (login, fullname, nickname, home_add.r, home_phone,

office_addr, office_phone, mdt_dept, mit_year, *modtime)
Returns: none
Zntegrity: modtime set by server, all other fields validated by

application. (Perhaps there will be a table specifying
valid values for the mit_year field.)

Errors: SMS_NO_MATCH, SMS USER

9.0.3. Machine

get_machine_by _name
Args: (name(*))
Returns: {name, type, model, status, serial, sys_type}
Errors: SMS NO MATCH

add_ machine
Args: (name, type, model, status, serial, sys_type)
Returns: none
Zntegrity: type, model, and sys_type are checked against valid

values in the database
Errors: SMS_EXZSTS, SMS TYPE

update_machine
Args: (name, newname, type, model, status, serial, sys_type)
Returns: none
Zntegrity: type, model, and sys_type are checked against valid

values in the database
Errors: SMS _ MACHZNE, SMS _TYPE

delete_machine
Args : (name)
Returns: none
Errors: SMS MACHZNE

9.0.4. Cluster

get_cluster_info
Args: (n~~me (*))
Returns: {name, desc, location}
Errors: SMS NO MATCH

add_ cluster
Args: (name, desc, location)
Returns: none
Errors: SMS EXZSTS

update_ cluster
,--...__ Arga: (name, newname, desc, 1ocati.on)

Service Management System Draft~ August 1987

Page 48, Section E.1

Retu:ns: none
Errors: SMS CLUSTER

delete_cluster
Args : (name)
Returns: none
Errors: SMS CLUSTER

get_machine_to_cluster_map
Args: none
Returns: {machine, c1uster}

add_machine_to_cluster
Args: (machine, c1uster)
Retu:ns: none

Athena Technical Plan

Integrity: machine and cluster must exist is machine and cluster
tables.

Errors: SMS_MACHINE, SMS_CLUSTER, SMS EXISTS

delete_machine_from_cluster
Args: (machine, c1uster) · .··
Ret urns : none
Errors: SMS_NO_MATCH, SMS_NOT_UNIQUE

9.0.5. Service Clusters

get_all_service_clusters
Args: none
Returns: {cluster, service-label, service-c1uster}

add_service_cluster
Args: (cluster, service-label, service-c1uster)
Returns: none
Integrity: cluster must exist in c1uster table;

cluster/service-label must be unique.
Errors: SMS_CLUSTER, SMS EXISTS

update_service_clu.ter
Args: (cluster, service-label, service-c1uster)
Returns: none
Errors : SMS _NO _MATCH, SMS _NOT_ UNIQUE

delete_service_cluster
Args: (cluster, service-label)
Returns : none
Errors: SMS_NO_MATCH, SMS_NOT_UNIQUJ:

9.0.6. Printer Clusters

get_all_printer_clusters
Args: none
Returns: {prcluster}

get_printers_of_cluster

Service Management System Draft~ August 1987

Athena Technical Plan

Args: (prc~uster)

Returns: {pri.nter, queue, machi.ne, pri.nter-type, abi.~i.ti.es,

defau~t}

Errors: SMS CLUSTER

9.0.7. Servers

get_server_info
Args: (servi.ce(*))
Returns: {servi.ce, update_i.nt, target_fi.~e, scri.pt, dfgen}
Errors: SMS NO MATCH

add_server_info
Args: (servi.ce, update_i.nt, target_fi.~e, scri.pt, dfgen)
Returns : none

Section E.1, page 49

Integri.ty: app~i.cati.on must veri.fy that target_di.r and scri.pt
exi.st; dfgen must be a va~i.d date

Errors: SMS_EXISTS, SMS DATE

upd.ate_server_info
Args: (servi.ce, update_i.nt, target_fi.~e, scri.pt, dfgen)
Returns: none
Integri.ty: app~i.cati.on must veri.fy that target_di.r and scri.pt

exi.st; dfgen must be a va~i.d date
Errors: SMS_NO_MATCH, SMS_NOT_ONIQUE, SMS DATE

delete_server_info
Args: (servi.ce)
Returns: none
Errors : SMS _NO _MATCH, SMS _NOT_ UNIQUE

get_server_host_info
Args: (servi.ce(*), machi.ne(*))
Returns: {servi.ce, machi.ne, enab~e, overi.de, ~tt, success, va~uel,

va~ue2}

Errors : SMS NO MATCH

add_server_host
Args: (servi.ce, machi.ne, enab~e, overi.de, ~tt, success, va~uel,

va~ue2)

Returns: none
Integri.ty: machi.ne must exi.st; ~ast must be a va~i.d date or n~~.
Errors : SMS _EXISTS, SMS _MACHINE, SMS DA'l'J:

upd.ate_server_host
Args: (servi.ce, machi.ne, enab~e, overi.de, ~tt, success, va~uel,

va~ue2)

Returns: none
Integri.ty: last must be a va~i.d date or n~~.
Errors: SMS_MACHINE, SMS_NO_MA'rCH, SMS_NO'l'_ONIQUE, SMS DA'l'J:

delete_server_host
Args : (servi.ce, machi.ne)
Ret urns : • none
Errors: SMS_MACHINE, SMS_NO_MA'rCH, SMS_NO'l'_ONIQUE

Service Management System Draft--6 August 1987

Page 50, Section E.1

get_server_locations
Args: (service)
Ret urns : { service, machine}
Errors: SMS SER~CE

9.0.8. Services

get_all_services
Args: none
Returns: {service, protocol, port, description}

add_ service
Args :. (service, protocol, port, description)
Returns: none
Integrity: application should validate all fields
Errors: SMS EXISTS

delete_service
Args: (service, protoco~(*))
Ret urns: none
Errors: SMS_NO_MATCH, SMS_NOT_ONIQUE

update_service
Args: (service, protocol, port, description)
Returns: none
Errors: SMS_NO_MATCH, SMS_HOT_ONIQUE

9.0.9. File Systems

get_all_filesys
Args: none
Returns: {label, type, machine, name, mount, access}

get_filesys_by_label
Args: (label(*))
Returns: {label, type, machine, name, mount, access}
Errors : SMS NO MATCH

get_filesys_by _machine
Args : (machi.ne (*))
Returns: {label, type, machine, name, mount, access}
Errors: SMS_MACBIHE, SMS_HO_MATCH

add_filesys
Args: (label, type, machine, name, mount, access)
Ret urns : none

Athena Technical Plan

Integrity: type must be a known type; machine must exist in machine
table.

Errors: SMS _EXISTS, SMS _TYPE, SMS MACHINE

update_filesys
Args: (label, type, machine, name, mount, access)
Returns: none
Integrity: type must be a known type; machine must exist in machine

Service Management System Draft~ August 1987

Athena Technical Plan

table.
Errors: SMS_NO_MATCll, SMS_NOT_UNI:QUE, SMS_TYPE, SMS MACBI:NE

delete_filesys
Args: (label)
Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_UNI:QUE

9.0.10. RVD

get_rvd_server
Args : (machi.ne)
Returns: {machi.ne, oper_acl, admi.n_acl, shutdown_acl}
Errors: SMS_MACHI:NE, SMS NO MATCH

add_rvd_server
Args: (machi.ne, oper_acl, admi.n_acl, shutdown_acl)
Returns: none

Section E.1, page 51

I:ntegri.ty: oper, admi.n., and shutdown must be vali.d li.st names.
Errors: SMS_EXI:STS, SMS_MACHI:NE, SMS_LI:ST

uJNiate_rvd_server
Args: (machi.ne, oper_acl, admi.n_acl, shutdown_acl)
Ret urns: none
Integri.ty: oper, admi.n, and shutdown must be valid li.st names.
Errors: SMS LI:ST

delete_rvd_server
Args : (machi.ne)
Returns : none
Errors : SMS _ MACHI:NE, SMS NO MATCH
Si.de Effects: deletes all rvd_physical and rvd_virtual entri.es

associated with the server.

get_all_rvd_physical
Args: (machi.ne)
Returns: {device, size, created, modified}
Errors: SMS _ MACHI:NE, SMS NO MATCH

get_rvd_physical
Args : (machine, device)
Returns: {size, created, modified}
Errors: SMS _ MACBI:NE, SMS NO MATCH

add_rvd_physical
Args: (machine, device, si.ze, created, modified)
Ret urns : none
Integrity: machi.ne must exist i.n machi.ne table
Errors: SMS_MACBI:NE, SMS_EXI:STS

delete_rvd_physical
Args: (machine, device)
Ret urns : none
Errors: SMS_MACHI:NE, SMS_NO_MATCH

Service Management System Draft--6 August 1987

Page 52, Section E.1 Athena Technical Plan

Args : (:machi.ne)
Returns: {name, device, packid, owner, rocap, excap, shcap, modes,

offset, size, created, modified, ownhost}
Errors: SMS_MACHINE, SMS_NO_MATCH

get_rvd_ virtual
Args : (machi.ne, name)
Returns: {device, packid, owner, rocap, excap, shcap, modes,

offset, size, created, modified, ownhost}
Errors: SMS NO MATCH

add_rvd_ virtual
Args: (machine, name, device, packid, owner, rocap, excap, shcap,

modes, offset, size, created, modified, ownhost)
Returns: none
Integrity: machine, ownhost must exist in machine tab~e;

machine/device must exist in rvdphys tab~e.
Errors: SMS_EXISTS, SMS_MACHINE, SMS_DEVICE

update_rvd_ virtual
Args: (machine, name, newname, device, packid, owner, rocap, excap,

shcap, modes, offset, size, created, modified, ownhost)
Returns : none
Integrity: ownhost must exist in machi.ne tab~e.
Errors: SMS_NO_MATCH, SMS_NOT_UNIQ'OE, SMS_MACHINE

delete_rvd_ virtual
Args: (machine, device, name)
Returns : none
Errors : SMS _MACHINE, SMS _NO_ MATCH, SMS _ NO'l' _UNIQUE

9.0.11. NFS

get_all_nfsphys
Args: (machi.ne)
Returns: {device, dir, status, a~~ocated, size}
Errors: SMS_MACHINE, SMS NO MATCH

get_nfsphys
Args: (machine, device)
Returns: {Qir, status, a~~ocated, size}
Errors : SMS _MACHINE, SMS _NO_ MATCH

add_nfsphys
Args: (machi.ne, device, dir, status, a~~ocated, size)
Returns : none
Errors: SMS_MACBINE, SMS EXISTS

delete_nfsphys
Args: (machine, device)
Returns: none
Errors: SMS_MACBINE, SMS_NO_MATCH, SMS_NO'l'_UNIQ'OE

get_nfs_quotas
Args: (machine, device)
Returns: {~ogin, quota}

Service Management System Draft-6 August 1987

Athena Technical Plan

Errors: SMS_NO_MATCH, SMS MACHINE

get_nfs_quotas_by _user
Args: (logi.n)
Returns: {machi.ne, devi.ce, quota}
Errors: SMS USER

add_nfs_quota
Args: (machi.ne, devi.ce, logi.n, quota)
Returns: none
Inteqri.ty: machi.ne must exi.st, user must exi.st
Errors: SMS_EXISTS, SMS_MACHINE, SMS USER

update_nfs_quota
Args: (machi.ne, devi.ce, logi.n, quota)
Returns: none
Integri.ty: machi.ne must exi.st, user must exi.st
Errors: SMS_NO_MATCH, SMS_NOT_UNIQUE, SMS_MACHINE, SMS USER

delete_nfs_quota
Args: (machi.ne, devi.ce, logi.n)
Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_UNIQUE, SMS_MACHINE, SMS USER

9.0.12. Printers

get_all_printers
Args: none
Returns: {pri.nter, type, desc}

get_printer_info
Args: (pri.nter)
Returns: {pri.nter, type, desc}
Errors: SMS_NO_MATCH

add_printer
Args: (pri.nter, type, desc)
Returns: none
Integri.ty: type must be known
Errors: SMS EXISTS

update _printer
Args: (pri.nter, type, desc)
Returns: none
Inteqri.ty: type must be known
Errors: SMS_PRINTJ:R, SMS NO MATCH

delete _printer
Args: (pri.nter)
Returns : none
Errors: SMS_PRINTER, SMS_NO_MATCH

get_ all_ queues
Args: none
Returns: {queue, machi.ne, abi.li.ti.es, default, status}

Service Management System

Section E.1, page 53

Draft-6 August 1987

Page 54, Section E.1 Athena Technical Plan

get_queue_info
Args: (queue)
Returns: {queue, machine, abi~ities, defau~t, status}
Errors : SMS _QUEUE, SMS NO MATCH

add_queue
Args: (queue, machine, abi~ities, defau~t, status}
Returns: none
Zntegrity: machine must exist; abi~ty is va~idated by app~ication
Errors: SMS_EXZSTS, SMS_MACHINE

update_ queue
Args: (queue, machine, abi~ities, defa~t, status)
Returns: none
Integrity~ machine must exist; abi~ty is va~idated by app~ication
Errors: SMS_QUEUE, SMS_NO_MATCH, SMS_MACHINE

delete_queue
Args : (queue)
Returns: none
Errors : SMS _QUEUE, SMS NO MATCH

add_printer_to_queue
Args: (printer, queue)
Ret urns: none
Integrity: printer and queue must exist
Errors: SMS_PUNTJ:R, SMS_QUEUE

delete_printer_from_queue
Args: (printer, queue)
Returns: none
Errors : SMS _PUNTER, SMS _QUEUE .

get_qdev
Args : (machine)
Returns: {device, physica~, machine, status}
Errors: SMS MACHINE

add_qdev
Args: (device, physica~, machine, status}
Returns: none
Integrity: machine must exist; app~ication must verify that

physica~ device exists.
Errors : SMS _EXISTS, SMS _MACHINE

update_qdev
Args: (device, physica~, machine, status)
Returns: none
Integrity: o~y status may be updated
Errors : SMS _NO_ MATCH, SMS _NOT_ UNIQUE

delete_qdev
Args: (device, machine)
Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_ONIQUE

get_queue_device_map

Service Management System Draft-6 August 1987

Athena Technical Plan

Args : (machine) .
Returns: {queue, device, machine, server}
Errors: SMS MACHZNE

add_queue_device_map
Args: (queue, device, machine, server)
Returns: none

Section E.1, page 55

Zntegrity: queue, device, machi.ne must exi.st; application must
verify that server program exists.

Errors: SMS_QUEUE, SMS_DEVl:CE, SMS MACHZNE

update_queue_device_map
Args: (queue, device, machine, server)
Returns: none
Integrity: o~y server may be updated; application must verify

existence of server program.
Errors : SMS _NO_ MATCH, SMS _NOT_ UlUQUE

delete_queue_device_map
Args: (queue, device, .machine)
Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_tJNZQUE

9.0.13. Post Office Boxes

get _pobox
Args: (login)
Returns: {login, type, machine, box}
Errors: SMS_'OSER, SMS NO MATCH

add_pobox
Args: (login, type, mach.ine, box)
Returns: none
Integrity: type, user, mach.ine ~t exist
Errors: SMS_ZXZS'l'S, SMS_'l'YPE, SMS_'OSJ:R, SMS MACIUNJ:

delete_pobox ·
Args: (login, type, mach.ine, box)
Returns : none
Errors: SMS_'OSJ:R, SMS_MACBZNJ:, SMS NO MATCH

9.0.14. Lists

get_list_iDfo
Args: (list_name)
Returns: {list_name, description, flags, admi.n_acl, expdate,

modtime}
Errors: SMS LIST

add_ list
Arqs: (list_name, description, flags, admi.n_acl, expdate)
Returns: none
Zntegrity: expdate must be reasonable; application is responsible

for

Service Management System Draft-6 August 1987

Page 56, Section E.1

f~ags; modt~ set by server.
Errors: SMS_EX~STS, SMS_ACL, SMS DATE

update_list
Args: (~~st_name, descr~pt~on, f~ags, a~n_ac~, expdate)
Returns: none

Athena Technical Plan

Integr~ty: expdate must be reasonab~e; app~~cat~on ~s respons~b~e
for f~ags.

Errors: SMS_L~ST, SMS_ACL, SMS DATE

update_list_admin
Args: (~~st_name, admin_ac~)

Returns: none
~ntegr~ty: a~n_ac~ must be a known ~~st.
Errors: SMS_L~ST, SMS_ACL

delete_list
Args: (~~st_name)

Returns: none
Errors: SMS L~ST
S~de Effects: ~~members of ~~st are de~eted.

add_member_to_list
Args: (~~st_name, member_type, member_name)
Returns: none
~ntegr~ty: member_type must be known; ~~st_name and member name

must be uni.que; ~f member_type is "user" or ~~~~st",

then corresponding user or ~~st must ex~st.
Side Effects: ~f member_ type = "str~ng", entry added to str~ngs

tab~e; ~~st modtime updated.
Errors: SMS_ZX~STS, SMS_TYPE, SMS_L~ST, SMS_USER, SMS_NO_MATCB,

SMS_NOT_UN~QUE

delete_member_from_list
Args: (~~st_name, member_type, member_name)
Returns: none
~nteqr~ty: member_type must be known; ~~at_name and member name

muat be uni.que.
S~de Effects: ~f member_ type is "at ring", then corresponding string

entry is de~eted; ~ist modtime updated.
Errors: SMS_TYPE, SMS_NO_MATCB, SMS_NOT_UN~QUE

get_memmbers_of_list
Args: (~ist_name)

Returns: {member_type, member_name}
Errors: · SMS_HO_MATCB, SMS_NOT_UN~QtJJ:

Mailing Lists

get_all_m.aillists
Args: none
Returns: {~ist}

get_ all_ visible_maillists
Args: none
Returns: { ~ist}

Service Management System Draft-'-6 August 1987

Athena Technical Plan

add_maillist
Args: (list)
Returns: none
Errors: SMS_EXISTS, SMS LIST

delete_maillist
Args: (list)
Returns: none
Errors: SMS_LIST, SMS NO MATCH

Groups

get_all_groups
Args: none
Ret urns : {list }

add_group
Args: (list)
Returns: none
Integrity: list must exist
Errors: SMS_EXISTS, SMS LIST

add_ user _group
Args: (login)
Returns: none
Errors: SMS_USER, SMS LIST

Section E.1 , page 57

Description: Optimized query for creating a user group (list) and
adding the user as a member. Returns SMS LIST if a
list already exists with the user's name.

delete _group
Args: (list)
Returns : none
Errors: SMS_NO_MATCH, SMS LIST

Access Control Lists

get_acls
Args: (service)
Ret urns : {list}
Errors: SMS SERVICE

add_acls
Args: (service, list)
Returns: none
Errors: SMS_EXISTS, SMS_SERVICZ, SMS LIST

delete_acls
Args: (service, list)
Returns: none
Errors: SMS_SERVICE, SMS_LIST, SMS NO MATCH

Service Management System Dran-o August 1987

Page 58, Section E.1

9.0.15. Aliases

get_alias
Args: (name(*), type)
Returns: {name, type, trans}
Errors: SMS_TYPE, SMS NO MATCH

add_ alias
Args: (name, type, trans)
Returns: none
Integrity: type must exist as a trans~ation of

get_alias("alias", "TYPE").
Errors: SMS_EXISTS, SMS_TYPE

delete_alias
Args : (name, type)
Returns: none
Errors : SMS _NO_ MATCH, SMS _NOT_ tJNIQOE

9.0.16. Values

Athena Technical Plan

This section contains values that are neecieci by the server or application
programs for updating the database. Some examples are:

• next users ici

• next ~ist ici

• ciefault user ciisk quota

get_ value
Args : (name)
Returns: {value}
Errors: SMS_NO_MATCH, SMS_NOT_tJNIQOE

add_ value
Args : (name, value)
Returns: none
Errors: SMS EXISTS

update_ value
Args : (name, value)
Returns : none
Errors: SMS_NO_MATCH, SMS_NOT_tJNIQOE

delete_ value
Args: (name)
Returns: none
Errors: SMS_NO_MATCH, SMS_NOT_tJNIQOE

9.0.17. Table Ststlstlcs

get_all_table_stats
Args: none
Returns: {table, retrieves, appends, upciates, deletes, mocitime}

Service Management System Draft-6 August 1987

Athena Technical Plan

qet_query _need
Args: (query, ~ast_get_time)

Returns: {true I fa~se}

9.1. Errors

General errors (may be returned by all queries):

SMS_SUCCESS - Query completed successfully

Section E.1, page 59

SMS_PERM - Insufficient permission to perform requested database access

Query specific errors:

SMS_ACL - No such access control list
SMS_ARGS - Insufficient number of arguments
SMS_CLUSTER -Unknown cluster
SMS_DATE - Invalid date .
SMS_DEVICE- No such device
SMS_EXISTS - Record already exists
SMS_FILESYS- Named file system does not exist
SMS_FILESYS_ACCESS - invalid filesys access
SMS_FILESYS_EXISTS - Named flle system already exists
SMS_LIST- No such list
SMS_MACHINE - Unknown machine
SMS_NFS - specified directory not exported
SMS_NFSPHYS - Machine/device pair not in nfsphys
SMS_NOT_UNIQUE -Arguments not unique
SMS_PRINTER - Unknown printer
SMS_QUEUE -Unknown queue
SMS_RVD - no such rvd
SMS_SERVICE -Unknown service
SMS_STRING -Unknown string
SMS_TYPE- Invalid type
SMS_USER- No such user

10. Specialized Management Tools • User Interface

SMS will include a set of specialized management tools to enable system administrators
to control system resources. As the system evolves, more management tools will become a
part of the SMS's application program library. These tools provide the fundamental
administrative use of SMS. For each system service there is an administrative interface. In
this section, each interface discussed will provide information on the services it effects. The
following diagram:

Service Management System Draft~ August 1987

Page 60, Section E.1 Athena Technical Plan

r- .- -...-- ,
' • ' \

' \.)SE'Q.. ' ~Y"'\t;
\M~ '

'
.. Pft.\O.'tlD~)

I
I

~~~p~ -- _j 

~OUJ~ 

The user interface is indicated by the left hand side of this diagram, the component 
surrounded by the dotted line. 

In response to complaints about the user interface of current database maintenance tools 
such as madm, gadm, and (to a lesser extent) register, the SMS tools will use a slightly 
different strategy. To accommodate novice and occasional users, a menu interface similar 
to the interface in register will be the default. For regular users, a command-line switch 
(such as -nomenu) will be provided that will use a line-oriented interface such as those in 
discuss and kermit. This should provide speed and directness for users familiar with the 
system, while being reasonably helpful to novices and occasional users. A specialized menu 
building tool has been developed in order that new application programs can be developed 
quickly. An X interface is being planned, but is of secondary importance to the functioning 
of the base system. 

Fields in the database will have associated with them lists of legal values. A null list will 
indicate that any value is possible. This is useful for fields such as user_name, address, 
and so forth. The application programs will, before attempting to modify anything in the 
database, will request this information, and compare it with the proposed new value. If an 
invalid value is discovered, it will be reported to the user, who will be given the opportunity 
to change the value, or "insist" that it is a new, legal value. (The ability to update data in 
the database will not necessarily indicate the ability to add new legal values to the 
database.) 

Applications should be aware of the ramifications of their actions, and notify the user if 
appropriate. For example, an administrator deleting a user should be informed of storage 
space that is being reclaimed, mailing lists that are being modified. Objects that need to be 
modified at once (such as the ownership of a mailing list) should present themselves to be 
dealt with. 

The following list of programs will be found on subsequent pages: 
• ATTACH_MAINT -Associate information to filesystems 
• CHFN - change finger information 
• CHPOBOX - change forwarding post office 
• CHSH - change default shell 

Service Management System Draft~ August 1987 



Athena Technical Plan Section E.1 , page 61 

• CLUSTER_MAINT - machine and cluster management 
• DB_MAINT - Database integrity check. 
• DCM_MAINT - Update DCM table entries, including service I machine mapping. 
• LIST _MAINT - List administration (madm & gadm) 
• PRINTER_MAINT - MDQS printer maintenance 
• REG_TAPE- Registrar's tape entry program 
• RVD_MAINT- Create/update RVD server 
• SERVICE_MAINT - Services management 
• USER_MAINT - User information including NFS and PO information 
• USERREG - New user registration. 

For clarity, each new program begins on a new page. 

Service Management System Draft--6 August 1987 



Page 62, Section E.1 Athena Technical Plan 

PROGRAM NAME: ATTACH_MAINT- Associate information to filesystems. 

DESCRIPTION: This program will allow the administrator to associate a user, a project, or 
a course to a m.esystem, whether it is an RVD pack, or an NFS-exported filesystem. Right 
now, each workstation has the file /etc/rvdtab which is manually updated by the operations 
staff. By associating a course to a filesystem in the SMS database, Hesiod, the Athena 
name server, will be able to find arbitrary ruesystem information, and the system will no 
longer require I etc/rvdtab. 

This program will maintain the database tables ufs (fields userid, filesys), and :filesys (label, 
type, machine_id, name, mount, access) 

PRE-DEFINED QUERIES USED: 
• update_user_home- for user to filesys mapping 
• add_ alias - user, project, or course 

manipulates the following fields: (home) - USERS relation. (name, type, translation) 
ALIAS relation. 

• add_ruesys 
• update_filesys 
• delete_filesys 

manipulates the following fields: (label, type, machine_id, name, mount, access) FILESYS 
relation 

SUPPORTED SERVICE(S): 

• Hesiod - filesys.db 

END USERS: Administrators. 

A SESSION USING ATTACH MAINT: 

Service Management System Draft--6 August 1987 



Athena Technical Plan 

%attachmaint 

Attach/Filesystem Maintenance 
1. (fllesystem ) Filesystem Work. 
2. (update ) Update User's Home. 
3. (+ ) Associate with a Filesystem. 
4. (- ) Disassociate from a Filesystem. 
5. (check ) Check An Association. 
6. (toggle ) Toggle Verbosity of Delete. 
7. (help ) Help ... 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 
Command:! 

1. (get 
Filesystem Maintenance 

) Get Filesystem Name. 
2. (add 
3. (change 

) Add Filesystem. 
) Update. Filesystem. 

) Delete Filesystem. 4. (delete 
r. (return 
q. (quit 
Command: 

) Return to previous menu. 
) Quit. 

Command:2 
Update User's Home 
Login name: 
Home Filesys: 

Command:3 
Associate with a Filesystem 
name (user/course/project): 
Filesystem N am.e: 

Command:4 
Disassociate from a Filesystem 
name (user/course/project): 
Filesystem N am.e: 

Command:5 
Check An Association 
name (user/group/course): 

Command:6 
Toggle Verbosity of Delete 
Delete functions will first confirm 

Command:q 
% 

Service Management System 

Section E.1, page 63 

Dran-6 August 1987 



Page 64, Section E.1 Athena Technical Plan 

PROGRAM NAME: CHFN - Finger Information. 

DESCRIPTION: This program allows users to change their finger information. 

The functionality of the old finger should not be changed. A new program (athenafinger) 
should be provided that will ask Hesiod for a user's information, including the location of 
their home directory. If the .plan and .project files appear there, and are world-accessible, 
they will be printed out. So far, there are no changes in functionality-- but the difference is 
that no machine need be specified. The user no longer has to know (or guess at) which of 
the many possible machines his target might be logged into. 

PRE-DEFINED QUERIES USED: 
• get_finger_by_login 
• get_finger_by _first_last 
• update_finger_by_login 

manipulates the following fields: (fullname, nickname, home_address, home_phone, 
office_phone, department, year) .· . 

SUPPORTED SERVICE(S): 
• User Community - finger 

END USER: All. 

A SESSION USING CHFN: 

% cb:fn 

Changing finger information for pjlevine. 
Default values are printed inside of of'[]'. 
To accept the default, type <return>. 
To have a blank entry, type the word 'none'. 

Full name [peter levine): 

Nickname [pete]: 
Home address (Ex: Bemis 304) [24 kilsyth rd Brookline]: 
Home phone number (Ex: 4660000) [1234567]: 
Office address (Exs: 597 Tech Square or 10-256) [E40-342a]: 
Office phone (Ex: 3-1300) [0000]: 
MIT department (Exs: EECS, Biology, Information Services) []: 
MIT year (Exs: 1989, '91, Faculty, Grad) [staf]: 
% 

Service Management System Draft---6 August 1987 



Athena Technical Plan Section E.1 , page 65 

PROGRAM NAME: CHPOBOX -Add I change home mail host. (This program is the new 
chhome.) 

DESCRIPTION: The name service and a mail forwarding service need to know where a 
user's post office is. This program allows the user the capability to forward his mail to a 
different machine. This program is a command line interface. Basically there are two 
options: 

Usage: chpobox [-d I a address] [-u user] 

where: 
-d deletes a currently used mail address 
-a adds a mail address 

Chpobox without any option will return the current state of the 
user's mail addresses (see below). 

PRE-DEFINED QUERIES USED: 
• get_po_box 
• add_po_box 
• delete_po_box 

manipulates the following fields: (login, type, machine, box) POBOX relation 

SUPPORTED SERVICE(S): 

• User Community - forward mail 

END USERS: All. 

A SESSION USING CHPOBOX: 

%chpobox 
Current mail address(es) for pjlevine is/are: 
type: LOCAL 
address: pjlevine@m.enelaus.mit.edu 
% 
%chpobox -a pjlevine@m.enelaus.mit.edu ;adds a new mail address 
%chpobox -d pjlevine@menelaus.mit.edu ;deletes a mail address 
% 

Service Management System DraH-6 August 1987 



Page 66, Section E.1 Athena Technical Plan 

PROGRAM NAME: CHSH - Default shell. 

DESCRIPTION: This program allows users to change their default shell. 

PRE-DEFINED QUERIES USED: 

SUPPORTED SERVICE(S): 

• Hesiod - passwd.db 

END USERS: All 

A SESSION USING CHSH: 

%chsh 

Changing login shell for pjlevine. 
Current shell for pjlevine is /binlcsh 
New shell: /binlcsh 
Changing shell to /bin/csh -
% 

Service Management System Draft-6 August 1987 



Athena Technical Plan Section E.1, page 67 

PROGRAM NAME: CLUSTER_MAINT - This program manages machines and clusters. 

DESCRIPTION: Handles the relationships ofvarious machines and clusters. 

PRE-DEFINED QUERIES USED: 

MACHINE: 
• get_machine-'by _name 
• add_machine 
• update_machine 
• delete_machine 

manipulates the following fields: 

(name, machine_id, type, model, status, serial, ethemet, sys_type) MACHINE relation 

CLUSTERS: 
• get_cluster_info 
• add_cluster 
• update_cluster 
• delete_cluster 
• get_machine_to_cluster_map 
• add_machine_to_cluster 
• delete_machine_from_cluster 

manipulates the following fields: 

(name, description, location, cluster_id) CLUSTER relation 

SERVICE CLUSTERS 
• get_all_service_clusters 
• add_service_clusters 
• delete_service_clusters 

manipulates the following fields: 

(cluster_id, serv_label, service_cluster). 

SUPPORTED SERVICE(S): 

• Hesiod- cluster.db 

END USERS: Administrator. Staff. 

A SESSION WITH CLUSTER_MAINT: 

[See next page] 

Service Management System Draft---6 August 1987 



Page 68, Section E.1 

Cluster Maintenence 
1. (machine ) Work on Machines. 
2. (cluster 
3. (service 
4. (map 
5. (toggle 

) Work on Clusters. 
) Service Clusters. 
) Machine to Cluster Mapping. 
) Toggle Delete Confirmation. 

6. (list 
7. (help 

) List All Valid Queries. 
) Help. 

r. (return 
q. (quit 

Command: 

Command:! 

1. (get 
2. (add 
3. (update 
4. (delete 
5. (put 
6. (remove 
7. (map 
r. (return 
q. (quit 

Command: 

Command:2 

1. (get 
2. (delete 
3. (add 
4. (update 
5. (map 
r. (return 
q. (quit 
Command: 

Command:3 

1. (get 
2. (add 
3. (delete 
4. (update 
r. (return 
q. (quit 
Command: 

Command:4 

) Return to previous menu. 
) Quit. 

Machine Maintenence 
) Get Machine by Name. 
) Add Machine. 

) Update Machine. 
) Delete Machine. 

) Add Machine to Cluster. 
) Delete Machine from Cluster. 

) Machine to Cluster Mapping. 
) Return to previous menu. 

) Quit. 

Cluster Information 
) Get Cluster Information. 
) Delete Cluster. 
) Add a Cluster. 

) Update Cluster Info. 
) Machine to Cluster Mapping. 
) Return to previous menu. 

) Quit. 

Service Cluster Maintenence 
) Get All Service Clusters. 
) Add a Service Cluster. 
) Delete a Service from a Cluster. 
) Update Service Cluster. 

) Return to previous menu. 
) Quit. 

Machine to Cluster Mapping 
Machine Name: 
Cluster Name: 

Command:5 
Toggle Delete Confirmation 
Delete functions will first confirm 

Command:q 
% 

Service Management System 

Athena Technical Plan 

Draft-6 August 1987 



'~ 

Athena Technical Plan Section E.1, page 69 

PROGRAM NAME: DB_MAINT -Data base integrity checker/intersective constrainer. 

DESCRIPriON - This program systematically checks the database for user date 
expirations, INACTIVE status fields, and does a complete integrity check ofthe lists when 
a user or list is deleted. The program will also alert the system administrator if a user's 
expiration time has been reached and if there is an inconsistency with the database. This 
is the program which provides interactive constraint capability. The program is invoked 
automatically every 24 hours. 

PRE-DEFINED QUERIES USED: 

• To be determined 

SUPPORTED SERVICE(S): 
•SMS 

END USER: Administrator. Cron (automatically invoked). 

Service Management System Draft~ August 1987 



Page 70, Section E.1 Athena Technical Plan 

PROGRAM NAME: DCM_MAJNT -Add/update DCM table entries. 

DESCRIPTION: This program allows the administrator to "check in" server description 
files, and associated information. The dcm reads the server table and uses the information 
to update the system. It is through this program, therefore, that update interval, target 
path, and flles used, to name a few, are entered. This program is a menu-driven program 
and is invoked with the command dcm_maint. 

PRE-DEFINED QUERIES USED: 
• get_server_info 
• add_server 
• update_server 

manipulates the following fields: (update_interval, target_dir) SERVERS relation 

SUPPORTED SERVICE(S): 

• SMS Hesiod - sloc.db 

END USERS: Administrator. 

A SESSION WITH DCM_MAINT: 

Data Control Manager Maintenance 
1. (change_host_info) Modify host-specific info for a server. 
2. (add_host_info) Create new entry for the table. 
3. (delete_host_info) Remove an entry from the table. 
4. (list_host_info) List entries by host or service. 
5. (change_service) Modify info for an existing service. 
6. (add_service ) Create new service. 
7. (delete_service) Remove an entry from the table. 
8. (list_service) List services. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 
Command: 

Service Management System Draft~ August 1987 



Athena Technical Plan 

Command:1 
Change table entry [host: ATHENA-P0-1.MIT.EDU, service:] 

.1. (show ) Show values of entry. 
2. (last_ti.me ) Change the last_ti.me field. 
8. (success ) Change the success field. 
4. (override ) Change the override field. 
5. (enable ) Change the enable field. 
6. (value1 ) Change the value1 field. 
7. (value2 ) Change the value2 field. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 

Command: 

Command:2 
Create new entry for the table 
Which hostO: 
Which service[]: 

Command:8 
Remove an entry from the table 
Which hostO: 
Which service[]: 

Command:4 
Modify info for an existing service 
Which service[]: 

Command:5 
Modify info for an existing service 
Which service[]: 

Modify existing service 
1. (show ) Show fields of service. 
2. (interval ) Change the interval field. 
8. (target_path ) Change the target_path field. 
4. (instructions) Change the instructions field. 
5. (dfgen ) Change the dfgen field. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 

Command: 

Command:6 
Create new service 
Which service[]: 
service_name interval target_path instructions dfgen 

Add service to database? [y]: 
Service created 

Command:7 
Remove an entry from the table 
Which service[]: 
No entry found for service . 

Command:8 
List services 
Which service[]: 
service_name interval target_path instructions dfgen 
hesiod /dev/null /dev/null 
pop /dev/null /dev/null 

Section E.1 • page 71 

Service Management System Dratt--6 August 1987 



Page 72, Section E.1 Athena Technical Plan 

PROGRAM NAME: LIST_MAINT- List Administration 

DESCRIPTION: This program handles mailing lists, and group lists. The general 
approach to this program is to identify the list type which will need updating. The program 
is, among other things, a combination of the current madm and gadm programs. 

The notion of a list in the SMS world is an entity which contains members. These members 
are not limited to users, and, in fact, can be machines, users, mail addresses, and even 
other lists. Additionally, a list has an owning access control list, acl. For a user who wishes 
to have himself own a list the process is simple. Upon registering, a user will be placed on a 
list, where the list's name is the user's name and the list's contents are the user himself. 
This will allow that user to "own", or more precisely, associate an acl, to a new list. In 
listmaint, where a user creates lists, the entry "administrator ACL" must be another list. 
Based on the above, however, this entry may be the user's name. 

A list also may be associated with many functionalities. For example, a list may be a 
mailing list and a group list. This allows the same list to be used differently. Listmaint 
provides the mechanism to associated a list with a given type of function. Because of this, 
however, the user must create a list frrst. This seems obvious in discussion, although a 
deficiency the the program does not intuitively presume. The sample session below 
highlights this case. The command "listmaint" invokes this program. 

PRE-DEFINED QUERIES USED: 
• get_all_mail_lists 
• add_mail_list 
• delete_mail_list 
• get_list_info 
• add_list 
• update_list 
• delete_list 
• add_member_to_list 
• delete_member_from_list 
• get_members_of_list 
• get_all_groups 
• add_group 
• delete_group 

manipulates the following fields: (name, type, list_id, flags, description, expdate, modtime) 
LIST relation 

(list_id, member_type, member_id) MEMBERS relation 

(member_id, string) STRINGS relation 

(capability, list_id) CAPACLS relation 

(list_id) GROUPS relation 

END USERS: All. 

SUPPORTED SERVICE(S): 
•/usr/lib/aliases 

A SESSION WITH LISTMAINT: 

Service Management System Draft-6 August 1987 



Athena Technical Plan 

%listmaint 
List Maintenance Functions 

1. (list_menu ) Manage List Parameters. 
2. (member_menu ) Manage Membership of Lists. 
3. (group_menu ) Manage Groups. 
4. (mail_menu ) Manage Mailing Lists. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 

Command:l 

List Creation and Deletion 
1. (get_list_info) Get information about a list. 
2. (add_list ) Create a new list. 
3. (delete_list) Delete a list. 
4. (update_list) Update characteristics of a list. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 
Command: 

Command:2 
Change membership 

1. (list_members) List all members of a list. 
2. (list_lists ) List all lists to which a given (user,list,string)belongs. 
3. (add_member ) Add a new member to a list. 
4. (delete_member) Delete a member from a list. 
r. (return ) Quit.n to previous menu. 
Command: 

Command:3 
Groups 

1. (list_groups ) List all groups. 
2. (add_group ) Add a group. 
3. (delete_group) Delete a group. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 
Command: 

Command:4 
Mailing Lists 

1. (list_mail ) List all visible mailing lists. 
2. (add_mail ) Add a mailing list. 
3. (delete_mail) Delete a mailing list. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 

Command: 

Command:q 
% 

Service Management System 

Section E.1, page 73 

Draft~ August 1987 



Page 74, Section E.1 Athena Technical Plan 

PROGRAM NAME: PRINTER_MAINT - Printer maintenance. 

DESCRIPTION: This program will manage printers and queues for the Multiple Device 
Queueing System (MDQS). It handles associations between printers and machines, 
printers and abilities (such as windowdumps, postscript, etc.), machines, printers, and 
queues, and printers and printcaps. 

PRE-DEFINED QUERIES USED: 
• get_all_printers 
• get_printer_info 
• add_printer 
• update_printer 
• delete_printer 
• get_printer_ability 
• add_printer_ability 
• delete_printer_ability 
• get_all_queues 
• get_queue_info 
• add_queue 
• update_queue 
• delete_queue 
• add_printer_to_queue 
• get_qdev 
• add_qdev 
• update_qdev 
• delete_qdev 
• add_queue_device_map 
• update_queue_device_map 
• delete_queue_device_map 
• get_all_printcap 
• get_printcap 
• add_printcap 
• update_printcap 
• delete_printcap 

updates the following fields: 

(name, printer_id, type, machine_id) PRINTER relation 

(printer_id, ability) PRABILITY relation 

(name, queue_id, machine_id, ability, status) QUEUE relation 

(printer_id, queue_id) PQM relation 

(machine_id, qdev _id, name, device, status) QDEV relation 

(machine_id, queue_id, device_id, server) QDM relation 

SUPPORTED SERVICE(S): 

• Hesiod - printers.db 

END USERS: Administrator. Staff. 

Service Management System Draft-6 August 1987 



Athena Technical Plan Section E.1 , page 75 

PROGRAM NAME: REG_TAPE - Add or remove students from the system using 
Registrar's tape. 

DESCRIPTION: Each term, when the Registrar releases a tape of current students, the 
system administrator must load the names of new users and delete all old users. This 
program will automatically use the Registrar's tape as a .means of keeping current the SMS 
database. 

PRE-DEFINED QUERIES USED: 
• update_user 
• update_user_status 

manipulates the following fields: (status, expdate) USERS relation. 

SUPPORTED SERVICE(S): 
•SMS 

END USERS: Administrator. 

The problem of deleting users is a sensitive issue. The removal of a user will eflect this 
sensitivity. When deleting a user, the expiration date field will be set to the c rrent date, 
but the user will not be removed. The program db_maint will, among other · ngs, check 
the expiration stamp of the users. If a stamp is within critical expiration time, e program 
will notify the administrator that a time-to-live date has been reached. If ¢orrect, the 
administrator will set the user's status field to INACTIVE and set the time to sbme date in 
the future. When that date and INACTIVE status are reached, the user ~flushea; · If 
incorrect, the administrator will set the date to some time in the future ~4 le~w·the 

r--.. status field ACTIVE. 

Service Management System Draft~ August 1987 

··'1 



Page 76, Section E.1 Athena Technical Plan 

• PROGRAM NAME: RVD_MAINT- Create/update an RVD server. 

DESCRIPTION: This administrative program will allow for the master copy of 
rvddb's to be updated and created. The DCM will distribute the RVD information 
automatically to the servers requiring RVD data. Presently, the system 
administrator keeps an up-to-date file of RVD data and then copies the data to 
the RVD server. 

This program will handle three "tables" in the SMS database: rvdsrv (machine id, 
operations pwd, admin pwd, shutdown pwd)6, rvdphys (machine id, device, size 
create-time, modify-time) , and rvdvirt (machine id, physical device, name, pack 
id, owner, rocap, excap, shcap, modes, offset, blocks, ownhost, create-time, modify
time) 

It will become the responsibility of SMS to maintain the present file 
/site/rvdlrvddb. The DCM will automatically load the RVD server with 
information. 

PRE_DEFINED QUERIES USED: 
• get_rvd_server 
• add_rvd_server 
• delete_rvd_server 

manipulates the following fields: (machine id, operations pwd, admin pwd, 
shutdown pwd) RVDSRV relation 

• get_rvd_physical 
• add_rvd_physical 
• delete_rvd_physical 

manipulates the following fields: (machine id, device, size create-time, modify
time) RVDPHYS relation 

• get_rvd_ virtual 
• add_rvd_ virtual 
• delete_rvd_ virtual 
• update_rvd_ virtual 

manipulates the following fields: (machine id, physical device, name, pack id, 
owner, rocap, excap, shcap, modes, offset, blocks, ownhost, create-time, modify
time) RVDVIRT relation 

SUPPORTED SERVICE(S): 
• RVD - rvddb. 

END USERS: Administrators. 

A SESSION WITH RVD_MAINT: 

6See the section on database structure for explanations of these fields. 

Service Management System Draft-6 August 1987 



Athena Technical Plan 

%rvd_maint 

1. (modvd 
2. (addvd 
3. (addpd 
4. (rmvd 
5. (rmpd 
6. (exchvd 
7. (lookvd 
8. (lookpd 
9. (rvdhelp 
r. (return 
q. (quit 
Command: 

SMS RVD Maintenance 
) Modify a virtual disk. 
) Add a new virtual disk. 
) Add a new physical disk. 
) Delete a virtual disk. 
) Delete a virtual disk. 
) Exchange virtual disk names. 
) Look up virtual disk names. 
) Look up physical disk names. 
) Get help with RVD commands. 

) Return to previous menu. 
) Quit. 

Service Management System 

Section E.1, page n 

Draft-6 August 1987 



Page 78, Section E.1 Athena Technical Plan 

• 

PROGRAM NAME: SERVICE_MAINT - Services management. 

DESCRIPI'ION: This program manages what today is /etc/services: it informs 
Hesiod of the association between services and reserved ports. 

PRE-DEFINED QUERIES USED: 
• get_all_services 
• add_service 
• delete_service 
• update_service 
• get_all_service_aliases 
• add_service_alias 
• delete_service_alias 

manipulates the following fields: 

(service, protocol, port) SERVICES relation 

(name, type, trans) ALIAS relation 

SUPPORTED SERVICE(S): 
• Hesiod - service.db 

END USERS: Administrator. Staff 

• A SESSION WITH SERVICE_MAINT: 

%servermaint 

1. (get 
2. (add 
3. (update 
4. (delete 
5. (toggle 
6. (list 
r.(return 
q. (quit 
Command: 

Server Maintenence 
) Services Info. 
) Add Service. 

) Update Service. 
) Delete Service. 
) Toggle Verbosity of Delete. 

) List All Valid Queries. 
) Return to previous menu. 

) Quit. 

Command: 1 
Services Info 
Service Name: 

[Continued on next page) 

Service Management System Draft-6 August 1987 



Athena Technical Plan 

• Command: 2 
Add Service 
Name: 
Protocol: 
Port: 

Command: 3 
Update Service 
Name: 
Protocol: 
Port: 

Command:4 
Delete Service 
Service Name: 
Protocol: 

Command: 5 
Toggle Verbosity of Deletey handle 
Delete function will fl.rst confirm 

Command:q 
% 

Service Management System 

Section E.1, page 79 

Draft---6 August 1987 



Page 80, Section E.1 Athena Technical Plan 

• 

PROGRAM NAME: USER_MAINT - Adding/changing user information, including 
NFS and post office information. 

DESCRIPTION: Presently, there are two programs which the system 
administrator uses to register a new user: register and admin. These programs 
register the user and enter the private key information to Kerberos, respectively. 
The new application will provide these, and offer a third feature which allows the 
administrator to check the fields of the SMS database and verify that all of the 
database fields are correct. (Currently this is done by exiting the program and 
using INGRES query commands to verify data.) 

PRE-DEFINED QUERIES USED 
• get_user_by_login 
• get_user;_by _firstname 
• get_user_by_lastname 
• get_user_by _flrst_and_)ast 
• add_user 
• update_user_shell 
• update_user_status 
• update_user_home 
• update_user 

manipulates the following fields: (login, mit_id, first, last, mid_init, exp_date, 
shell, status, users_id, modtime, home) USER relation 

This program will also allocate and change home directory storage space. It will 
allow the administrator to check storage allocation on a server and allocate or 
change a storage space for a user. The information will be held in the SMS 
database and will be passed to the name service. The allocation of a user's quota 
can be done automatically at register time, using the amount of quota already 
allocated on each server, and querying each server as to the amount of disk space 
actually available. There are other circumstances, such as the user's living group, 
that should be taken into consideration when assigning a server. (Trying to 
assign people to servers reasonably "near" them is an attempt to decrease the load 
on the network.) 

For home directory allocation and change, the following predefined queries are 
used: 

• get_nfs_quota 
• add_nfs_quota 
• update_nfs_quota 

manipulates the following fields: (machine, login, quota) NFSQUOTA relation 
• get_server_info 
• add_server 
• update_server 

manipulates the following fields: (value) SERVERS relation 

• get_ value - for default PO allocation 

Service Management System Draft--6 August 1987 



Athena Technical Plan Section E.1 , page 81 

manipulates the following field: (value) VALUE relation. 

In the SERVERS relation, the value field represents the total currently allocated 
space (but not necessarily used). In the VALUE relation, the value field 
represents the default nfs quota for a user (used in new user home allocation). 
For example, if 20 users have been allocated to a machine and each has a fllesys 
quota of 2 Meg, then the value field (SERVER relation) will be 40 Meg. If the 
server reports back that its free space is 80 Meg, then another 20 users can be 
given allocated space on this disk. As long as the free space minus the allocated 
space is greater or equal to the quota of the current allocation, the disk is OK to 
use. This mechanism will prevent over allocation of home directory storage space. 
END USER: Administrator. 

- SUPPORTED SERVICE(S): 
• Hesiod - passwd.db Kerberos 

A SESSION USING USERMAINT: 

SMS User Maintenance 
1. (add ) Add new user. 
2. (modify ) Modify user. 
3. (chsh ) Change a user's login shell. 
4. (chdir ) Change a user's home directory. 
5. (chstat ) Change a user's status. 
6. (chpw ) Change a user's password. 
7. (show _login ) Show user entry by login name. 
8. (show _last ) Show user entry by last name. 
9. (show_first ) Show user entry by first name. 
10. (show_full ) Show user by first and last names. 
r. (return ) Return to previous menu. 
q. (quit ) Quit. 
Command: 

Service Management System Draft--6 August 1987 



Page 82, Section E.1 Athena Technical Plan 

• PROGRAM NAME: SMS_MAINT - Master SMS program. 

DESCRIPTION: This program can do anything that any of the above-described 
programs can do, but attendant with that ability is an increase in complexity 
unsuited for random users or faculty administrators. Given this program (and a 
listing in the appropriate database acls), there is nothing in the SMS database 
that you cannot view and update. It is intended for the one or two people whose 
main responsibility is the care and feeding of SMS. 

SUPPORTED SERVICES: 
• All. 

PRE-DEFINED QUERIES USED: 

ALL 

manipulates the following fields: 

ALL 

END USER: Administrator. God. 

Service Management System Draft-6 August 1987 



Athena Technical Plan Section E.1, page 83 

11. Addendum 

The following information supplements the formal text. In general the addendum will 
provide critical information regarding programming application and use. 

11.1. Application Programmers Library 

The following is an application library used by consumers of the SMS database. The 
library reflects a direct mapping between its functions and the above listed pre-defined 
query handles. 

To be furnished. 

11.2. Catastrophic Failure Recovery Procedure 

This section reviews, from an operational standpoint, the procedures necessary to bring 
SMS up after a catastrophic failure. Catastrophic failure is defined as any system crash 
which cannot recover on its own accord, or any automatic system recovery procedure which 
results in database inconsistency or operational failure of the SMS system. 

To be furnished. 

References 

[1] Noah Mendelsohn. 
A Guide to Using GDB 
Version 0.1 (DRAFT) edition, MIT Project Athena, 1987. 

[2] BCN, SPM, JIS, JHS, and friends. 
Whatever the Kerberos document is called 
Athena, DEC, Telecom, and Athena, 1987. 

Service Management System Draft-6 August 1987 




