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FOREWORD 

For the past three years, the Computer Systems Research Division of 
the Laboratory for Computer Science has performed a series of engineering 
studies on the Multics operating system. The goal was to demonstrate the 
feasibility of producing a version of a ful l function general purpose 
operating system with a "security kernel" simple enough that its correct 
operating can be certified by some form of auditing. During this project, 
several results of an interim nature were published as internal group 
memos, and were never subsequently published in any publicly available 
form. This memo contains seven such reports that contain interesting 
results not otherwise reported. These seven reports deal with four areas: 

- Analysis of bugs discovered in the Multics system. 

- Survey of the initial size of the Hultics kernel. 

- Detailed design specification of two level process manager. 

- Performance evaluation of the multi-process page manager. 

D. D. Clark 

1i 
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REPAIRED SECURITY BUGS Dl MIJLTICS 

by J. H. Saltzer 

-1-

A short time ago 1 began to compile a list of all known ways in which 

a user may break down or circumvent the protection mechani81Ds of Multics. 

The list is quite interesting, and available for individual study, but until 

the problems are repaired, it does not seem wise to distribute it widely. 

On the other hand, it would be wise to promote discussion of the topic, so 

as problems are fixed, I will publish their descriptions. 

Examining post-mortems of fixed bugs may initially strike one as unre

warding, but there are some potential payoffs. Since one of our objectives 

is to discover how to construct a simple, auditable supervisor which baa a 

very low probability of such errors, the following questions seem worthy of 

discussion about each bug: 

1. Bow did it get in to tbe system? What design decisions helped create 

an environment in which the error was made? 

2. Why was it not detected immediately, at checkout time or during 

system installation? What better auditing tools might have resulted 

in earlier detection? 

3. Was a design principle violated, thereby leading to the error? 

4. Is this bug a member of a class of errors, of which there may be more 

examples in Multics? What design principle or auditing technique 

might be useful in eliminating all such related errors? 

By way of definition, let us use the following arbitrary definition of 

secu.rity-related problem.s: those which permit 

1) unauthorized disclosure of information. 

2) unauthorized changing of information. 

3) denial of accessibility to authorized users. 

A bug which may be exploited to force a system crash is considered to be in 

the third category. To constrain our area of concern, only security-related 

problems which are part of operating system design or implementation are 
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of interest. For example, the practice of leaving the door to the machine 

room unlocked is not of interest to us. (Unless the cause is a bad design 

feature of the operating system which prevents convenient system operation 

inside locked doors.) 

Recently Repaired Security Bugs 

Several problems were fixed in the installation of system 18.0 

which simplified the access control strategy of the system: 

1. The CACL ring brackets trap. Before system 18.0, every ACL and CACL 

entry contained its ~wn separate ring bracket specification, leading 

to great ease in slipping up, especially if one creates a segment in 

a strange directory without first checking its CACL. This trap vas 

fallen into by the linker in the following way: if a user in ring 4 

called a ring 1 entry for the first time, the linker tried to create 

a new combined linkage section for ring l in the process directory. 

If the user had previously planted a link with the name "combined link

age_!. 01" in his process directory, the combi.ned linkage segment would 

actually be created wherever he wished -- in some other directory, for 

example. Although the linker carefully set the ACL of the new segment 

to permit ring-one access only, the CACL of the target directory could 

give access in higher rings to other users. 

Since 18.0 fi.xed this problem by making the ring bracket specification 

a property of the segment, as specified by the creator, rather than a 

property of the individual ACL or CACL entry. 

It should be noted that a contribution to this trap vas made by the 

automatic system feature of allowi.ng segments to be created through 

links. It would perhaps make sense to allow protected subsystems to 

specify that they do ~want this feature, so that when they create 

a segment by name, it is created exactly where they expect. 

Security Principle: If the protection status of a segment depends on 

its position in the naming hierarchy, the creator of a segment nust be 

given complete control of that position; no one else may be allowed to 

influence its position. 
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This principle is currently at odds with two system deficiencies, 

both of which lead to desire to put links in the process directory: 

a) an inflexible process directory record quota scheme, which 

leads to the need to place some system segments in other 

directories. 

b) the automatic discarding of a process directory contents 

upon accidental process termination, which leads to a need 

to place some system segments elsewhere so that they may be 

examined to discover the reason for the process termination. 

It seems quite clear that solutions to these two practical problems 

must be found before the basic security principle can be followed. 

2. AST overflow bug. Before system 18.0 was installed, there was a re

quirement that whenever a segment is active, all directories superior 

to the segment must also be active. If a user created a directory 

tree deeper than the AST size, he could overflow the AST with unre

movable entries. This would cause a system crash. 

Although this method of systematically crashing the system has now 

been fixed by 18.0, which does not require that superior directories 

be active, it illustrates another unfollowed security principle: 

table overflows and other unexpected (impossible) events must be 

handled gracefully without crashing the system, since the assumption 

that the overflow (or whatever) cannot be systematically produced by 

an attacker is hard to verify; worse, a system change elsewhere later 

may render the assumption incorrect. 

3. Blank names bug. If a directory contained an entry for a segment with 

an all-blank name, deletion of that directory would cause a system crash. 

System 18.0 fixed this bug, which again was based on assumption that the 

user could not force an impossible condition to occur, so no recovery 

for the impossible condition was provided. 
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4. fs_get bug. Entry fa_get$ref name failed to initialize its error 

handler, so when it got an error return from kat_man (e.g., KST 

has overflowed) it attempted to reset a lock it never set, crashing 

the system. This one seems to be a simple programming error, since 

setting up the e rror handler fixed the trouble. Some technique of 

auditing which detects this class of bug is needed . 

One other bug has been recently f ixed, in system 17.11: 

5. Argument validation bug. The software validation of arguments on 

cross-ring calls permitted pointers with indirect modifiers to be 

used, but it did not follow the indirect chain to see where it led . 

A user could supply an indir ect argument pointer in a call to a super

visor entry which writes into an argument, and thrreby redirect the 

writing back into a supervisor database. This bug was fixed by changing 

the software validation to forbid indirect modifiers in argument pointers . 

This bug has some aspects s imilar to those of bug number 1, above, in 

that unexpected indirection can easily be overlooked. 

This bug would have been automatically fixed by the 6180 argument 

validation hardware, which will also automatically take care of about 

30 other argument address va lidation t roubles which have been uncovered 

by systematically auditing the supervisor entries. 
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A CENSUS OF RING 0 

by Victor L. Voydock 

lntroduct ion 

A major research area of the Computer Systems Research Group is to 

investigate the problem of producing a certifiable computer operating sys

tem. The first approach to this problem could have been to attempt to audit 

the Multica ring 0 supervUor as it then exiSted. That is, to read all of the 

programs which comprised the ring 0 supervisor and determine whether or not 

they did what they were supposed to do. It was clear that this was not a 

pra-ctical approach due to the size and complexity of ring 0 and the lack of 

a precise (or even imprecise) specification of its functions . 

An approach which immediately suggested itself was to simplify ring 0 

so that it could be audited. Before this cou4d be done ln any organized 

way it was necessary to have a clearer idea of what was in ring 0, so it was 

decided to take a census of ring 0. This document reports the results of 

that census 

Approaches 

The census analyzes ring 0 from various points of view: 

l. A notebook of ring 0 interfaces. 

2. A functional breakdown of hcs entries. 

3. A functional breakdown of all ring 0 segments. 

4. A breakdown of all ring 0 segments by source language. 

The notebook of interfaces describes every way that ring 0 can be entered 

by means of a call. It is a first (albeit crude) attempt to provide a 

tiunctional specification of ring o. It is available for study to anyone 

who is interested. The f unct lona 1 breakdown of hcs entries will be des-
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crlbed ln a later RFC. The rest of this document deals with approaches 

3 and 4 

Method of Census Taking 

The information in Tables 1-Vl was gathered from the two directories 

which contain copies of all ring 0 object segments: >ldd>hard>bc and 

>ldd>hard>o. The information describes syst~ 20. lOa, a 6180 system in

stalled on 8/15/73. The text section sizes were obtained from the object 

maps. The segment count indicates the number of separately translated Ptl 

and ALM segments. The entry point count includes segdefs, as well as stand

dard entry points. Thus this count is slightly inaccurate since a few pro

cedure segments (such as the FIM) have data segdefs imbedded in them. (There 

is no way to distinguish a data segdef from a procedure entry point segdef.) 

The translator names were obtained from the object segments using object info . . - -
The functional categories (a complete list appears in Table II) are 

somewhat arbitrary. Any attempt to put labels on things is bound to distort 

reality somewhat. Comments on major classification flaws are welcome. 

Most of the categories are self-explanatory. (Table VI has a list of 

all segments in each category.) Physical Storage Management_consists of 

everything which is used to manage the physical storage of segments (core 

control, page control, bulk store control, etc.). Error Handling and Tracing 

contains all error handlers not local to one major category (e.g, syserr, 

verify_lock). Major c~tegortes are listed in Table I. Utility\ (Internal) 

contains utility segments which are not local to one major category (e. g. 

privileged_mode_ ut). Utility (Shared with other rings) contains utility 

programs which are also used by rings- other t han zero (e.g. clock_, signal_ . 
• • .. J 

ptl_operators_). Obsolete contains segments which exist only for compatibility 

(either with other parts of the system or with user programs), and transfer 

vectors which can be thrown away when the appropriate procedures are converted 

to version 2 ptl. All obsolete segments can (eventually) be removed from 

ring 0 without affecting users. 
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General Observations 

Finally, some general observations should be made. 

First, ~ Sl.!.!. much smaller than expected - about 157,000 words of 

text section (executable code and read only data). A large but not mon

strous amount of code. For example, the bare bones of the ptl compiler 

(parse, semantic translator and code generator) take up 118,000 words of 

text and this figure more than doubles if ptl IO, the file manager and the 

ptl runtime library are included. Why then is ring 0 so complex and hard to 

understand? Another measure of complexity is the number of distinct func

tional units - procedure entry points in pll terminology. Ring 0 contains 

1201 entry points. (The bare bones ptl compiler in contrast, contains 325 

entry points.) A large number of entry points ican. ba• a symptom rather than 

a cause of complexity (when it is either) - reducing the number of entry points 

will not necessarily result in a simpler system. But, nevertheless. an in

vestigation should be made to determine why there are so many entry points 

and to what extent they contribute to the complexity of ~ing 0. This investi

gation might provide insight into how the system might be more simply organi~ed. 

The second observation is that ~ amount of assembly language generated 

~ _!.!! ring 2.!.!. larger than expected. 12. 4'f, of non-obsolete ring 0 pro

cedure text is ALH generated. If one views ptl_ operators_ as an extension 

of every object segment and excludes it from the total, the figure drops' to 

about 10'C. ThiS is still quite high, If, as a very rough estimate, one as

sumes an average of 5 words of text section per ptl source statement, our re

sults indicate (see Table IV) that ring 0 consists of about 29,000 lines of 
pt l source and about 15, 000 ll nes of AUi source. 

Fortunately, the amount of AUi can probably be reduced significantly. 

All 64 non-obsolete ALM procedure segments in ring 0 (see Table V), have less 

than 2000 words of text section each and all but 9 have less than 400 words 

of text section each, A cursory study has uncovered 13 segments which can be 

immediately converted to ptl with no loss of system efficiency and additional 

study will undoubtably uncover others. Dave Reed is currently investigating 
this area. 
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Finally, Tables I, II and VI suggest a number of areas in which simpli

fication might yield a significant reduction in the s i ze of ring O: 

initialization -

salvager -

tty dim and 
ARPA network 

interrupt 
handling -

linker, 
search rules -

A Final Conment 

One of the oldest parts of the system. can probably 
be reorganized and simplified 

Its s i ze i ndicates that either it Ls a collect i on of 
ad hoc methods or that the system data bases are not 
well organized with respect to salv.gability. 

Duplicate functions should be merged. An investigation 
should also be made into why the ttydim is ~ large. 

Rich Fei ertaghs work on simplifying the way interrupts 
are handled should greatly reduce the complexity, if not 
the size of the tO system and of Physical Stor~s~ Manage
ment. 

Phil Jansen's work on removing the linker from ring 0 
will remove a complicated function from ring 0 but will 
not greatly reduce the size of ring 0 (about 3%2. 

Through the use of binding, the actual number of free standing proce

dure segments i n ring 0 is 50 (instead of 305), and the number of accessible 

entry poi nts is 909 (instead of 1201). A more judicious choice of binding 

might f urther reduce the number of accessible ent i res. Some accessible 

entri es implement primitives used by outer rings and some functional areas 

span more than one segment. Nevertheless, the number of accessible entires 

i s a rough measure of the connectivity of the various functional areas of 

ring 0. A study of the interrelations of the 50 free standing procedure 

segments may lead to insights i nto the overall structure of ring 0. 
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Table I: Breakdown by Major Categories 
(System 20. lOa) 

<( of Words of 
Category total text section 

Ftle System/Virtual Memory 36. 7 57727 
Inltlallzation/Reconfiguation/ 

Shutdown 15.4 24312 
IO System 15. 23602 
ARPA Network 12. l 19143 
Otllity 9. 14269 
Obsolete 5.3 8400 
Process Management 5. 7809 
Interrupt/Fault Dispatching 1.2 1966 
Other (Put in ring 0 for no 

good reason. ) • 2 353 

Total 
157581 

Total (minus obsolete) 149181 

Number Number 
of segments of entries 

93 476 

56 102 

33 117 

34 158 

38 122 

16 7l 

26 95 

8 59 

l 1 

305 1201 
289 1130 
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Table II : MOre Detailed Breakdown 
(System 2 0. lOa) 

Words of Number Number 
Category text section of segments of entries 

I. File System/Virtual Memory 57727 93 476 
A. File System 18111 24 125 
B. Salvager 11840 15 41 
c. Linker/Search Rules~ 

Working Directory 4572 ll 30 
D. Segment Control 7069 13 29 
E. Physical Storage Management 11719 21 209 
F. Other (things which overlap 

categories) 4416 9 42 

II ;. I nitialization/Reconfigure< 
f'ion;IShotdown 24312 56 10? 

A. Initialization/Shutdown 19501 46 81 
B. Reconf igurat ion 3207 4 7 
c. Other (Things which overlap 

categories) 1604 6 14 

III. 10 System 23602 33 117 
A. IOM/3S5 4533 13 38 
B. Typewriter Control 11558 7 25 
c. IOAM 2963 6 31 
D. Printer Control 2247 4 9 
E. Tape Control 2301 3 14 

IV. ARPA Network 19143 311- 158 

V'. Utility l4~b'J 37 122 
A. Error Handling and 

Tracing 3431 11 28 
B. Ut i lity (Internal) 1923 7 41 
c. Utility {Shared with other 

rings) 8915 20 53 

VI. Obsolete 8400 17 71 

VII. Process Management 7!109 26 95 
A. Process Creation/Status/ 

Destruction 4655 19 32 
B. Inter-Process Communication 18!16 2 ll 
c. Traffic Control 1943 2 40 
D. Timers/i ps masking 375 3 12 

VIII. Interrupt/Fault Dispatching 1966 8 59 
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Table Ill: Breakdown by Bound Segment 

(System 20. lOa) 

Bound Segment Name 

bound_ .>:>!> _w i red 
bound_active_l 
bound_error_actlve 
bound_erro r_wl red 
bound_file_s~~tem 
bound_gim_active 
bound_ init_ l 
bound_i n i c_.: 
bound i o in l t 
bound:iom_ac~ive 
bound_iom_imp_dim_ 
bound_iom_imp_scatu~ 

bound_ium_~>li red 
bou nd_m::. e g_p r i m 
bound_networku_ 
bo~nd_page_con~rol 

bound_p roce::.~_crealion 

bound_::.alvager 
bound_::.s::._active 
bound_::.~s_Hi red_ 
bound_::.~~tem_fa~lc~ 
bound_tc_wi red 
bound_ temp_ l 
bound temp ~ 
bound:ccy_actlve 

Words of 
text section 

lu4U 
lho 
lt.5l 
li.U4 
2291>4 
l:tOI> 
nit. 
.>Lb4 
t.i4b 
U~liO 
7.J6'+ 
4.>t.U 
tJSILIJ 
lui'+ 
bl~L 
!J!>:>i 
7.Jt.IJ 
J.J.<t.)" 
'+O.)~ 

.)~.)O 

J.Jl-<o 
14.) t. 
o\Lto 
bllb 
nou 

Words of 
linkage 
section 

4c. 
\IIi 
10-. 
!:IIJ 

tJ:JL 
112 
.>04 
LOO 
144 
Llu 
~7u 
::u.o 
44u 
c.b 
7t.U 
.>io 
.. lu 
.Jiolo 
bO 
44 
u 1u 
lob 
t. 7.: 
1U4 
Uu 

Number 
of entries 

1.) 
lt. 
IJ 
lq 

llU 
11, 
14 
7 
::. 
4() 

.>!. 
£.) 

2:1 
7 
t.L 
l.J 
L7 
.>!> .. .~ 
lo 
111 
lu 
J.7 
:> 
21 
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Table IV: Breakdown by Language 
(System 2 0. lOa) 

4; of Words of Text Number of Segments 
Category AU! AU! PL/I AU! PL/I 

Interrupt/Fault Dispatching 70.2 1381 585 7 1 
Utility 41.4 5907 8362 l5 23 
Obsolete 35.5 2989 5411 9 7 

Process Management 23.6 1842 5967 4 22 
Initialization/Configura-

tion/Shutdown 14. 3406 20906 10 46 
File System/Virtual Memory 7 0 4 4273 53454 19 74 

IO System 6.9 1628 21974 8 25 
ARPA Network .5 92 19051 1 33 
Other o. \) 353 0 1 

Total 13. 6 21488 136093 73 232 

Total (minus obsolete) 12.4 18529 130652 64 225 

Total (minus obsolete and 
p.t1_operators) 10. l 14711 130652 63 225 
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Table V: List of ALM Procedure Segments by Category 

Words of Words of Number of 
Category Language text llnkage entry polncs Segment Name 

l-SI 
l-SI 
l-SI 
l-SI 
l-SI 
1-:.n 
l-SI 
l-SI 
l-SI 
l-SI ,ltC 
2-ID 
2-ID 
2- 10 
2-10 
2-10 
Z-10 
2-10 
3-FS,SC,S 
3-L 
3- L 
3-L 
3-S 
3-sc 
3-SC,SSI·I 
3-SSM 
3-SSM 
3-SSII, 
3-SSI·I 
3-SSI·l 
3- SSt.l 
3-SSI·I 
3-SSM 
3-SStl 
3-!:iS~I 
3- SSt.l 
3-SS~I 
4-PC 
4-PC 
4-T 
4-TC 
!>-I 
5-1 
5-IOC 
5-I OC 
5-1 OC 
5-P 
5-P 
5-TP 

a 1m 
a 1m 
a 1 r.1 

a l1a 
alr.1 
alm 
alm 
a ln 
alm 
a 1m 
alm 
a 1m 
alm 
a 1m 
alm 
alm 
a 1m 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
a 1m 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
alm 
aim 
a 1m 
alm 
alm 
alm 
alm 
alm 
a 1m 
alm 

llti 
1712 
2~+2 
262 
272 
30 
38 
382 
G4 
288 
220 
240 
272 
28 
2Y7 
320 
4 
58 
172 
62 
Yb 
154 
46 
80 
104 
1300 
136 
142 
218 
220 
220 
234 
336 
52 
563 
80 
34 
6 
28 
1774 
12 
38 
22 
511 
8 
430 
587 
20 

5b 
8 
8 
8 
8 
22 
10 
36 
14 
76 
32 
90 
18 
8 
102 
74 
8 
8 
14 
8 
8 
20 
10 
12 
60 
142 
72 
3(i 
52 
3ti 
Sb 
42 
36 
16 
12 
24 
16 
8 
18 
19u 
12 
8 
8 
24 
10 
8 
10 
8 

0 
0 
0 

1 
1 
1 
1 
4 
3 
5 
4 
21 
1 
3 
15 
9 
2 
2 
2 
1 
3 
G 
2 
5 
2b 
21 
6 
7 
5 
H 
20 
2 
15 
7 
19 
5 
2 
1 
3 
3':l 
1 
1 
4 
9 
1 
1 
1 
1 

boot.strap2 
bootstrap! 
slt_managcr 
pre_l ink 2 
pre_l i nk_1 
bu i 1 d_temp 1 a te_pc.Js 
shutdo,m_s,~i tch 
tape_readcr 
privileged_mode_i nit 
init_processor 
signaller 
wired_fim 
fault_error 
pari ty_check 
i i 
fim 
return_to_ring_O_ 
hash_ index 
get_defptr 
datmk_uti 1_ 
lot_maintainer 
salv_free_store 
kst_man 
get_ptrs_ 
page 
page_faul t 
device_control 
free store 
bulk=store_control 
pc_trace 
master_pxss_page 
pre_page 
pd_ut i 1 
meter_ disk 
page_e rror 
page_ ut i 1 
level 
gate_ inl t 
vclock 
pxss 
ioam_check 
call_detacher 
dn355_utll 
iom_manager 
ds tint 
prt_300_conv 
prt_ccnv 
tape_checksum_ 
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table V - page 2 

Words of Words of Number of 
Category J,anguage text linkage entry points Segment Name 

t.. - E a lm l Oll 56 3 emergency_shutdo~m 
G-E aim 18 10 1 check_trai ler 
G- E alm 24 16 1 syserr 
6- Ut a lm 138 34 3 1·1i re_stack 
b- Ut alm 22 8 1 fm_checksum_ 
b- Ut a lm 21.1 Hi 3 get_proc_ id 
u- UI a im 501 74 18 privileged_mode_ut 
IJ - l..d alm 61 lli 1 absadr 
6-US a 1m 10 12 1 clock_ 
b-US a lm 14 8 2 unwinder_uti 1_ 
6-US a 1m 18 8 3 all_rings_uti 1_ 
b-US alm 206 8 li condition_ 
6-US a 1m 28 10 2 wired_utillty_ 
u-US alm 381 8 42 5 p11_operators_ 
6-US alm 917 8 2 forml ine 
7 - I• a l m 92 6 1 i mp_ s ta tus_d rIver 
8-U a 1 r.1 113 8 1 o 1 d_ freen_ 
8-0 alm 12 lb 4 fas t_hc_i pc_tv 
8-0 a 1m 143 10 1 ol d_a 11 oc_ 
8- 0 a 1111 2574 14 13 p1l_operators 
8- 0 a 1m 30 8 1 move 
8- 0 a 1m 50 54 23 sss_act i ve_tv_ 
8 - 0 alm 53 8 2 o1d_area_ 
8- 0 a 1m iJ 10 1 tty _ rea tl_t v 
t-U a 1 r.1 8 12 2 t ty_1..r i te_tv 
8- 0 llll 220 32 2 accept_a1m_obj 

Note: see table VI for an explanation of category abbreviat ions. 
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Table VI: List of Ring 0 Segments by Category 
(System 20. lOa) 

The following category abbreviations are used: 

1. tnltialization/Reconfiguration/Shutdown 
RC - Reconfiguratlon 
Sl - Shutdown 

2. IH - Interrupt/Fault Dispatching 
3. File System/Virtual Memory 

FS • File System 
L - Linker/Search Rules/Working Directory s - Salvager 
SC- Segment Control 

SSM • Physical Storage Management 
4. Process Management 

PC - Process Creation/Status/Destruction 
IPC Inter- Process Communication 
T Timers/ips masking 
TC Traffic Control 

5. IO System 
I - IO\M 

IOC - IOM/355 
P - Printer Control 
TP - Tape Control 
TT - Typewriter Control 

6. Utlli.ty 
E - Error Handling and Tracing 
UI - Utility (Internal) 
US - Utility (Shared with other rings) 

7. N - ARPA Network 

8. 0 • Obsolete 

Multiple tags indicate segments which fall in multiple categories. 
e.g. a tag of FS,S indicates a segment used both by the File System and 
the Salvager. 
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Ten Size Llnkage Si.ze Number 
Category Language (words) (words) of entries Segment !'>a me 
1-~c oil ~bo 32 ·-, 

:~su270_r-!contl;. 
1-RC v Zo 11 ~032 a~ 1 ,.ec:>nfl~ 
1- >tc v2o 11 Bl .s .. ~ ~dd_menory 
1- RC v2o 11 ;t :l 31:1 ) jr,leta_~j_reccrds 
1- S I a Ill llb IJU j ooots t rao2 
1-SI aim 1712 il ) :>ootstraol 
1-SI aim 2'+2 8 ~ sIt _ma"la J<Cr 
1-SI aim ze.2 d l :>re_lln1<_ 2 
l-SI aim Z72 s 1 ore _II "1'<_1 . 
1 - S 1 aim so 2l l Oullct_temolarl _oo; 
1-SI a111 l!l 10 l :; nut down_s.,l tch 
1- S I a Ill H2 3b ~ tao .. _ ~a a 1\<r 
1- S I aln QO, 14 5 orlv11eQ?~_mco£_lnlt 
1-S I till 11~~ .. a 1 l"lltld llH_dims 
1- S I Oil L 0:1 3d L svser~_!nit 
1- S I t.ll 1 '! 2 .... .. :>el.,tol_Sol~S 
1-S I oil 55o, o2 ? snur::~,.,n 

1- S I oil 397 3b 1 lc.ao_s,ste.., 
1-S I ol1 .. &9 11? l rc_1n11 
1- S I ol1 .. 7J lt2 1 seg'lle"lt_loaoe r 
1-S I Oil 73 2& 1 clock_ln1t 
1- SI Pl1 .;a 2b 1 bu11d_temo lot ~_js~~s 
1- SI pll 73 3b l ln1t1al1zer 
1- S I ott 7<+ .. &8 2 uoda t e_ss t_oll 
1-S I 0 11 383 20& .. lnlt 1lll ze_ fault s 
1- SI olt ~2 22 1 flna_::>erlon;,rc.l 
1 - S I ott Y8 31+ 1 tc_shutoo .. n 
1-SI v2ol1 1?57 72 1 scs_l"llt 
L-SI v2o 11 137 32 1 !l'llt_narjcore_~5tas 
1-S I v2o 11 t5.:>o 3'+ 1 ttv_1"11t 
1- S I v2olt 11;3 38 1 i nl t _;;vs_var 
1 - Sl v2o 11 lb .. 2b 1 1nlt131lH_ \Hil" 
1- SI v 2o I 1 1701 75 2 1 n 11 _o-anc"les 
1- S I v2oll 1d7 6b .? lnl t_:o I ll•ct I o-s 
1-S I v2o 1 22J 3& 1 In I t_- o o I _ l.ll r 
1- S I vlo 1 252 2b 1 JnH5_inl t 
1-S I v2o 1 n 18 1 l o_lnlt 
1- SI vZo 1 300 .... z ~lred_shvldown 
1- S I v2o 1 325 22 ~ na><e_sJ .. 
1- SI v2o 1 30 ... 36 z tr'.lce_lnlt 
1-S I v2o 1 382 3& 11 t aoe_lo 
1-SI v2o 1 -t3b 10~ 1 laoc_l"llr 
1· S I v2o 1 .. ~ 1'+ 1 ! nl t_str _se-~ 
1-S 1 v2o 1 527 2 .. 1 lon_Jar<s_lnlt 
1-S I v2o 1 -:i5:l 28 ~ nal<~_o-ancnes 

1-S I v 2o 1 11 12 t oulo<_store_1niT 
1-S I v2v 1 751 3,j 1 l"IIT_i:>t 
1- S I v2o 1 ,.,7 .. u 1 iC3>_1"1it 
1- S I v2o 1 S':l 2u 1 orl'ltar_lnit 
1-S I v Zo 1 35& <til .. ::lsul'IJ_Inlt 
1- SI, RC aim 2!ld 7o , In! t _:>rocessor 
1-SI,RC ol1 .. so 82 3 ;; too_cou 
1•SI,RC pit .; .. 22 1 fln::l 
1•SI,RC v2o 1 1 l?l 26 1 :lrJ:>_I-.lt 
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Text She Linkage Size Number 

Category Language (words) (words) of entries Segment Name 

1- SI,RC v2pl1 153 22 2 freec:>rO? 1-SI,RC v2o 11 533 84 2 start_cou 
2- I 0 alii! 220 32 .. s!-;nall ar 2- IO aim 24'l 9& 21 ,;!reJ_fl'll 2- I 0 aim 272 16 l fault _error 
2- I 0 aim 2d B 3 :>ar!tv_ check 2- I 0 aim 297 102 l:i l l 
2- I 0 aim 320 74 3 f !m 
2- IO aim ~ 8 2 retur~_t:>_rlng_ J_ 
2- I 0 v2o 11 585 34 '+ :>arlty_f"lul t 3-F S 011 l05o 5& 5 ac I _ 
3- FS oil lb.3 28 1 ::necK_gate_..,cl_ 3-F S oil 176 .. ts a 5 aoo~nJ 3- FS oil 2U. 38 3 ringO_ln!t 3- FS Oil 2c5 30 2 3CC_ Il$T_ 3- FS Oil 275 22 1 matcn_;tar_ 3-F S olt 2d2 52 1 force_.access 3-FS oil 337 40 .. QUO t a" 3- FS oil S5 26 2 :luota_ut!l 3-F S olt 3:;5 40 :; fs_alloc 
3- FS oi l 5t.t9 72 7 r!n~or _ 
3-FS olt oSU 78 2 oel _ d!r_tre e 3- FS pl1 862 128 ' f!nJ_ 
3- FS v2oll 1056 So 3 5 tar 
3- FS v2p 11 1160 9 .. 3 Jelentry 3- F S v2o 11 1232 78 1~ set 
3- FS v2o 11 148 .. 8t. 1l ouota J - Fs v 2o 11 t&b2 70 13 status _ 3- FS v2o 11 212 20 2 nake_5<!J 
3- FS v 2p 11 2437 to:. 17 3Sd 
3- FS v2o 11 .. 37 34 ~ level_il _ 3• FS v2o 11 <t91 34 3 ts_move 3-FS v2p 11 559 0'+ .5 c hna'11e: 3- FS v2o I 1 566 62 3 truncate 3- F S, S pit 1087 52 :; ;cc_nane_ 
3- FS, SC oil 197 30 l nove_f!le_ map 3- FS, SC oil 304 5& .. dlr_contro l _er - or 3- FS, SC pit 337 52 2 access_mode 3- FS, SC ol1 465 7!! j sum 3- Fs,sc,;; aim 58 8 2 hash_ !noex 3-Fs,sc , ; oil 572 56 '+ ...,asn 
3- L aim 172 1'+ ! ,1et_defotr 
3- L aim <.>2 8 1 oatmk_ut!l_ 3- L aim 3& 8 s lot _malntalnE:r 3- L pll 134 2/o 1 get _dafname 3- L V 2o I 1 1036 b8 + l!nK_s~ao 3- L v2oll 125 20 ? .Jnsnap_s:r~lce 3- L v2p 11 .?34 28 1 ri!st_of_;1atmk_ 3- L v2o 11 313 30 1 get_;1afnao;e _ 3- L v2o 11 632 36 1 lnltlat~_search _r.Jils 3- L v2o 11 77 C s .. 7 t s _ searcn 3- L v2ol1 398 ob ' llnk_ma n 3- s aim 15<t 2~ " salv free_stora 3- s oil 1J87 40 2 sa I v _ cneck_ threaa .s- s pll 1G67 80 2 sa l v_ chack_ ma p 3-S olt 1207 82 1 salv_reoulla_alr~ctJry 3- S pl1 140 8 60 1 s a l vage_ ent ry 3- S PI! 194 32 1 sa l• _clean_ast 3- S pll 1979 1 00 5 salvage_dlrectory 
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Table VI - page 4 
Text Size Linkage Sl!:e Number 

category Language (words) (words) of entries Segment lla"me 

3- s ott 2'+7 .. o J i a I v _ rr unca tE 
3-S pl1 3&9 5tl ·~ sa tv_,,..,.., 
.3 - s Oil J72 5 .. 1 Solv_ del'.! t e _o l r 
3· S pl1 '+21 .. a s salv_::>·lnt 
3-S pl1 51b 5'+ ; Sol v_c..,ecK_r·t r 
3-S oil :) \1 7 38 1 Sdlv_•eou!lo_nama~ 

3-S ot1 7bl '+!! sal v_reocd I o_a;: I 
3-S v2o 11 1 .. '+1 88 z on_tl"la _ ;;at vag~r 
3-SC al111 .. & 10 z ><St_ll3"l 
3- SC pll 115 32 l -<ST_i!"ltry_;:rec~ 

3·SC Oil 373 30 l ac tiv;;t" 
3- SC oil .. 36 '+o 2 setfa-Jits 
3- sc o tl .... J 3'+ 2 -<stsr:n 
3- SC Oil 5'+9 ~oa 2 u c.d at~ o 
3-SC v2p 11 10'+4 76 ~ 'llaki!unkn' "" 
3- :; c v2P 11 ;;a.; &'+ 2 ::> o-.1 n .J f 3 u I t 
3- SC v2o 11 o:>2 0~ ) .:l.!3Ctiv3T~ 

3· SC vco 11 o87 62 l !>i!;_ f3ulr 
3·SC v2o 11 :.89 5b .. lnltl!te 
3·SC v2ol1 720 5'+ 1 ~i!T_3Sf~ 

3-SC v2o ll 732 .. c z maKel<"lo .. n 
3• SC, L v2o 11 129& bo l .. 1 s _ ~e t 
3·SC , SSM aim ;o 12 j ~et _otrs_ 
3· SS1 aim 10'+ &0 .!o :1.091: 
3- S S'1 aim 1300 1'+2 21 :>a~~-lault 
3- S S'1 aim 136 7"£ , -;levlc3 _c::>n t ro I 
3- S $'1 aim 1'+2 3& l f r·ce_storE: 
.3 · SSM aim 218 52 :) :>uiK_stora_co"trol 
3- SS'1 a im 220 3b 1-+ oc_rr~ce 

3· SS'1 aim 220 ;u lJ naste• _oxss_r,aga 
3· SS'1 aim ~3 .. .. z , 

ore _o3~e 

3- S S'1 aim 336 36 15 :>o_utll 
3-SSM aim 52 1b 1 'lloJter _ctlsk 
3· S S'1 a t m ;&3 12 19 o3t,~e _~rror 

3· S S'1 al11 ~0 2'+ 5 ::>a-Je_utl l 
3· SS1 pl1 123 32 l iSSlqn_devlc~ 

3• SSM pll 2YO 60 3 9 ~ t _o Is k_m P. H. rs 
3- s 5'1 ol1 J;l8 58 1 'llove_ oevlce 
3-S~ pl1 .. zo 58 1 oc_,., i--a~ 

3· S S'1 pl1 -+97 ;z •dre_:>r oc 
3- S S'1 ott 7'+2 78 1; ?C_ trace_ol1 
3 - s s-1 vZo 11 15'+8 S;) + ::>c_aos 
3• S S'1 vZo 11 18 /o7 52 to jsu1-3u _c;>nt ro 1 
j- s $'1 v2o 11 Z2S9 82 ll :>C 
<t· IPC Oil 3&8 bO ' fast _hc_ lpc 
<t · I PC v 2P 11 -.68 5<t 0 nc_ loc 
!+ · PC aim 3:. l b ) li!val 
•·PC a111 0 '} 1 ;Jat~_ln1t 

.-PC pll 132 '+2 3 otm 
<t•PC ol1 .i.&l .. a ? 1r.1 t _oroc 
.. - i'C ott ZCt 2 .. L stoo_::>roc~ss 

.. -PC pll 2t.1 loS l act I v> t e_sEc 95 

.. - PC oil 261 58 ) j eac t _o roc 
<t· PC Oil 283 !+8 l jeac tlvat~_ seys 

<+ - PC pl1 371 80 l t ermtr.3ta_oroc 
.. -P C ptl -tll5 3!! 1 '11 aKeST3Ck 
.. -P C pl1 70 .. a 3 oroc_l nfo 
.. - PC ol1 ~0 26 z liCCass _ll lol 
.. -PC v 26» 11 1250 88 3 act_o~oc 
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Text Si:te Llnkage Slze Number 
Category Language (words) (words) of entrles Segment Name 

'+· PC v2o 11 134 2o l oroc_l..,t_nandler 
'o · PC v 2o 11 175 2& 1 out ~d-o_c:;~l l_n& n.11!!-
,.- PC v 2o 11 175 3~ s -•n~_31arm 
-. - PC v2p 11 ll 12 1 ~et_oa,le_trac..c 

'+· PC v2o 11 o67 48 1 1rltl31lzc_kst 
't · PC v 2o 11 7; lO 1 ~~t-~-~c~ss_uS&9e 
'+· T al~ 28 18 3 vcloc« 
'o· T v2o 11 258 30 5 S'? t _a I Jl"ll_t 1 "·t.l" 

• · T v 2o 11 ~9 20 ) 1 os_ 
<+ ·T C a im 1774 195 3<.:l 0 xss 
,. . TC pl 1 1&9 30 l "lrej Dill 
s- I a1111 12 12 1 loam_::necK 
5- I al111 38 8 1 call_ 1: t acner 
s -I oil 1b1 34 s loam_vt1 
5· I olt 198 50 7 :1stn_ 
5- I Oil ·~98 52 ') 1 oam_.J t 
5-I v2o 11 185& 7b t3 loam_ 
; - ro: aim ~2 8 + :1n3:.5_.Jtil 
5- Io: a im :Hl 21, ~ 1 t)m_ 'no flO -J'"'f" 
5·1 OC aim <l 10 1 :Lit Jnr 
5- IO: v 2o 11 14 .. 18 1 ~1m. 
s- ro: v2o 11 1o16 so J :1nH5 
5- ro: v2o 11 173 16 1 ~loc_itar 

5- IO:: v 2p 11 210 30 ~ Ji,_alloc 
s - I o: v2o 11 32 1"- 1 cnannel 
:; - ro: v2p 11 381:1 32 1 JlmJ 
s - I o: v2o 11 393 32 1 111:11 
5· IOC v2o 11 :. .. 18 l ::"ccr< 
s- I o: v2o 11 :176 72 f> .J111_d., . ' ,n 
5 - 10: v2p 11 }'+ 18 1 >•m2 
5- P aim .. Ju s 1 ort _3JJ _CC"\V 
S· P aim 587 10 1 ort_c:'lv 
5- P v2o ll 2-.2 2G 1 orlnter_status 
5- P v 2o 11 ~~6 8b 0 orinter _ .jcm 
5· TP aim 20 8 1 TaOl_C.., dCkSllm_ 
5• TP v2o 11 1792 8'< 11 teem 
; - TP v2pl1 +89 3o 2 tdc,_!:t3tus 
5• T T oil 116 26 1 rtv_.J"IIo::" 
S• T T oil .. 153 2d~ 7 Tty_lnt?r 
S· TT p i t <+79 2u 1 t t y_co"l 
5·TT oi l &7& 48 ; Tty_lr~E 

5-TT v2o 11 1!!83 3ti 1 ttv_reo.J 
7• TT v2ol1 21J3 3u i?. rrv_,.•ira 
7· TT v2o 11 21:.b oG i t tv_i'IJex 
o- E al111 10b 5b 3 e'lle~ }e"\CY_SI"Iutdo"" 
o · E a im l iS lu 1 cn~cK_ t rJll.:r 
o• E a im Z<t 15 1 S YS~r• 
o- E Pll 103 2d , 

J~ou~_cneco< -o- E pl1 21 l~ 1 : o I I_!):> s 
::~ - E p ll z:>., .lb s rln:OI_O_o ·H•K 
o-E v ~o 11 1030 S.:' :.Joy_f •JU'IlO 

o·E v Zo 11 19 16 1 rln~_Zdro_cl~an uo 

o· E v2o 11 l!>3 2l 1 veri fy_l 'c" 
o• E v2o 11 obU 12+ s rr~ca 

i•E v2o 11 JJa 7 .. J s YSt:rr _r~..a I 
6•UI a1111 13P. :s .. 3 "lrt_i t ac" 
o•UI alnt a 8 1 tm_chacKsum_ 
&- Ul al<~~ 2'> l& s J2t_o-.>c _ ld 
&- UJ a1 .. .>01 7'+ li ~rlvll~~~o-~ooc_ur 
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Text Size Linkage Size !-:umber 
category Language (words) (words) of entries Segment Name 

o· Ul aim !>1 1o 1 !Z osoa,. 
&- UI oil 183 32 .. thr.!a::J 
&· UI "2o I 1 ~9Z 52 11 I OCk 
o·US aim 10 12 ! ~IO:t< 

&- us a' '' l" 8 z unw!noo~r_utll_ 
:, - us a im ld 8 l d I I _r l n •H_u t 1 t_ 
o · US al'11 ZOo ll , :l)"'j l t I o•' 
o- :~s aim 28 10 ! wlru ·1_u t 1l1 t v_ 
:. · JS aim !818 1+2 j :>I !_::>:>~r H.)r;> 
o·US aim 317 8 ) lor'!ll!"'~ ---o· JS oil 121 2!1 5 CV_0!'1_ 
o- vs oil 133 32 l uf'!a ... e_c,~rs_ 
&- us oil !-.J 32 .. ~v_oac_ 

o- Js ott .. 9 2t. ~ un!ou.!_o!ts _ 
b- US Oil j85 5~ .. Jot.;_tirr.<:l_ 
&- us otl l3d .. ~ • ::>D)o!ct_lnto_ 
o· US v2o 11 13o ld 1 3raa_assi,Jn_ 
c. - us v2o 11 2112 lZ 1 fr'lel'\ 
&- US v2o I 1 355 20 .! 2 I I DC 
o· US v2o 11 3b7 16 ) ~rea_ 

o·US v 2o 1 1 2>27 18 • i!~nilt_ 
o• US v2ol1 ~ .. 20 ~ try_t:> _untock_lvc~ 
7· N at:n 32 8 L lmo_stat~i_dr!var 
7·N pl 1 till 3 .. ~ I mo_,1et _out t er 
7·N otl 1~3 21+ 1 lmo_Jio031_s t atus 
7·N otl llll JZ L J o'!l_l'11o_Jc.,_rea;J 
7·N Oil l23ll 13? t .. lo"'_l'll::>_:lc'l!_1nit 
7· N ott 12e!8 1'+• ? 0 '1Co_maln_ 
7-N ot l t .. o 2<. ) imo_t"'reJO -
7· N ott l7i'd 173 ; "'C:l_ 
7·'4 ol1 18.? "" ; I mo_.n-<euo 
7· N ott 1':13 3" 1 iom_in:>_jcm_~ rir~ 

7-N oil til~+ 38 3 Jmo_utll_wlr~.J 
7•N pll 19<. .... ; l mo _uti I 
7· N oil ZuZ 30 1 lmo_wr! t !_servl:e 
7· N oil 211 5b ; lmc._s~rv!ce 
7- N oil a.z .. .J 5 "'Co_rlng_ 
7-N pit 2'+29 244 ~ l::>m_I'11P_Hatus 
7· N oi l ,--_,, ou s lmo_'lllsc 
7· N oil .?713 't12 • "'CP_ t :l:>O_ 
7-N oil U<. 3d 5 lm::>_Jat_~lreo_ouffe~ 
7·N oil zn 36 1 I .no_ 11 oo 1 l_qu~:ue 

7·N Oil ?.9:.1 .. z ~ I mo_mark_nos t 
7•N oil JO'l 5~ 1 •rno_reau 
7-~ o I t 317 SIS ; !m;>_l:>ck 
7·N olt 32 2b l I mo_c 1 ~" lu:J 
7• N oil .o;, 5(, ~ !.,o_ .... ltt 
7 - ~ oil ,31 S2 ! lmo_l"l:Jut_oroc&s;Jr 
7·N oil ""9 9ll ; imo_lnlt 
7·N oil o12 132 ?l lmo_~rrcr 

7·N oil ,;:;7 5b • l mo_or::ler 
7·N oil 72o 7d • "'CO_uf!l_ 
7· N ol1 7 .. 1 1~o "lco_status_ 
7·N ol1 77 3 72 ; l mo_!nout_orvc~ssor lnt 
7·N oil dtl7 6!1 7 lno_attdch 
7· N oil H 30 1 1'11o_rel e ase _~ 1r~1_::>ulfar 
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Table VI - page 7 

Text Size Ll nkage Size Number Category Language (words) (words) of entries Segcnent Name 
b-0 aim lJ..> b 1 o I c1_r r<'rn_ o-(J aim J.L llo .. fast_hc_i pc_tv o-0 aim 1 .. .> l(J J. old _a II oc:_ .. -o aim ~.) 7 .. l4 1> oll_ ... o,.raLOr!:o u- 0 a i m .>U 

" 1 move_ .. -o aim :.u .)4 <..) l>!.s_act i vP_tv_ o - U aim :>.> b L O!d_drPil_ .. -o aim u 1U J. Lt>_rPad_tv o-0 aim 0 J.L L tly_writP_tv o- u pi .. .l.ut 
"' u u:.ercode o-u p l ... J. J. t>l 4w l dC_P'lC k o- 0 pi J. ·~u .Jt. ~ iiCC eo t_a 1 n•_vh j t.-0 pll ... :..~ ... J. I i !. t_(; i r o-0 PI J. Lb.J 'IU l !.lilli.IS o-0 VtpiJ. lt.L l~ J. ~f' t_en t r ~ _n.,,..,. c.-C.. vtpl J. J.:>.)(> 74 !> ex_c;rl b-(J \fLP)J. 17v" '"' 1.1 acl 

lither v~piJ. .):;,.) ... J. oatc_name_ 
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SOME MULTICS SECURITY HOLES WHICH WERE CLOSED BY 6180 HARDWARE 

by J. H. Saltzer, Phillippe Janson, and Douglas Hunt 

This note is the second of a series* which describes design and imple

mentation errors in Multics which affect its ability to protect information and 

provide service. The purpose of the series is to try to discuss what incorrectly 

laid groundwork permitted each trouble to creep in. 

It is interesting (and comforting) to note that no security problem yet 

discovered has required any change in the original overall design of Multics; 

the problems have universally been at the level of detailed design errors or 

implementation slipups; the repairs have been conceptually simple readjustments 

to bring the design or implementation back to the originally intended one. 

A fairly large number of security problems were fixed automatically by 

conversion from the Honeywell 645 to the Honeywell 6180, which has built-in 

argument validation hardware. As will be seen, replacement of a complex soft

ware package with a relatively simple hardware mechanism wss remarkably effec

tive, suggesting that it was a move in the right direction. 

Unvalidated Gates 

In the 645, the following gates to ring zero had no validation of 

arguments at all: 

absentee test (all entries) 
hphcs_ - - (all entries) 
phcs (all entries) 
phnxhcs_ (all entries) 
admin_gate_$guaranteed_eligibiliry_off 
admin_gate_$guaranteed_eligibility_on 

Argument validation coasists of checking each argument to a gate entry to be 

sure it refers to an address to which the caller is permitted access. For ex

ample, if the ring zero program intends to write into the argument (e.g .. an out

put value) then the caller of the entry should specify an address in which he is 

permit:t:ed t:o writ:e. Failure to perform argument validat:ion would mean that the 

caller could specify an address somewhere inside ring zero; if he did, the ring 

zerp program could be used for unauthorized p&tching of the supervisor. It is 

slightly harder but still possible to exploit a gate which only reads its arguments. 

* Previously issued memo in the series: see page 1 of this m.emo . 
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The unvalidated gates had one thing in common: they were all con

trolled by access contYol lists which limit their use to supposedly respon

sible individuals. This control was probably the chief rationalization for 

not putting in the extra effort required to specify the argument validation. 

On the 6180, all arguments are automatically validated by hardware 

checks on the ring of oYigin of every argument. This approach eliminates 

both the extra (and sometimes neglected) effort needed to specify validation, 

and also any possibility of errors in that specification. 

Incorrectly validated arguments 

In the following entries, some argument was validated with more 

leniency than appropriate, permitting the user, typically, to cause the super

visor to write into an area in which the user has no access. 

hcs_$get_ se&_count 
hcs $get entry name 
hcs:$ge(:dbrs -
hcs_$assign_channel 
hcs $check device 
hcs-$get search rule - -hcs_$get_count_linkage 
hca $ipc init 
hcs-$list dir 
hcs:$make:J>tr 
hcs $list dir acl 
hcs:)set_dtd -
hcs_ $stat:us 
imp dim gate $imp read order 
imp-dim- gate-$imp-write order 
netp_$ncp_priv_status -
netp_$ncp_priv_order 
net $ncp status 
net::)ncp:order 
hcs_$acl_ list 

last argument: unvalidated. 
argument validated for wrong type . 
argument validated for wrong usage. 
lst argument validated for wrong usage. 
2nd argument validated for wrong usage. 
argument validated for wrong usage. 
2nd argument validated for wrong usage. 
argument valudated for wrong usage. 
2nd argument validated for wrong usage. 
lst argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
entire argument spec is wrong. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
3rd argument validated for wrong usage. 
5th argument validated for wrong usage. 

This list represents the accumulation of errors over several years of 

specifying argument validation for about 150 user-callable gates. When an 

argument is validated for "wrong usage" it typically means that the gate 

specification says that the gate only reads the argument, when the gate 

actually writes into it. Thus, the validator checks only to make sure that 

the user can read data at the specified address. If the user provides a 

pointer, say, to some location in the "sys_info" segment, in which he has 

read-only permission, the gate, which can write into "sys_info" by virtue of 

its ring-zero location, would then overwrite some item there. 
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Again, the value of the automatic hardware argument validation feature of 

the 6180 is clear: the opportunity for an incorrect software-declared speci

fication is completely eliminated. 

Unvalidatable arguments 

In the following entries, some entry could~ be checked by the 

automatic validator, since the correct method of validation depe.nds on the 

value of some other argumeat. 

hcs_$acl_list 

hcs_$&x_acl_ list 

hcs_$ex_acl_delete 

hcs_$initiate_seg_count 

hcs_ $list_dir_acl 

hcs_$replace_sall 
hcs_$replace_dall 

3rd argument used as both input and 
output. 
3rd argument used as both input and 
output. 
3rd argument meaning depends on 
4th argument. 
6th argument meaning depends on another 
argument. 
4,5th arguments meaning depend on the 
value of 3rd argument. 
3rd argument unvalidatable. 
3rd argument unvalidatable. 

The problem in each case here was deeper than in the previous one: the 

particular choice of arguments lead to impossiblity of validation, and 

therefore to no validation at all. For exa~le, suppose that the third 

argument is an input argument for some values of the first argument, but is an 

output value for others. Then a protection specification which says that 

the third argument ~ be writable would cause some correct programs, which 

i ntentionally provided a read-only third argument, to be declared illegal. 

If, when these entries were first introduced, their documentation had speci

fied that the argument in question must be writable whether or not it is 

actually written into by the supervisor, then the trouble could have been 

avoided (at the cost of an additional obscurity in the user interface) . 

Unfortunately, an after-the-fact change to require writeability might cause 

some correct user programs to stop working, so compatibility prevents 

correction. 

Again, the automatic argument validation hardware of the 6180 provides 

a solution. Since every reference to an argument is separately checked, only 

if the argument is actually used as an output argument will it be checked for 

writeability. 
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EPL argument validation trap 

The argument validator did not c~pletely check out some of the more 

complex specifiers of arguments provided by EPL (the first Multics PL/1 

compiler) programs. Thus, a user could construct an argument descriptor 

which indicated that an EPL specifier was in use, and thereby induce the 

argument validator to allow the call to go unchecked. This problem was 

basically one of historical compatibility: the EPL specifier format and 

organization was designed before the implications of argument validation 

had been considered. When it became clear that certain argument types were 

hopelessly complex to validate, an attempt was made to prohibit (by edict) 

the use of those types of arguments in supervisor entries. After the later 

PL/I compiler eliminated the need for a restriction, some gates were installed 

which utilized the forbidden argument types. The argument validator, un for

tunately, provided a default of "acceptable" for EPL arguments of unvalidatable 

type, so it turned out that one could call the new entries with programs 

written in EPL, which was still an available compiler. The alternatives of 

changing the default to "unacceptable" would have effectively denied access 

to the new gates for those users not yet ready to rely upon a new unseasoned, 

PL/I compiler. Thus, through a series of design slipups, errors in judge

ment, and bad practices, this protection bypass got into the system. 

The 6180 argument validation hardware again automatically performs 

the appropriate access checking at argument usage time, independent o£ the 

format of the structure passed as an argument. 

ECT terminate bug 

The design of the Inter Process Communication (IPC) event channel 

table (ECT) had the following flaw : when the user-ring IPC created an ECT, 

it then called a ring-zero entry to inform the ring- zero part of IPC of the 

location of the ECT. The pointer in question was stored by the ring-zero part 

of IPC in a ring-zero data base, for future use in passing IPC messages back 

to the user. The user could now terminate the segment containing the ECT, 

and initiate some other segment (to which he had only read access in the user 

ring) with the same segment number as the former ECT. Then, the ring zero 

part of the IPC, using its stored pointer, would write the user ' s messages in 

a place the user had no business writing into . 
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With the 6180 hardware, the pointer passed by the user to the ring

zero part of the lPC facility, and stored there, contains the ring number of 

the user's ring. Thus all reference made by ring-zero IPC using that 

pointer will be validated as though they came from the user ring. If a seg

ment for Yhich the user did not have Yrite access is subst~tuted, the attempt 

of the ring-zero procedure to write in it will fail. 

Exploitation of ~-ring master-mode procedures 

The 645 processor had a "master-mode" property, which bypassed all 

protection checks; certain procedures such as the fault interceptor and 

signaller had to operate in master-mode, yet in the ring of the user causing 

the fault or receiving the signal. To prevent exploitation, the hardware 

permitted calls to a master-mode procedure only to an entry point at location 

zero in the segment; the procedure waa expected to very carefully examine the 

circumstances of its entry to insure tha t it was not being exploited . 

Upon review of the standa~ entry sequence code actually being uaed, 

it was discovered that the design did not prevent exploitation at all. Three 

dist,nct problems were found, each of which could be exploited in several 

ways. First, the entry sequence was designed on the assumption that index 

register one had been set to indicate which of several actual entry points 

to the segment was desired. The entry sequence correctly assumed that the 

caller might place an out-of-bounds value in index register one, so it 

checked to make sure that the value was within reasonable limits. Unfortu

nately. if the value was out of bounds, it called out to the system trouble

handling procedure, which pr oceeded to "crash" the system. Thus, any user 

could cause a crash by transferring to location zero of the signaller, with an 

appropriate value in index register one . The second problem is that the call 

to the system trouble handler was done by an indirect transfer out through 

the linkage section of the master-mode procedure - - but this call occurred 

before verification that the linkage pointer had been set to the currect 

value. Thus, the user could plant a special value in che linkage pointer, 

transfer to location zero of the signaller, and cause the master-mode proce

dure to transfer anywhere he wished -- including into the middle of another 

master-mode procedure. Again, by preparing registers ~n advance, and choosing 
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carefully the code sequence to transfer into, one could develop an exploi

tation. Finally, the third problem is that safe-storing of the processor 

registers was done assuming that the register value in the stack base regis

ter did not need to be checked, since it was locked. Unfortunately, a 1971 

modification to the system resulted in the stack base register being unlocked, 

so the user could, by loading the stack base register and transferring to a 

legal entry point of the signaller, cause it to safe- stpre the processor 

register almoat anywhere. 

Although the concept of securing a master-mode procedure still aeema 

viable, the implementation is apparently very fussy . By checking the Multics 

System Programmers' Manual it can be established that the first two problems 

have existed at least since 1967, and probably earlier. It was precisely be

cause of uneasiness about the securing of master-mode segments that the 6180 

was designed without a master-mode, and with consistent and builtin hardware 
call and fault facilities. 

Execute inatruction ~ special protection checks 

On the 645 processor, the checking of permission was special cased 

when an "execute" instruction was encountered, since the time of decoding 

of the instruction to be executed is delayed to a time when most instructions 

are in the midst of execution. 

Apparently as a result of a field change, one of the special cased 

checks was accidentally disabled if the execute instruction was located 

in an odd location and it addressed an offset of zero in another segment. 

In this situation, write permission was not checked, so one could write 
into a read-only segment. 

Here we have an example of the danger of special cases -- they tend 

to cover rare occurrences, which means that routine operation does not 

exercise them. It also points out the recertification problem: even if a 

design is originally sound, every later modification should be accompanied 
with a recertification. 
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SOME RECENTLY REPAIRED SECURITY HOLES OF MULTICS 

by J. H. Saltzer and D. Hunt 

This note is the third of a series* which describes design and imple

mentation errors in Multics which affect its ability to protect information and 

provide service. The purpose of the series is to try to discuss what incorrectly 

laid groundwork permitted each~trouble to creep in . 

It is interesting (and comforting) to note that no security problem yet 

discovered has required any change in the original overall design of Multics; 

the problems have universally been at the level of detailed design errors or 

implementation slipups; the repairs have been conceptually simple readjustments 

to bring the design or implementation back to the originally intended one. 

Reused address 

Following a system crash, the salvager may discover that a single disk 

or drum page is being used by two or more page tables, a situation which should 

never occur intentionally, but may appear if a crash occurs while updating a 

page table value. In the original design, the page in question was awarded to 

the first page table encountered by the salvager, and later users of that page 

were assigned new pages containing zeroes. Since there is no way to tell which 

of the multiple users was the legitimate one, the present, safer design gives 

all users of a reused page distinct pages of zeroes. This improved design 

helps reduce the chance of one user seeing another user's data because of a sys

tem crash. Ideally, one would make the storage space which holds a page larger 

than the page itself, and store a copy of the segment unique identifier with each 

page when it is assigned to a segment. Then, since pages are identifiable, lost 

or multiply-used pages could be returned to their proper owners with less chance 

of acci denta l i nterchange. 

This problem illustrates an issue which is as yet not very systematically 

approached in large systems: the initial design almost always assumes perfectly 

functioning hardware and software, and as experience is gained about which 

failures are most common, patches are added to protect. The design of the 

* Previ ous ly i ssued: memos are reprinted on page 1 and 22 of this memo. 
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second CTSS file system included forward ~ backward pointers with every 

record of a file; the system always checked the back pointers to see that 

they contained the expected ~slues. As a result, parts of user files were 

almost never interchanged -- a distinct improvement over the first CTSS file 

system which used forward pointers alone, and in which it was a common occur

rence to find someone else' s data in your file. Unfortunately, this parti

cular CTSS lesson did not get transferred to Multics, probably because of the 

extra overhead that might have been involved in drum management. 

Operator login window 

Wheb bootloading Multics, the operator dialed a telephone number to 

log in the "initializer" console, which controls all system operation. A 

hostile user, with careful timing, could dial the number and take over the sys

tem as it comes up. The design was adopted so that system initialization could 

be performed from any available terminal; it was originally intended that the 

operator supply a password, but for some reason that intent was never implemented. 

The design was recently changed to permit use of a terminal which is permanently 

wired to the system; security is higher, but when that terminal breaks, system 

operation may be awkward. The awkwardness can be elimiaated by having several 

available hardwired terminals. 

PSDCT update probl em 

The "file system device configuration table" (FSDCT) contains a bit 

for every storage block in every secondary storage device. A "one" means 

the block is unused, a "zeeo" means it is used . If several devices become 

completely used, a page of the FSDCT may become filled with zeroes . Since 

it is an important table, it is frequent ly backed up by copying it out to 

secondary storage. The procedure invoked for this copying is the standard 

page removal procedure, which has been designed to discard pages of zeroes 

rather than writing them out. The routines which read the FSDCT from 

secondary storage at system initialization time (before the standard paging 

program works) was a non- standard one which did not know that pages of zeroes 

were given special treatment; a system crash resulted whenever the system 

was initialized . In p r inciple, at least, a user with a very large storage 

allotment could exploit thia bug by crea ting many segments just before a 

system shutdown. The ayatam would abut down with an FSDCT conta ining blank 
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page•, and all future attempt• to bootload the system would fail. The bug 

was fixed by revising the FSDCT reading procedure to correctly recognize the 

blank pages during initializat~on. 

This is a category of bug which does not permit the exploiter to 

read information, but merely to deny use of the system to other legitimate 

users. The particular problem illustrates the effect of first using a 

special trick for efficiency, followed by later use of an old procedure 

for a new purpose without reviewing its operation for special tricks. 

Login table overflow 

The list of logins during a single boatload of Multics was stored in 

a single segment with no overflow procedure. A single user, by logging in 

several thousand times, could overflow the segment, making further logins 

by authorized users impo11ible. 

This is another example of a "denial-of-use" bug, but ene which 

could be rapidly rec~ered from by r e initializ ing the system. Ita origin 

lies in the period between 1968 and 1970 when a combination of pressure to 

get going and also a sbort average "system up" time made progr4llllled provi

sions for table overflow look like l non-essential luxury; It has been 

long since fixed by adding an overflow procedure, but its origin is instruc

tive since there may be yet unsuspected protection bugs with the same origin. 

Page eontrol magic number 

An old bardware bug trap places magic numbers in core where a page 

is to be read in, then after reading the page checks . the numbers. If still 

there, it assumes the page didn't come in, and reports a page read error to 

the user. If a user places contrived names containing the magic bit patterns 

strategically in a directory to which he has only append access, he can 

effectively delete other entries in the directory. 

Toe trap has been left in the system, but it has been placed under 

strict operations control by requiring a special "debug" card in the configur

ation deck loaded by the system operator before lootload; operation with 

the debug card in place is done only with special authorization, and leaves 

an audit trail . 
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Retriever acl-setting bug 

The retriever, used to obtain old copies of files from backup tapes, 

used to work as follows: 

l. Create a new empty segment in the user's directory, with an 
access-control-list permitting access to anyone. 

2. Copy the data from the tape into the new segment. 

3. Read the appropriate access-control-list from the tape. 

4. Replace the initial access-control-list with the one read 
from the tape. 

If an error of any kind occurred after completlon of step 2, the retriever 

would exit, leaving the data reloaded but unprotected; the user received no 

warning of the condition. As a result, an explorer of the directory hierarchy 

would typically discover several files to which he had access but should not 

have. 

The problem was repaired by making the initial access-control-list 

grant access to the retriever process only; any errors after that point 

result in a fail-safe inaccessibility of the segment. Since the user who 

requested the retrieval will usually try to immediately use his retrieved 

segment, its inaccessibility will tend to be discovered quickly, and a 

locksmith can be called upon to adjust the situation. 

This problem is a good example of design which did not take 

into account all the implications of an error encountered in an otherwise 

acceptable sequence. 

Process directory record overflow 

If the user generates too much sto~age (more than 500 pages) in 

his process directory, an error is signalled to him. In the original design, 

the signaller used the wrong stack, crashing the system. This bug could be 

exploited to deny service to others at the user's whim. It was repaired by 

having the signaller use the correct stack. It is a good example of the 

effect of complexity (the need for several possible stacks) compounded with 

the difficulty of testing unused and limit conditions . Basically, the 

handlers for rare and unusual conditions tend to be poorly tested simply be

cause normal use, which uncovers most bugs in today 1 s systems, does not 

exercise them. 
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Locked stack ~ problem 

In the design of the 645, a provision was made for the aupervisor to 

lock the value of any base register. This feature was included primarily 

because it was planned to handle faults and interrupts using a stack, and it 

was not certain at the time whether or not use of a stack was possible unless 

the stack base register (containing the stack segment number) was locked against 

user tampering. For several years, Multics operated with a locked stack base 

register whose value was changed by a master-mode procedure as part of the 

ring-switching operation. 

The fault and interrupt interceptors were coded assuming a locked 

stack base at three points, although after the ring design was complete, 

it became clear that the user could, in principle, be safely allowed to 

modify the stack base register. 

With the evolution of the design of the PL/I compiler, it became appar

ent that the extra flexibility of allowing the stack base register to be user 

changeable was quite handy, so the stack base register was unlocked. Unfortu

nately, no one followed through with the three one-line changes to the fault 

and interrupt interceptors required to eliminate their dependence on a locked 

stack base register. As a result, one could load the stack base register with 

the segment numbers of one of the ring-zero stacks, and then wait for the 

next fault or interrupt, which would go to an interceptor which incorrectly 

assumed that because the stack base register bad the expected value, the 

stack pointer register must also be loaded correctly. The result was 

possible overwriting of a ring <1:ero data storage area at the direction of 

the user. 

The problem was fixed by adding the three one-line checks mentioned. 

The underlying trouble here seems to be a failure to follow through all the 

implications of a change in a fundamental ground rule; clearly such changes 

are dangerous and must be approached with all possible caution. (see also 

R!C-46, diacueaion of user-ring master-mode procedures.) 

New ring a tack 3 
The ayatam has an Internal procedure, named "append_branch", which 

<"l"<!lll ea 8 new Aegment. and a utility named "makeseg" which either creates 

a new aeg1Hnt (by calling "append_branch") or returns a pointer to an old 
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one 'f it already exists. Since "append_branch" requires many arguments to 

describe the newly created segment, and "makeseg" auppliea useful defaults 

for most of the arguments, there is a tendency among system programmers to 

call "makeseg" rather than "append_branch", even when use of an old segment 

would be incorrect . In the case of the procedure which creates stacks for 

newly entered rings, the user could create"a segment with the stack name of 

a previously unused inner ring, but with ring brackets allowing him to 

read and write the stack contents. Them, upon calling a procedure in the 

inner ring, stack creation would be automatically triggered. Tbe stack 

creating program called "makeseg", and tbus would receive a pointer to the 

greviously planted stack rather than an indication of an error. The inner 

ring procedure would tben proceed, oblivious to tbe fact that its stack 

was then accessible to programs in outer rings. 

The problem was fixed in moving to the 6180, since the stack 

creation strategy had to be modified anyway; procedure append_brsnch is now 

used, We have here an example of bow a particular combination of too many 

conveniences in one utility program can lead to sloppy consideration of 
the implications of using it. 
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Patterns of Security Violations : Multiple References to 
Arguments 

by Harry C. Forsdlck and David P. Reed 

1. l ntroductlon 

A large class of potential holes In the security of an 
operating system Is characterized by the use of an argument more 
than once. On the surface, this situation appears to be 
harmless: multiple references may be Inefficient, but they seem 
to be functionally equivalent to a single reference. But, are 
they? If the value of an argument could change between one 
reference and the next, the possibility of an error In the logic 
of the program using the argument exists. The assumption made by 
the author of the program that an argument could only be altered 
by the program or agents of the program Is violated . How could 
an argument change In this Invalid way? A simple conceotual 
scheme on a multiple process system Is for one process to execute 
the call, supplying the arguments and a second process which has 
access to the values of the arguments, to perform, at the 
appropriate time, the alteration on the arguments. Whether or 
not a multiple argument reference leads to a breach of security 
depends on how the Information gained from each reference Is 
used. If the results of a test on one reference to an argument 
determine ho1~ the Information of a second reference Is used, then 
a exploitable hole in the system probably exists. More specific 
conclusions on the correctness of multiple references to an 
argument depend on the semantics of the particular program under 
analysis. Richard Blsbey of the Information Sciences Institute 
of USC brought this subject to our attention. He described the 
multiple referencing of arguments as a general pattern for a 
class of security holes and cited several Instances of this 
pattern In Multlcs. 

With these Ideas as motivation, the Multlcs gate entrances 
to ring 0 were examined to determine If such multiple references 
to arguments were being made and If so, the ImPlications of such 
flaws. Of the approximately 170 entrypolnts to ring 0 through 
the hcs_ gate, about 50 were found to make multiple references to 
their arguments. Nine of these Instances were potentially 
serious breaches of security In the Multlcs system. All of these 
breaches are easily fixed by copying arguments and then 
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referencing the local copies. 

2. How to Change the Value of an Argument 

The multiple process method of changing the value of an 
argument Is conceptually simple, although In practice, It Is 
necessary to coordinate the two processes so that the argument 
gets changed at the proper time. This task Is often Impossible 
to accomplish except by chance. A slightly more complex 
mechanism however, nakes the alteration of an argument trivial. 
The combination of Indirect and Indexed - aytolncrement 
addressing and the ability to cascade these modes of addressing 
allows a programmer to set up an argu~ent list so that~ 
reference to an argument accesses a different value. On the 
H6180, Indirect then Tally (IT) address modification Is one of 
the kinds of Indirect addressing and the Increment Address -
Decrement Tally- Continue (IOC) variation on the IT modifier Is 
an example of Indexed - autolncrement addressing. 

First, consider Indirect addressing. Typically, there Is a 
field In an Instruction which can specify that the operand 
address points to a cell (the "Indirect word") which contains the 
actual address of the operand. In addition, with cascading, a 
field In the Indirect word can specify that the Indirection 
process should continue at least one more level . For example, 
the diagram below depicts three levels of Indirection: 

3rd Indirect word Operand 

'\.._no IndIrect I on 

For the lndexed-autolncrement mode, there are two additional 
fields In Indirect words: the lndexed- autolncrement field and 
the count (tally). When an Indirect word with the 
lndexed-autolncrement addressing mode Is accessed, the count Is 
added to the address and used as the effective address of the 
Indirect word . In addition, the count field Is Incremented by 1. 
Thus, each time an Indirect reference Is made through an Indirect 
word with the lndexed-autolncrement addressing mode, the 
effective address Is one location higher. This Is very useful In 
accessing tables -- In our particular case, tables of values 
for a single argument. For example, the dlagra~ below depicts 
two consecutive references to an argument. The Indirect word Is 
part of the argument list set up by the calling procedure . In 
the first reference, the count Is zero and thus the value 
accessed Is the first value In the array of values. 
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First Reference 
flndlrect :-lndexed-autolncreMent 

I Load H •I I I ol 1•1 •I :. va 1 ueO 

value/ 
va1ue1 

accessed 
value2 

Second Reference 
[I tLo~a~diTI ::::·~1~·31:---~> [I :II I1[l ]I~*IC!:• J-1 ----+, va 1 ueo 

accessed value~ 
value1 

value2 

The count Is automatically Incremented by one so that on the 
second reference, the value accessed will be the second member on 
the array. 

If arguments are accessed by Indirection (as they are In 
t~ultlcs) It Is quite easy for a (malicious) programmer to set up 
an argument list so that each reference to an argument accesses a 
different cell. A number of machines (for exampl~ H6180, UNIVAC 
1108) have the addressing features similar to the ones described 
above and thus systems running on these machines are susceptible 
to the problem of arguments changing values at unexpected but 
predictable times. 

3. Classes of Errors Caused by Multiple Argument References. 

The last Section established that multiple argument 
references can cause problems . There are four types of errors 
that arise from multiple references to arguments that are 
characterized by patterns of reading and/or setting the 
arguments. The Illustrations below are stated In terms of double 
references, although the discussion applies equally well to any 
number of multiple references . 

1. Double Reads: In this class of error, an argument Is read 
twice. The value read the first ti me Is tested and the result of 
that test determines how the value read the second time is used. 
The following program fragment Illustrates this type of error: 

If arguMent = 'pds' then switch = 0; 

. 
if switch • 0 then • ••. ; 

else .. • . (reference to argument) . . . . . , 
The value obtained by the second reference to argument could very 
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well be 1 pds', a state that Is Inconsistent with the original l.f 
statement . 

2. Setting then Reading: Another common class of error occurs 
when a procedure initializes an output argument to a certain 
value and then relies on the Integrity of that value. The scheme 
outlined In Section 2 works equally well for reading or setting 
arguments. Thus, it Is possible for a user to cause a called 
procedure to use a value that Is outside of Its control. The 
following program fragment illustrates this type of error: 

a_ename ='mailbox'; 

call delentry$dflle(dlrname,a_ename,code); 

Between the points a_ename was set and used, Its value could be 
changed to any value the user desired. 

>. Setting twice : A slightly less obvious, yet potentially 
equally damaging error arises when an output argument Is set 
twice. Damage results in situations where the value to which the 
argument is first set Is to be hidden from the calling procedure 
by storing the second value. Again, since the scheme of Section 
2 l'lorks equally well for reading and writing a history of 
argument values can be developed . This history Is a potential 
privileged I nformatlon leak. The follol'll ng program Illustrates 
thIs Po I nt: 

argument_code = error_table$entry_not_found; 

argument_code = error_table$no_access_to_flle; 
I• Hide exlstance or non-exlstance of file from user . k I 

4. Passing an Argument: A "delayed" error can arise 1~hen an 
argument to one procedure Is passed directly without copying to 
another procedure. This Is because the value of the argument 
resides In an address space that is not protected (the user's 
address space). In Multlcs, the scheme described In Section 2 
does not cause a problem because an entry In an argument list for 
an argument to the calling procedure points directly to the value 
of the argument . Thus, there can be no malicious addressing 
modifiers In the argument list. The more general multiple 
process scheme, however, Is stilt effective In changing the value 
of the argument . For example, If procedure A Is called with 
argument X by a user procedure, and A in turn calls 8 supplying X 
(without copying) as an argument, then the value of X can be 
changed by the multiple process scheme during the time B Is 
running. This Problem is made more serious by the tendency for 
argument validations to be dropped (for efficiency reasons) In 
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procedures that are Internal to the protected part of a system. 

5. Multiple References to Pointer Qualified Arguments: Quite 
often a pointer to an argument Is passed to a procedure when the 
actual argument Is a complex data structure. Again, the multiple 
process scheme can cause the actual data Item to be altered 
during the running of a called routine. Copying the pointer Into 
a local variable and performing references through this local 
copy does not solve the problem since the actual yalue of the 
argument can be changed by the multiple process scheme. 

4. t~ethods of Recognizing Multiple References 

In a large system It Is very difficult to discover Instances 
of the errors ourllned In Section 3. Two alternative methods of 
attack were taken In out study of Multlcs. One technique Is to 
perform an analysis of the text of all procedures that are 
Interfaces between the critically sensitive part of the operating 
system (ring 0 gates In Multlcsl and user programs. This 
analysis Is aided by the cross reference listing produced by the 
PL/1 compiler. Certain patterns In the cross reference listing 
for arguments Indicate that multiple references are being made. 
The main advantage to this approach Is that If done correctly, It 
will yield~ Instances of multiple argument references. The 
main disadvantage Is that It Is a time consuming task . 

There are two defects In the cross reference technique . 
First, all references are listed together; thus It Is Impossible 
to tell by looking at the list which kind of reference (read, 
write, appearance In an argument llstl occurred. The Inability 
to distinguish In the cross reference listing between argument 
list appearances and reads and writes makes the analysis more 
difficult . The second defect of the cross reference technique Is 
more serious. The appearance of a reference to a name In the 
text of a PL/1 program does not guarentee that there will be a 
corresponding reference to the value of the name In the 
Instructions emitted by the compiler. There could be zero or 
more references depending on optimizations performed by the 
compiler and the form of the actual reference. As an example of 
the last exception, the statement 

x = convert(argument,zl; 

doesn't actually reference the value of the argument. The value 
of z is converted to a value whose type Is the sane as the~ 
of argument and stored Into x. Similarly, a reference to the 
length of a string does not reference the string, but rather the 
descriptor of the string. Thus, searching the cross reference 
list for multiple references can cause false alarms . On the 
other hand, the cross reference list provides no help In spotting 
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references to arguments that are contained within loops. 
It Is conceivably possible to mechanize this process so that 

multiple references to arguments could be discovered by an 
automatic analysis. This task would fit In easily In the 
framework of the PL/1 compiler since all of the necessary 
Information Is already available within the compiler. 

The second technique for discovering multiple argument 
references Involves mon itoring the actual use of arguments passed 
to Interfaces and noting any arguments that were referenced more 
than once. The mechan ism used to exploit multiple references to 
arguments noted In Section 2 can also be used to detect 
multiple references to arguments at runtime . While all multiply 
referenced arguments cannot be detected In this way, many which 
can be exploited via the autolncrement mechanlsn will be found. 
Since these are particularly easy to exploit, detection of them 
Is quI te usefu 1 • 

In order to detect these bugs, a set of special transfer 
vectors were substituted for the ring 0 and ring 1 gates In 
several users' processes. These transfer vectors constructed a 
new argument list which made use of the autolncrement features 
of Multlcs Indirect addressing to keep a count of references to 
arguments via the pointers In the argument list. This argument 
list, which ult i mately referenced the original argument list via 

' a series of Indirect ions, was passed t o the real ring 0 or ring 
1 gate. Upon return, the transfer vector code observed the 
number of references to each argument, and recorded the maximum 
number of argument references In any call in a neterlng data base 
1~hlch had one entry per argument per entry point. 

For those interested, the argument list constructed is 
detailed below. It should be noted that this technique can only 
work If the number of argument references can be bounded and 
small (I.e . , references to arguments do not appear in loops). 
Unfortunately, this was not the case for tty_write, tty_read, and 
tty_order. Consequently, these entry points were not measured 
by this method after the Initial tests • 

Its 
Ide 

.? laddress\tallyi•J 
/ ,(Tally l~ord 

I 

•' 
., 

.~ ., 
Constructed 1 "} 

Argunent ; • 
.. 
,. 

Ll st '·} f3 

Its 

User 's Argument 
Ll st 

There are several deficiencies In using this scheme to 
detect multiple references. First of all, it Is necessary to 
exercise al 1 possible control paths of the system procedure in 
order to find all of the cases of multiple references (so some 
holes may pass unnoticed). Secondly, this technique produces 
many false alarms, since the code produced by the PL/1 
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compiler may produce multiple Indirections through the argument 
for one logical reference (this may or may not be a bug) . 
Also, structure or array arguments may have subparts, all of 
which are singly referenced, but through the same argument 
pointer. Another problem Is that PL/1 sometimes co~les argument 
pointers by indirection upon entry to a multiple entry point 
procedure (the case occurs If the same name appears In different 
positions In several formal parameter lists). This results In 
only a single reference being detected by this technique, even 
though multiple references may be made . The last problem Is 
that arguments which are passed on to Internal routines will not 
be caught, since PL/1 lndlrects through the argunent list once 
to get the address of the argument which Is passed on. Even If 
the argument Is referenced multiply by the Internal routine 
which receives It, this will not be done via the Indirect chain 
provided to the external routine by the transfer vector, and 
will not be counted by this technique. 

l~os t of the bugs whIch were found In the cur rent system by 
the auditing method were also found by the monitoring method . 
This suggests that the latter technique might be useful In 
attempting to prevent possible bugs In the system from being 
exploited, by crashing the user's process if an argument Is 
referenced more than once. <This could be accomplished by 
causing a fault on the second reference by using a fault tag 3 
Indirect word as the second entry in a two element array of 
Indirect words referenced by the Ide autolncrement mode,) 
Certainly, such a firewall has its costs, both In runtime 
efficiency, and In the fact that all Innocent multiple argument 
references must be purged from the system, as well as the 
security holes, in order for the firewall to work. Nevertheless, 
this may well be worthwhile In attempting to prevent 
retrogression in the security of the system for some users with 
high security requirements. 

5. The Semantics of Multiple References 

Once multiPle references to arguments have been discovered, 
there Is a final step needed to determine if a potential breach 
of the security of the system exists . This requires matching the 
information about multiple references gained from the essentially 
syntactic check on the Program with the semantics of the program 
in relation to the rest of the system and the basic assumption 
that arguments can change at any moment . This step is quite 
difficult. To be complete, a similar effort 1~ould be required to 
justify that a multiple reference doesn't cause a security hole 
as to justify that the program~ secure. But, shortcuts can be 
taken: knowledge of the meaning assigned to arguments helps in 
Isolating serious problems from harmless mistakes . 

Of all of the steps in the technique for discovering errors 
due to multiple argument references, this Is the most difficult 
step to mechanize. A very large amount of knowledge about the 
operation of the sYstem must be used to determine whether or not 
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a multiple reference Is a serious error. The najor benlflt of 
searching for the pattern of multiple references Is that areas 
of the program text which deserve close analysis are Isolated. 

6. Results of Applying this Approach to Multlcs. 

An analysis of the Multlcs ring 0 gate entrances was 
performed . First, multiple references to argunents were 
discovered using both the cross reference listing technique and 
the monitor technique. Next, each entrypolnt that had arguments 
that were multiply referenced was analyzed to determine the 
effect of the multiple reference. A list of the entry points 
tested and the results of those tests are found I n Appendix 1. 
Numerous multiple argument references were uncovered. In most of 
these cases we were able to conclude with a high level of 
confidence that no errors result from these references. In a 
number of other cases, however, serious breaches In security were 
discovered. 

The s lmplest and most glarIng error 1~as due to a mul tl ple 
argument reference In "stop_process . " By exploiting the multiple 
reference In the manner previously described, ~process In the 
system could be stopped (Including the lnltlallzer process). A 
less selective denial of service existed In "status_" and 
"status_long"; by setting up a certain form of argument list, 
these routines could be made to lock a lock that would never be 
unlocked, This would eventually cause the system to crash . It 
is possible to direct 11 tty_wrlte" to send an unending stream of 
characters to a terminal. This has the effect of tying up the 
entire system and causing the appearance of a crash. 

Other errors were found that were either deemed less serious 
or less obvious how to exploit. Because of a multiPle reference 
to an argument In "add lnacl entries" It Is possible for a user 
to specify the Initial-access control list f2L sny Lin& on any 
directories that he may create. This seems like a serious error, 
but It Is difficult to see how to exploit lt. In "prlnter_dcm" 
It seems possible, once a printer has been seized, to address any 
other printer. In "tdcm_message", multiple argument references 
make It possible to print Inconsistent messages on the operator's 
console, Finally, assuming that It Is possible to get past the 
"hphcs_" gate, It appears possible to set up Inconsistent 
Information In tables that record the state of tape drives by a 
ca I 1 to "tdcm_add_d rIve" . 

One additional error due to a multiple argument reference Is 
now known . At first we had classified the entrypolnt "sfblock" 
as being In the class of entrypolnts that did not have multiple 
references. A subsequent communication from Richard Blsbey 
Pointed out a fairly subtle error In this entry to the 
supervisor. A portion of one of the arguments contains an Index 
Into a bit string stored Into the PDS (an Important ring 0 data 
base), and Is first validated to be within range. It Is then 
used to select a bit in the bit string to be set to one. If the 
second reference gives an out of bounds Index, then any bit In 
the PDS may be set. Both of the multiple reference detection 
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techniques had failed to find this error. The monitor technique 
failed because the argument Is referenced via a generated 
pointer; the auto- Increment technique for exploiting such holes 
will not work for this Instance. The cross reference listing 
technique probably failed due to human error. 

Several direct conclusions come out of our experience \~lth 
Multlcs. First, each of the multiple reference detection 
techniques discovered multiple references that the other did not 
uncover. In addition, both missed at least one Instance of a 
multiple reference. Tedium accounted for the missed occurances 
In the cross reference listing technique; an automated version of 
this method would presumably not suffer from this llnltatlon. In 
the monitor method, multiple references were mlsserl because some 
program paths were not taken. Second, even when all multiple 
references have been uncovered, one must be~ conservative In 
analyzing programs for correctness . Further, when such programs 
are modified, there Is a strong chance that harmless multiple 
references may 1 ead to serIous ho 1 es; such programs 1~1 11 need to 
be audited on each new Installation. In many cases this Is an 
extremely tedious task for which people are not ~~ell suited. To 
be entirely sure that a multiple reference Is harmless, ~paths 
that a program may take must be traced. Clearly there Is a need 
to develop algorithms which would perform the analysis 
mechanically. 

All of the security holes reported above have been fixed in 
the current Multlcs system. 

7. Solutions to the Problem. 

In the past there have been a number of different reasons 
for copying arguments. Most of these are characterized by the 
need to avoid a fault (directed faults: segment, page, no access, 
ring violation; or Indirect address fault: linkage, fl, f3, 
Illegal procedure) while a lock Is locked. In May, 1967 a 
protocol similar to the one described below was detailed In MSPM 
80.9.02. The suggestion was made that all arguments to a 
procedure be copied and that only these copies should be used In 
the procedure. As various Improvements In the system have 
occurred, some of the reasons for copying arguments have been 
eliminated and some programmers have ceased to copy arguments. 
The results of this work sho1~ that because of the difficulty In 
analyzing the effect of multiple references to arguments, All 
arguments should be copied and validated upon procedure 
Invocation. To be entirely safe, the following pattern of coding 
should be followed for all ring 0 Interfaces: 



-43-

F: procedure(a_argl, a_arg2, •.• , a_argn); 

copy the values of all Input and Input/output arguments 
Into local variables. 

validate local copies with respect to semantics 
associated with them In this rocedure. 

; \ use local copies j 

set output arguments to values of corresponding 
local variables. 

I return 

end; 

By using this conservative coding style, a procedure can be more 
strongly Isolated from Its callers. In effect, we are making a 
better (by no means perfect) simulation of separate domains by 
following suitable restrictions In programming style. It should 
be noted that there are situations where It Is difficult to 
adhere to this style because of efficiency considerations. For 
example, It would be very Inefficient to copy an argument that Is 
a large structure occupying many words of storage. Just as there 
are syntactic patterns for recognizing bugs In programs, the 
Inverses of these patterns appear to be guides for secure 
prograrrrnlng. 

The general Idea of patterns of errors seems to be a 
powerful tool that can be used In an analysis of a system. In a 
very short time we have discovered several serious holes In the 
security of Multlcs. The success of this error pattern resulted 
from its simplicity. The main obstacle In discovering other 
patterns Is not so much the nature of the error but rather the 
suitable simple pattern for which to search . For example, one of 
the recurring types of errors reported In RFC's 5, 46 and 47 and 
In the t~ultlcs Change Requests Is overflowing the capacity of a 
table. Because of the flexibility of the PL/1 language, there 
are many ways to Implement tables . It would be difficult to coMe 
up with a general pattern that matched all of these ways because 
of the many degrees of freedom In the PL/1 language. The 
conclusion Is obvious: What we need are more highly structured 
languages 1~hlch require a programmer to Identify the objects 
being used (for example the language "CLU" being developed In the 
Computation Structures Group of Project t~AC at tHT). In this 
way, simple patterns for complex errors can be developed . 
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Appendix 

Classification of Entry Points In hcs_ 

Of the 170- odd entrypolnts In the hardcore gate hcs_, some 50 
have multiply referenced arguments which were found by the 
auditing and online monitoring techniques . We may classify these 
further Into five classes: 

1 . Those which are probably not security holes. To the best of 
our knowledge, with the way the system Is currently 
structured, these multiple references do not cause any 
problems. Of course, we would feel even safer If al 1 
arguments were copied and the copies referenced. 

2. Multiple references which cause the procedure to be fragile, 
but which probably do not cause security violations. By 
fragile, we are trying to dramatize the fact that the multiple 
references to arguments cause the procedure to be very 
dependent on the current order In which tasks are carried out . 
Alterations In the procedure are very likely to upset this 
delicate balance. 

3. MultiPle references that have not been explored to the depth 
necessary to assign them to one of the other classes. 

4. Multiple references which look as If they produce holes in the 
system, but we can't think of a way to exploit the hole. 

5. t~ultiple references which cause holes ~1hlch we know h0\'1 to use 
to penetrate the system. 

The following list of entrypolnts tells t~hlch arguments< If any, 
are multiply referenced. The notation ' entrypolnt (1,31 1 Means 
that the first and third arguments of entrypoint are referenced 
more than once. If any arguments are referenced MOre than once, 
retnarks are made about which of the above five classes the 
references belong to. 
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Summary of Results 

A summary of the results obtained In our study Is presented in 
the following table. 

Number of entry po i nts examined In hcs_ . 170 
Number of entry points with multiple references. 51 
Classification of multiple references: 

Type 1 Probably O.K. 23 
Type 2 -- Fraflle, but probably O.K . 8 
Type 3 - -Don t know, lack of Information 3 
Type 4 --Hole without obvious exploitation 8 
Type 5 --Hole with known exploitation 9 

Untested entry points 3 

Entrypolnt -- Args referenced more than once -- Type, Remarks 

accept_alm_obj (1, 2) 
acl_add 
acl_addl 0, 5) 

acl_delete 
acl_llst 
acl_replace 
add_acl_entrles 
add_dlr_acl_entrles 
add_dlr_lnacl_entrles (5) 

add_lnacl_entrles (5) 
append_branch 
append_branchx 
append_! ink 
append! 
asslgn_channel 
asslgn_llnkage (1) 

block 
chname 
chname_f II e 
chname_seg 
cpu_tlme_and_ paglng_ 
del_dlr_tree 
delentry_flle 
delentry_seg 

1 

1 

Probably O.K. 

Probably O. K. Arg 3 validated 
after 2nd reference, arg 5 Is 
an array whose elements are 
referenced once each . 

4 - -Hole, without obvious 
explol tat I on. Can operate on 
any ring Initial acl, since 
argument Is validated before 
copying. 

4 --See add_dlr_lnacl_entrles. 

1 - - Probably O.K. This program 
could run In the user ring. 
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delet~acl_entrles 
delete_channel 
delete_dlr_acl_entrles 
delete_dlr_lnacl_ent r les (5) ~ 
delete_lnacl_entrles (5) ~ 
ex_acl_delete 
ex_acl_ll st 
ex_acl_replace 
fblock (1, 2) 2 
fs_ get_brackets ( 3) 1 

See add_dlr_lnacl_entrles. 
See add_dlr_lnacl_ entrles. 

Fragile, 
Probably 
elements 
each. 

but probably O.K. 
O.K. Array whose 

are referenced once 

fs_get_call_name 
fs_get_d I r _name 
fs_get..)TlOde 
fs_get_path_name 
fs_get_ref _name 
fs_get_seg_ptr 
fs_move_f II e 
fs_move_seg 
fs_search_get_l~d I r (1) 1 - - Probably O.K. Referenced twice 

In copy of pointer using old 
version 2 pointer copy . 

fs_search_set_wd I r 
get_al arm_ tImer 
get_author 
get_ bc_author 
get_count_ll nkage 
get_ def nam~ 
get_dlr_rlng_brackets 

get_entry_name 
get_lnltlal_rlng 
get_lps_rnask 
get_llnk_target (~) 

get_ II nkage ( 2) 
get_lp (1, 2) 
ge t_max_l engt h 
get_ma~length_seg 
get_page_t race 
get_process_usage ( 1) 
get_rel_segment 
get_rlng_brackets (3) 

get_safety_sw 
get_safety_sw_seg 
get_ search_rules 
get_seg_coun t 
get_segment 
get_usage_values 
get_user_effmode (5) 
hI gh_lo~t_seg_count 

(3) 1 - - Probably O.K. Array elements 
referenced once each. 

1 

1 
1 

1 

1 

Probably O.K. Return value, 
insensitive. 
Probably O.K . 
Probably O.K. 

Probably O.K. 

Probably O.K. Array elements 
referenced once each . 

1 -- Probably O.K. 



Initiate 
In it I ate_count 
lnltlate_search_rules 

lnltlate_seg 
lnitlate_seg_count 
i oam_ 1 I s t ( 1 ) 

loam_release 
loam status 
i pc_ T n I t ( 6) 

level_get 
level_set 
11 nk_ force 
1 I s t_ac 1 ( 3) 

llst_dlr 
list_dlr_acl (3) 

llst_dlr_lnacl (3) 

1 i st_i nacl (3) 

make_ptr 
make_seg (1, 2, 5) 

makeunknown 
mask_lps 
pre_page_lnfo 
prlnter_attach (2) 

prlnter_order 
prlnter_wrlte_spec la l 
prlnter_detach (1) 

prlnter_wrlte (1, 2, 3) 

proc_lnfo 
quota_get (2) 
quota_read 
quota_move 
read_events (1, 2) 
replace_ac l 
replace_ dlr_acl 
replace_dlr_lnacl ( 6) 

(7) 
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1 -- Probably O.K . Twice referenced 
In copy operation . 

3 -- Don't know, haven't looked at 
It close enough. 

1 -- Probably O.K. Twice 
referenced In copy operation. 

2 -- Fragile, but probably O.K . 

2 

2 

2 

User can cause fault, but no 
locks locked. 

Fragile, but probably O. K. 
See list_acl 
Fragile, but probably O.K. 
See 1 I s t_ac 1 • 
Fragile, but probably O.K. 
See llst_ acl. 

2 --Fragile, but probably O.K. Can 
cause strange KST state with 
blank name. 

~ -- Hole without obvious 
explol tat Jon . Event channel 
saved In user area, then 
referenced. 

Not checked . No listing available. 
Not checked. No listing available. 
5 --Hole. Can cause Inconsistent 

attachment states, since 
device index is validated, 
then used. 

5 -- Hole. Can write on different 
printer than the one assigned. 

1 -- Probably O.K. 

1 -- Probably O.K. 

~ -- Hole without obvious 
exploitation. See 



replace_lnacl (6) 

reset_lps_mask 
reset_worklng_set 
res Lof _da tmk_ 
set_alarm 
set_al arm_ timer 
set_automatlc_lps_mask 
set_backup_dump_tlme 
set_backup_tlmes 
set_bc 
set_bc_seg 
set_copysw 
set_cpu_t I mer 
set_dates 
set_dlr_rlng_brackets (3) 

set_dtd 
set_lps_mask 
set_lp 
set_max_l ength 
set_max_length_seg 
set_p11_machlne_mode 
set_safety_sw 
set_safety_sw_seg 
set_rlng_brackets (3) 

set_ timer 
sfblock (1) 

star_ 
star _11 st_ 
status 
status_ (4, 5) 

status_long (4, 5) 
status_mlnf 
status_mlns 
status_seg_actlvlty 
stop_process (1) 

tdcm_attach 

tdcm_detach 
tdcm_locall 
tdcm_message (2) 
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add_dlr_ inacl_entrles. 
- -- Hole without obvious 

exploitation. See 
add_dlr_ lnacl_entrles. 

1 -- Probably O.K. Array elements 
referenced once each. 

1 - - Probably O.K. See 
set_dlr_ rlng_brackets. 

5 -- Hole . Uncooled value used 
when copied value available!! 

5 -- Hole . User's argument controls 
whether lock Is locked, and 
then whether It Is unlocked. 
Can leave lock locked. 

5 -- Hole. See status_. 

5 -- Hole. Can stop any process. 
arg used after valldatl~n. 

All tdcm entries use a segment as 
argument. It Is not clear 
whether changes to this 
segment can cause problems. 

4 --Hole without obvious 
exploitation. Can possibly 



tdcm_promote 
tdcm_reset_s lgnal 
tdcm_set_signal 
tdcm_mount_ blt_get 
termlnate_flle 
term l nate_name 
term I nate_noname 
termlnate_seg 
total_cpu_t I me_ 
trace_marker 
truncate_f 11 e 
truncate_seg 
try_to_unlock_lock 
tty_abort (2) 

tty_attach (2, 4, 5) 

tty_ detach (3, 4) 
tty_detach_new_proc 
tty_event (2, 3, 4) 

tty_lndex (4, 5) 

tty_order (2, 3) 

tty_read (3, 5, 6) 

(1) 

(3, 4) 

tty_state 
tty_wr I te (3, 4, 5, 6, 7) 

unmask_ Ips 
unsnap_service 

usage_ values 
vlrtual_cpu_ tlme_ 
wakeup (4) 

(1, 2, 3) 
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cause message Inconsistent 
with system's Idea of tape 
name. 

1 -- Probably O.K. 

3 - -

2 --

1 
1 
2 

5 

3 --

5 --

Don ' t know effect of l'llUltiple 
reference. Not sure whether 
this Is a problem or not. 
Fragile, but Probably O.K. 
Finally copies second argument 
Inside second level call to 
loam_. Other args O.K. 
Probably O.K . 
Probably O.K. 
Fr agile, but probably O.K. 
See tty_attach. 
Hole. Code Is referenced 
twice in dn355$get_devx. 
Could return Information which 
might be sensitive about 
allowed device ld's. 
Don't know whether this 
multiple reference Is a hole 
or not. 
Hole. Perhaps hard to 
explol t. 

5 - - Hole. Arg 3 referenced In a 
loop. Can cause the system to 
appear crashed . 

1 - - Probably O.K. This prograM 
need not be In ring 0. 

1 -- Probably O.K. 
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• 

A Two-level Implementation 
of Processes for 

Multics. 

September 8, 1976 21:23 
R. Frankston 

This is a description of an tmplementation of Multlcs Processes usmg 
multiple levels of abstraction. The Implementation is betng done tn 

conjunction with David Reed and is based on the model described In his 
Master's Thesis titled Processor Multiplexing in a Layered Operating 
System. 

ThiS draft contatns many Implementation detatls, some of whtch have 
been modified In actually wriung the code and will be descnbed m a later 
memo. Some sections are only superfiual and are meant as a gutde for 
later revisions and extensions. Warning: Since this document Is betng 
modified as destgn changes are being made wtthout a complete rewrite 
there may be inconsistencies in the descriprions. 

If you have comments, suggestions or questions either see me personally or 
send mail to Frankston.CompSyseMIT-Multics or RMhMIT·MC. 
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Two-level Process Implementation 

Introduction 

The description of the implementation below is concerned with relatively narrow assues mvolved m 
actually coding algonthms whiCh amplement the model descrabed in David Reed's thesis. The 
Implementation includes some arbitrary decisions necessary for the embodiment of the algorathms. 
This description assumes familiarity with the current Multics system. David Reed's thesis should be 
consulted for a fuller discussion of the issues Involved. To malc.e the document at least somewhat 
readable for a wider audience as well as to reduce the problem of the proltferation of strange 
abbreviations there as a glossary on page -42. 

The ltey difference between the current Multics implementation and the multilevel one is that a 
distinction is made between scheduling decisions (1.e. traffic control) that involve policy and those 
that don't. For the ones that don't involve policy the deciSIOn as relatively trivaal - the next 
processor avaabble to run wtll be run, a relatively cheap operation. In order to achieve th1s 
samphcity the pnmllive level, level one, consists of a fixed number of virtual processors that are 
consadered at hagher levels to be always assigned to a processor. In fact phys1cal processors are a 
relatively expensive and therefore scarce resource requiring the basement of the lmplememat1on to, 
in fact, multiplex the virtual processors en physical processors on a first-come, first-served bas1s 
withm a predetermined prionty asstgnment. 

The advantages of the two level approach to traffic control include: 

i. The system is simplified since one can view a Multics process as being 
built upon the relatively sample semantics of a virtual processor as opposed 
to the complex semantics of the current traffic control and mterrupt 
structure. 

ii. The implementation of the system primitives for process coordinations can 
be more efficient than the current ones because of the simplified 
environment in which they run. 

iii. By amproving the structuring of the system, the system an become more 
understandable and thereby more reliable. 

iv. Robustness is enhanced by isolating Virtual Processor multiplexing wnhin 
the PAM. One can assign properues such as encachability to individual 
processors. Since the PAM does all storing and restoring of physical 
processor states it can be responsible for all the complexity of maantain1ng 
such states. 

v. By handling the fault withm the PAM outsade of the virtual processor, the 
VP itself need not be capable of handling page faults thereby simphfyang 
the semantics and removing special restrictions which require the waring 
of the descriptor segment. Further more faults due to processor failures 
can be handled by another VP ahat does not use the particular feature. 
For example, the can be a process that does not rely on the cache so that 11 
can diagnose cache failures. 
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vi. By separating processor multiplexing from scheduling the implementation 
of the policy portions of the scheduler are simplified by separating them 
out and are infrequent enough to remove the need for the efficiency of 
assembly language programming. 

The current implementation plan consists of three parts: 
I. A basic level one system without paging. 
2. Level one with paging. 
3. A full Multics system with the second level traffic controller. 

At present a basic version of level I has been debugged and run. It is described on page page 40. 
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The Processor Assignment Manager and primitives 

This bastm!nt (level tero) program (correspondmg to the GPP algorithm in the thesis) is referred 
to as the Processor Assagnment Manager (PAMY. Tht PAM u to be considered as part of the 
physical processor - there exiscs one logical instance of the PAM per processor. In addition to the 
function of multiplexmg the physacal processors, the PAM also serves to enhance the basac 68/80 
processor by rationalilang 1ts operation so as to provide a better basas for the other levels of 
implementation. 

The PAM as entered whenever an anterrupt or fault occurs. The currently executmg VIrtual 
processor u unbound from the physacal processor by savmg 1ts state an 1ts Yartual Processor Table 
Entry (VPTE). As part of savang the state of the process the metering anformation is updated and a 
check Is made to see If the process has exceeded its limit for CPU usage. The next step an 
processing depends on the reason for entering the PAM. 

External mterrupts are transformed anto events that can be servaced by processes awaiting the1r 
occurance. If an internal interrupt (fault) can be handled by the VP Itself, the fault information 1s 
saved in a communications area in the VPTE, the YP is marked as btang unable to process 
further faults and its state is modified to execute its fault handler. If the fault cannot be handled 
by the VP, the YP as marked as unsafe and the Varrual Processor Coordanator (descrabed below) 1s 
expected to do further processang. One fault is handled specaally; the mme4 executed an a. prav1laged 
segment is treated as a ca llp operation by the PAM and serves to extend the capabalaues of the 
physical processor. callp is described in more detail below. When the PAM has fanashed the 
interrupt processing, 11 places the VP mto a new state. If nothmg that affects the abihty to run the 
VP has occured, at is placed in the runnable state. 

The states that a VP may be in are: 

running lndacates that the YP state as currently beang anterpnmed by a. physical 
processor and that the version an the VPTE as therefore invalid. 

runnablt indicates that the VP may be assigned to a phystcal processor as soon as 
there are no hagher pnonty runnable YPs. A YP enters the runnable state when it as 
unbound from a physical processor, but may continue to execute. 

unsa(t indicates that the VP cannot be run without further handling by the Virtual 
Processor Coordinator. A VP enters the unsafe state If at takes a fault 11 cannot handle 
or does somethmg the PAM does not expect. Currtntly thu statt ts not used, instead 
tht V P Is simply placed In the stopptd srate for txaminalion lrj the level two traffic 
controlltr. 

! For hlstoraca.l reasons thas module is also referred to as the Processor Bmdang Manager (PBM). 
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supped Indicates that a VP Is no longer runnable and will not be handled further by 
the VPC. Once a VP enters this state It is eligible for unbinding by the level two 
traffic controller. Furthermore that is the only operation that may be performed on 11. 
A VP enters this state when it exceeds its resource limits, or otherwise requires higher 
level processing to continue. The level two traffic controller explicitly places a V P m 
th1s state when it w1shes to unbind It so that the L2TC my modify its state. Stopped 
VP's are kept on a queue for action by the L2TC. 

awaiting Is a state the VP enters when it goes blocked waiting for an eventcount to be 
advanced. 

V PC bloclud is a special state Indicating the VPC is wa1ling for someth1ng to do. The 
VPC may only be in this state, runnab/e or running. 

After plac10g the VP 10 its new state the PAM can do some standard proceu10g 10cluding 
processing requests for clearing the cache and possibly deleting the CPU on which it is running. 
(Some of this standard processing is done earlier in the sequence than indicated 10 this descnptlon 
in order to minimize the time between entering the PAM and performing the funwon.) 

Once the PAM has finished Its proceuing. 11 then searches the VPT for next runnablt VP. It 
places the VP in the running state to mdicate that no other processor may examine the VPTE 
state. After checking to make sure that the VP may indeed run on the available CPU, It then 
loads the VP's state in effect binding It to the processor and runnmg the VP 

The support of the virtual processors Is spilt between the PAM and a dedicated VP; the Virtual 
Processor Coordinator. This support includes the handling of faults and interrupts and mapping 
them Into the appropriate functions. It also mcludes the support of the extended operations 
described In the sect1on on VPI and on the CALLP operator. The VPC runs in a Virtual 
Processor so that it may take advantage of the proceu environment to Simplify its implementation. 
The details of the VPC operation are gtven In a later section of this memo. The VPC is made 
runnable whenever an event occurs that requ1res its attention. The VPC is always the highest 
priority process so that it runs as soon as it is made runnable. Events requ1ring the VPC lndude 
the transltlon of a process to the unsafe or srot>ped states, the occurance of an interrupt or the 
transmission of a message to the VPC v1a callp as described below 

Other dedicated VP's perform funcuons such as interrupt handling and page fault handhng. A 
key dedicated processor is the policy module for scheduling user processes. This process is referred 
to as the level two traffic controller. Becau!e of the limited number of virtual processors the level 
two scheduler must multiplex these processors. The details of thiS operations are not relevent for 
th1s memo. What IS important is how a user (or level two) process is bound to a virtual processor 
and later unbound. This is similar to the function performed by the PAM and Is done v1a the 
VPllbind and VPllunbind pnmilives. 
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PAM Details 

There are a number of details associated with actually accomplishing the functions required of the 
PAM. These are discussed in the relatively unordered sections below. Detailed knowledge of the 
68/80 processor is assumed. This mformation is contained in the CMAP manual, the 6180 
processor manual and the Multics debuggers handbook. None of them fully or accurately 
described the current 68/80 processor. 

General flow through the PAM. 

i. The PAM is entered via the interrupt or fault vector. 

ii. The control unit state and processor registers are saved. The current value of the real 
time clock is saved. 

iii. Any requests to clear the cache of an associative memory are honored. This is described 
below under heading of connect fault processing. 

iv. Virtual CPU time is computed. If there is a process awaiting the realtime event count, it 
is is not1fied. 

v. Any special processing associated with the particular fault or interrupt 15 done. 

vi. The virtual processor that was executing is placed In a new state. Normally 1t 1s placed 
into the runnablt state unless the fault handling changes the process' charactenstics. If 
the resource limit for virtual CPU time has been exceeded the process is placed into the 
stopped state. 

vii. If the CPU is to be deleted, it notes that it in fact has been deleted and then goes to 
sleep here. The interrupt indicating that it has been added back continues from this 
pomt after intializing the processor state. 

viii. The VPT is locked. If there is a pending wakeup for the VPC and the VPC is in the 
V PC ..b/oclml state, it is made runneth/e. 

ix. A virtual processor that is runnable and does not have any restriction against the current 
physical processor is placed In the running state. 

x. The timer register is set as described below. 

xi. The state of the virtual processor is loaded into the physical processor and begins 
execution. 
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Operating Modes 

Since the PAM Is meant to act as an extension of the processor and form the basis for other 
mechanisms it operates in absolute mode so as not to depend on the correct functioning of the 
memory management software or hardware. This also removes the need to treat the descriptor 
segment specially (such as wiring the zeroth page) since the PAM is even more prammve than the 
levels relying on the appending hardware. When the PAM does use the appendtng hardware In 
Implementing the callp operation, it is able to take faults in the same manner that any other 
hardware instruction might and processes them as If they had occured in an arbitrary ha rdware 
Instruction. Since PAM proces.ses Interrupts by simply noting that the event took place and then 
restoring the proces.sor state it operates inhibited. 

I nterrupt and Fault Handling 

The 68/80 does not have any physical proces.sor registers that can be used to distinguish between 
physical proces.sors when addres.sing memory to store the machine state when an tnterrupt is taken. 
Furthermore there Is only one addres.s associated Wtth each interrupt handle.r, without regard to the 
processor on which the interrupt Is taken. Because interrupts are handled by processes, the 
processor need not be masked for interrupts at any time it Is assigned a virtual processor. 
T herefore there Is no need for complex masking strategies - the proces.sor can run with all 
interrupts unmasked at all times with the PAM using the Inhibit bit to prevent interrupts. 

Since any interrupt can be taken on any proces.sor It is necessary to be able to save the machine 
state without regard to the processor it Is taken on until sufficiently far into the PAM to enable the 
p rogram to determine which processor it is on and where the as.soclated VPTE is for deassignlng 
the virtual processor. The algorithm used was inspired by Andre Bensous.san's work and worked 
out in conjunction with Bob Mabee (of course Dave Reed contributed, but then his contributions 
are assumed throughout). There extst two tables wnh enough capactty to store SCU data for each 
processor that may be configured. There is a pointer with a delta modifier equal to the length of 
an SCU entry. The Interrupt vector Is Initialized to store the SCU data using an AD modifier. 
T hus when the interrupt occurs an address is obtatned to store the current data and the pointer Is 
updated in storage in an atomic operation so that if any other processor takes a fault it will not 
interfere. Control is then transfe.rred to a common dtsambiguattng routine that operates under a 
lock. The lock itself is grabbed using the sznc instruction which does not requ•re the use of 
registers. The rest of the registers are then stored, the processor id is determined and thus the per 
processor storage address to which the registers are transfered. The pointer to the SCU table Is 
then reset to point to the beginning of the other table and the first table is scanned from its 
beginning using the AD modify . .Each entry is checked to see if it belongs to the currently runntng 
physical processor. If it does, then the data is simply copied out into per proces.sor storage. If tt 

does not, the data is then copied tnto the new table, agam usmg an AD modifier to grab and 
reserve a slot When this processing is done, the lock is released (via an s t cl) and the next 
processor looping on the lock can repeat the operation with SCU tables switched. 

Fault proces.sing IS similar to interrupt processing except that we can have a separate fault vector 
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for each processor to save the need for having to determine dynamically the identity of the 
processor on which the handler is running. The processing for both faults and interrupts is the 
same once we have copied the machine conditions Into per processor storage. 

Faults while in the PAM. 

When the PAM 1S processtng a callp request or~ page fault, a further fault may be taken. In 
order to handle these a separate fault handler Is used that assumes the f~ult is expected and that 
the PAM IS in a "good" state. The handler does not save any reg1sters and assumes that control 
reg1sters (pointers to the VPT entry and the perprocessor information) are Intact. The detailed 
handling depends on the PAM state. If a ca11p operation is being performed then the machme 
conditions are set to Indicate that the fault occured while processing the ca 11 p operation itself and 
the fault Is processed as If 1t had occured at the begmning of the operation. For page faults a 
message is sent to the page fault process for the fault (which must be on the descriptor segment) 
and the machine conditions are set to continue with the appending cycle when the descnptor 
segment becomes available. 

The descriptor segment. 

It should be noted that by operating in absolute mode, the PAM avo1ds dependence upon the 
descriptor segment. Current Multics takes advantage of appending mode by usmg the fact that 
the descriptor segment can be used to address different memory in the PROS for each processor. 
The elaborate scheme described above is complicated by not having this mechanism available but 
as a consequence removes the requ1rement that descnptor segments be different on each processor 
and allows processes to share descriptor segments. This can be of great importance in permittmg 
many small process with a single descnptor segment The idle process IS a simple example of a 
process sharing a s1ngle descriptor segment. 

Details of callp implementation. 

The ca11p is supposed to look hke a normal machine instruction that may take faults. It is first 
validated to make sure that the instruction was executed m a pnviliged segment (maybe just the VP 
program's segment?}. If noc. it is treated as a standard (~~~me4) fault and reflected back to the 
virtual processor. If the mstruction is accept;~ble, the pam state is set to mdlcate that the ca 11 p Is 
being processed and a copy of the machine condlt1ons is saved. The operat1on number in the A
register is then examined. If 11 is mvalid the v1nual processor IS made unsa(t and the YPC 1s 
notified (this should never occur). 

The specific processing is done according to the r~uest. Typically It would involve copying the 
data pointed to by pointer register 0 Into VPTE or copying the data from the YPTE. The 
detailed operation of each callp is described In the section on the callp operator. 

When the procemng 1s done, the PAM conunues by placing the virtual processor into the runnable 
state and resettmg the callp·in·progress flag. The PAM chen conunues as for any other fault 



-59-

Two-level Process Implementation 

If a fault occurs while the callp is being processed, the fault conditions are reset to those at the 
beginning of the callp Instruction with the exception of the data address being referenced which 
is taken from the new SCU data associated with the fault When (and if) the ca 11p is restarted 
after the fault, it will begin from the beginning of the instruction. This allows the fault handhng 
program to use the ca 11 p operation itself and not have restrictions on using the communicauons 
area in the VPTE. 

Page fault processing. 

The SCU data is examined to determine the type of faulr. A message is sent to the page fault 
process consisting of the AST£ entry poinrer, a unique segment id (in case the AST entry as 
deactivated), the descnptor segment AST entry pointer, the page number and a eventcounter 
associated with the fault The process is then left awaiting this event, ready to conunue address 
evaluation. 

Processing the connect fault 

The processing of the connect fault is very simple - it is ignored. Its purpose is to force a 
processor to enter the PAM. It achieves its effect since whenever the PAM is entered it performs 
standard housekeeping functions. ln particular a connect fault Is issued after a message is left 
when clearing the cache or when adding/deleting a processor. 

Clearing the Cache 

The table of pending clears has one entry per processor. When the PAM wants to clear the cache 
in other processors, it places in each table entry the appropriate instruction. It does this via a stacq 
instruction to make sure that it is replacing a nop. If it does find an instruction other than a nop, 
it assumes that another processor has left a instruction and loops attempting to execuJe ~he 
instruction in its entry and leaving an instruction for the other processor. It makes sure the other 
processor enters the PAM by issuing a connect to the other processor. 

Process addition and deletion . . 

When a processor as added, after some initialization, it enters the code to scan the VPT and fand 
work to do. When a processor is being deleted, it checks for he request immediately pnori to 
scanning the VPT for more work to do and disables itself. In either case an eventcount is 
incremented and the VPC is notified of the change. 
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Making the VPC runnable and processing the VPT 

Whenever there is an event that requires the YPC's attention, a wakeup-waiting flag associated 
with the YPC Is set using the stcl Instruction. The last part of the PAM locks the YPT. The 
wakeup-waiting switch is cleared with an sznc instruction. If it was set, then the YPC is .placed In 
the runnablt state from the V PC ..blocked state, using the sznc instruction. 

The YPT is then scanned for the first (and therefore highest priority) process that is in the 
runnablt state. One will always be found since there is always a lowest priority idle process 
available. When the entry is found, it is placed in the running state. A check is made to see tf the 
process has a restriction against the current processor and If so, makes it again ru.nnable and 
continues the scan. Otherwise the YPT is unlocked and the virtual processor is run. 

Running the VP 

This is the final part of processing that is done after a VP has been found m the YPT.E and has 
been placed into the running state. The appropriate pointers are set in the per processor tables for 
storing fault data and referencing the VPTE, the clock time is saved for computing virtual CPU 
time and the registers are loaded. If the YP is being run on a different processor than it had last 
time, the cache for the current processor is cleared. Final processing is done with separate code per 
processor so that the appropriate SCU data may be restored. The YP is then off and running. 

Process Signals (IPS) 

The process signalling mechanism corresponds to the current IPS mechan ism. It is implemented by 
setting a flag in the YPTE to indicate that an interrupt is pending. When the vmual processor is 
to be run a check is made to see if the flag is set and faults are permitted. If so a fault ts 
simulated. If faults are not permitted, the action is deferred until the flag is reset to indtcate that 
it is safe for the virtual processor to take faults again. The details of using this signal are 
discussed in the section on notification. 

The interrupt pending flag is set by the L2TC. If a running process is to be interrupted, it is first 
stopped, the flag is set and then it Is rebound to a VP. The choice of this method is motivated by 
a desire to minimize primitives available for accessing the YPTE. A tradeoff can be made 
between number of such primitives and the frequency with which the L2TC must unbtnd a VP 111 

order to access parts of its description. 
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Special machine state information 

This section explains how history registers, fil.uit registers, alarm register are managed. In additiOn 
there IS software state information such as the VP state which is discussed elsewhere. This w1ll not 
be addressed at the moment since it is more a matter of retaining current Muldcs details without 
requiring a major changes for the PAM. Note, however, that since the PAM is aware of the VPs, 
it is feasible, possibly, to control hmory reguter handling on a per-VP baSIS (and therefore on a 
per process basis. 

Virtual CPU time measurement and limits 

Associated with each processor running a VP is the clock time at which the currently runnmg 
virtual processor started running (the PAM was last exited). When the PAM is entered the starting 
time Is subtracted from the clock ume at which the virtUal processor stopped (the PAM was 
entered) to determine how long the VP has been executing. This value is added to the value 
accumulating the in the VPTE. A check is then made against the VCPU limit for the VP. If the 
limit has been exceeded, the process 1s stopped for deusignment by the level two traffic controller. 

As a refinement to this scheme is an estimate of the overhead involved in invoking the PAM 
before the clock. is read on entry and after the is read on exit This can be subtracted from the 
YCPU in an attempt to isolate the charge for a processor from that of running the PAM . 

Timer register setting and usage by PAM 

The timer register is used to make sure that the PAM gets invoked periodically so as to enforce 
quantum length restrictions (i.e. virtual time quota) and to make sure the VPC gets Invoked so 
that it can advance the real time eventcount For simplicity the PAM is run at least every 50(?) 
milhseconds. The alternative would be to calculate the minimum of the virtual time limit for the 
process being bound and the time the VPC is to be run. This would be more complicated and the 
additional resolution is not necessary. 

Other proce55es 

Proper operation of the PAM depends on two kinds of VP's. The first is the Virtual Processor 
Coordinator that is described 10 great detail below. It is always the highest priority virtual 
processor and is made runnable whenever there is something requiring its attention and therefore 
run Immediately. Second are the lowest priority processors - the idle processors. There is one idle 
processor for each phys1cal processor. Since the idle VP IS lowest priority It 1s run only if there is 
nothing else for the physical processor to do. The idle proce55ors are quite cheap since they can 
share a descriptor segment or run in absolute mode without a descriptor segment. Other than that 
no special consideration need be g1ven to the idle process. 
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The oallp operator 

As noted above the ca ttp mstrucuon is used to extend the operauon of the virtual processor. It 1S 
Implemented wlthm the PAM. It takes an operation number m the A-register and a da.1a 
pointer, if any, m pointer register zero. L1ke any other normal instruction, 11 may take faults. 
When the fault occurs the machine conditions are set to restart the execution of the instructiOn 
from the beglnnmg so that th.ere is no need to save partial state information associated with 
copying information mto the VPTE buffers. 

The operauons are: 

1: AWAIT takes a hst of eventcount names and values (as described below under VPllawait 
and places the process in the awaiting state until one of the named events 1s notified. 
It IS poss1ble for one of the awaited events to be advanced while the process IS bemg 
placed in the awa!llng state. It is therefore necessary to make sure that the none of the 
eventcounts has passed the awaited value after the process is in the awaiting state. 
Since the process is no longer considered running tl Is necessary that no fau lts occur. 
In order to prevent faults the ®sa IS used to get the address in pnmary memory of the 
counter value for each eventcount A fault can occur durmg th1s operation in wh1ch 
case the normal page fault processing is done and the await IS restarted from the 
beginning. This pointer can then be used to reference the value while the process is 
awattlng. We are assured that no fault wtll occur since prtmary memory addresses are 
being used for the reference and the vmual memory support 1s not invoked. We are 
assured that the address Is valid since any other processor that Is updating the page 
tables cannot assume all references to the page frame are completed until it receives an 
acknowledgement form the other processors. The processor performmg the await will 
not g1ve th1s acknowledgement unui 11 f1mshes processmg the a wall request 

The real time clock IS a special eventcount in that the minimum value of all such 
events must be stored so that the timer can be set to notify the event at the specified 
real ttme. 

2: WAKE VPC is used when a change ts made to a VPT entry that requires VPC attention. For 
example, when a message is queued for the VPC. 

S: STOP 1S used to forcefully stop a spectfied process. ff a process is in an atomic operation, but 
Is to be stopped, a flag is set to indicate that 11 IS to be stopped when the atom1c 
operation count reaches zero. 

4: BEGIN ATOMIC OPERATION is used when a process ts execullng a critical section of code. It 
Increments an atom1c operauon counter in the VPT£. 
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5: END ATOMIC OPERATION decrements the atomic operation counter. lf the count reaches zero 
and a stop is pending, the process is placed in the stopped state. 

6: GET FAULT DATA copies fault data out of the process' state into pageable storage. Note that 
page faults are permitted during this operation since they are handled by another 
process. Segment faults are not permitted because they are handled by the faulting 
process and will require the use of the fault data area. Note that the atomic operation 
counter was incremented at the time of the fault and the process was marked as not 
being safe to take faults. The safe_to_takeJaui[Jlag is reset by this operation. The 
atomic operation count must be decremented by restoring the processor state or 
explicitly ending the atomic operation. 

7: RESTORE PROCESSOR STATE restores the machine conditions as specified and decrements the 
atomic operation counter. If this interface is not used the end atomic operation 
interface must be used to decrement the counter. 

8: ADD CPU sends an ADO CPU message to the VPC. 

9: DELETE CPU sends a DELETE CPU message to the VPC. 

10: CLEAR CACHE used when an object loses encachability. Its parameters consist of a 
suboperation number and the page id for suboperation cache clearing by page. The 
suboperations are: 

I. Clear PTW cache via a camp. 

2. Clear SDW cache and PTW cache via cams and camp. 

3. Clear PTW cache and memory cache by page • camp 4 + page i d. 

i. Clear memory cache, SOW cache and PTW cache with cams 4 and camp. 

These are used by (1,3) page control, (2) segment control and (i) access control. They 
apply to all processors. The actual method by which the processors execute the 
instructions is explained in the secuon on PAM details. 

U: VPC BLOCK is used by the VPC so as to cause checking of the VPC's wakeup waiting 
switch. It takes as a parameter the next real time before which the VPC is to be run . 
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The VP1 interface 

The VPl program provides a PL/1 comparable interface to the callp instruction, the VPC and the 
VPT. It limits the operations the can be performed; no other interface exists. The use of the 
common segment name of VPl is primarily for convenience; the entries are essentially independent. 

A basic service provided by the VPl routine is the management of assignment of level two 
processes (those managed by the level two traffic controller) to virtual processors. There are a 
number of semantic models that can be associated with this operation. The primary one is that of 
blnd.lng and unbinding. An alternative view is that one loads and unloads a processor state to and 
from a virtual processor much as one loads and unloads a process the current Multics 
implementation. A better understand of what is actually happening can be achieved by realizing 
that the bind operation is really taking a processor state description maintained by the level two 
TC which has no existence other than as an entry in a database and is creating a level one 
processor with an Initial state for execution. The unload operation destroys this processor and 
returns a description of Its final state. Key to the understanding is that the PAM does not enforce 
any continuity between the process description returned by an unbind operation and that prov 1ded 
to a bind operation. While the description is being maintained by the level two traffic controller, 
the L2TC Is permitted to perform arbitrary operations on its description including hbricating new 
descriptions and discarding old ones. 

VPl communicates with the VPC v1a a communications queue. The queue is managed without the 
use of explicit locks. The stacq instruction Is used to perform interlocking. 

The information maintained in the VPTE consists of two parts-- that which is communicated via 
the VPl interface and that which IS internal to VP support. For convenience the portion that IS 

passed through the interface Is kept in the same format by the level two traffic controller as in the 
VPTE, but th1s is not necessary. 
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The Process_Description portion of the description is used to store information that maintains 
the identity of a Multics process as seen by the user. 

declare 1 Process_Description based aligned, ' * 16 words ali gned! • I 
Z process_1d bit(36), 
Z lock_id bit(36) , 
Z excluded_processors aligned, 

3 excluded_processor(0:3) bit(l) unaligned, 
3 padding bit(32) unaligned, 

Z BAR bit(36). '* For 6080 emula tion • I 
Z DSBR bit(7Z). ' * Descriptor Segment Base Reg*/ 
Z ring_alarm_word bit(36), 
Z PD_flags aligned, 

3 safe_to_take_faults bit(l) unaligned, 
' * Fau l t data can be copied? *' 

3 pending_process_interr upt bit(l) una l igned, 
Z resource_metering, '* Meter ing and limi t s *' 

3 virtual_time_used fixed binary(71), 
3 virtual_time_limit fixed bi nary(71), 
3 memory_usage_meter_reference l i ke meter_refer ence, 

Z processor_state, 
3 machine_conditions like me; 
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The VP _Description contains information that Is only available to the VP support and is not 
passed through the VP interface. 

declare 1 VP_Description based aligned, 
Z next_VPTE like VPT_ptr aligned, 
Z VP_id b1t(36). I• Identification of this VP •I 
Z VP_state fixed bin, I• runnable when bound •I 
Z VP_priority fixed binary, 
2 last_processor fixed bin(2), I• For cache maintainance• •I 
2 atooic_operation_count fixed bin(35), I• Initially zero •I 
2 padl6(10) bit(36) aligned, 
2 fault_conditions like processor_state, 

I • Comounication with handler •I 
I• For simplicity I am putting the awaited events 

in the VPTE. Eventually they will be managed 
separately by the VPC. •I 

Z eventcounts, 
3 number_events fixed binary, 
3 event_names(4) like global_eventname aligned, 

I• 4 = max_number_of_ll_events 
Z VPO_flags aligned, 

3 pending_stop bit(l) unaligned, 
3 padding bit(35) unaligned, 

Z pad8b(6) bit(36) a ligned; 

•I 

declare 1 VPT_ptr based aligned, 
Z abs_ptr bit(l8) unaligned, 
Z rel_ptr bit(18) unaligned; 

I• Pointer entry for VPT •I 
I• For use in absolute mode •I 
I• For use in appending mode •I 

The VPTE uself contains both parts: 

declare 1 VPTE based, 
2 VP_info like VP_Oescription, 
Z Process_info like Process_Oescription; 



-67-

Two-level Process Implementation 

The awa1ting_events_table is used in the Interface between V1Sawait and callp/awa1t. 

declare 1 awaiting_events_table based, 
2 number_events fixed binary, 
Z events(max_number_of_l1_events), 

3 local_name pointer, '*Only valid in owner's address 
space *' 

3 global_name like global_eventname, 
3 value fixed binary(35); '* Value process is awaiting *' 

declare 1 global_eventname based al igned, 

VPllbind 

2 segment_unique_id bit(36) unaligned, 
Z word_offset bit(l8) unaligned, 
Z pad bit(l8) unaligned; 

declare VPllbind entry (bit(36),l like Process_Description, fixed 
binary(35)); 

call VPllbind (VP_ id, process_description, code); 

The semantics of the bind operation has been discussed above. The caller of VPiibind 
should set the appropriate flag in the ASTE to keep the descriptor segment of the specified 
process active. It Initializes the values in VP _info as part of the transformation from the 
representation ma intained by the L2TC and that In the VPTE. The process_state is sto/?fml, 
the last processor is • -1" (i.e. none}, and the atomic operation count is zeroed. lt then uses the 
callp/load operation to load it into a free VPT£. The operation will fail if there are no 
VPTE slots available. It would be expected, however, that the second level TC will not call 
the primitive unless it knows that there is one available. 

VPllunbind 

declare VP1Sunbind entry (bit(36), 1 like Process_ Description, fixed 
binary(35)); 

call VP11unbind (VP_ id, process_description, code); 

The semantics of unbinding has been discussed above. It issues a callp/unload operation 
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to request the contents of an stopped VPTE be returned. When this operation has been 
done the VPTE is available for a subsequent bind operation. It is expected that VPISunbind 
would be used repeatedly to unbind all stopped virtual processors so that the associated 
process descriptions would be available to the level two traffic controller. Note that an 
eventcount is Incremented any time a process is stopped so that by awaiting that event count 
the L2TC can immediately perform the unbind operation. 

VPllstop 

declare VPlSstop entry (bit(36), fixed binary(35)); 

call VPlSstop (VP_id, code); 

The stop entry is used to force a process associated with a VP to stop executing. The deta1ls 
a discussed in the description of the callp/s top operation. The VPISstop operation Is used 
whenever the level two traffic controller needs to manipulate the process' description. For 
example, to destroy a process, the L2TC would note that it wants a particular process 
destroyed. lf it already has full control over the description, i.e. the process is not bound to a 
VP, 1t can perform the operation immedtately. Otherwise it would issue a VP!Is top for the 
process. As soon as the process is stopped, the "stop process" eventcount would be 
incremented, VPlanext_stopped would locate the VP, and VPlSunbind would copy out the 
process description. For each process description returned by the VPll unbind operation the 
L2TC would check the notes associated with the it and perform any necessary operations; in 
this case the process would get destroyed. 

VPl l next stopped 

declare VPllnext_stopped entry (bit(36), fixed bi nary(35)); 

call VPlSnext_stopped (VP_ id,code); 

This entry is used by the L2TC to get the id of the next available stopped VP. It is 
invoked in response to an advance on the stopped eventcount. 

VPllrun 

declare VPlSrun entry (bit(36), fixed binary(35)); 

call VPlSrun (VP_ id, code); 
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Th1s places a makes a stopped VP runnable. It is normally used after the VPJ.Ibind 
operation. 

VPllawait 

declare VPllawait entry (1 (•), 2 pointer , 2 fixed binary(35), fixed 
binary, fixed binary); 

call VP!Sawait (events, number_events, advanced); 

The parameters consists of a table of event names (pointen) and values to be awaited. The 
number parameter specifies the number (up until the max1mum value) of events that are to 
be awaited. The index of the event which caused the return from awaiting is given as 
"advanced". 

The table of event_counts IS completed by filhng the event name as denved by the VP 
Interface from the segment id and the word address and passed to the callp/await 
operation. Note that there 1S a max1mum for the number of entries in this table. The user 
level interface to VP llawa it must permit an arbitrary number of event names to be 
specified while only passing a limited number of event names to VP !Saw a it. The details of 
this are described In the section on notification. 

VPlladvance 

declare VPl l advance entry (1 like awaiti ng_events); 

call VPlladvance (event_table); 

As with VP llawa it, the event..name is f1lled in. The await_value is, in this case also filled 
in after mcrementing the associated coun:er with the new value. The table IS then passed to 
callp/not1fy 

VPlladd cpu 

declare VPlladd_cpu entry (fixed binary, fixed binary(35)); 

call VPlladd_cpu (cpu_number, code); 

Th1s entry Interfaces to ca 11 p/add_cpu. 
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VPlldelete cpu 

declare VPlldelete_cpu entry (fixed binary, fixed binary(35)); 

call VPlldelete_cpu (cpu_number, code); 

This entry Interfaces to callp/delete_cpu. 

VPllcrash system 

declare VPllcrash_system entry (); 

call VPllcrash_system (); 

Deletes all physical processors from the system, and forces one of the processors to execute a 
speci~l debugging program. 

VPllclear 

declare VPllclear entry (fixed binary, bit(l8), fixed binary(35)); 

call VPllclear (suboperation, page_id, code); 

Interfaces to ca llp/c lear _cache to clear cache the specified associative memory. 

VPllbegin atomic operation 

declare VPllbegin_atomic_operation entry(); 

call VPllbegin_atomic_operation ; 

Interface to ca llp/begin_atomi c_operat ion. 

VPllend atomic operation 
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declare VPlSend_atomic_operation entry (); 

call VPllend_atomfc_operation ; 

Interface to callp/end_atomic_operation. 

VPllget fault data 

declare VPlSget_fault_data entry (l like fault_conditions); 

call VPllget_fault_data (fault_conditions); 

Interface to ca llp/get_fau 1 t_data. 

VPllrestore processor state 

declare VPlSrestore_processor_state entry (1 like processor_state) ; 

call VPllrestore_processor_state (processor_state); 

Interface to ca llp/restore_processor _state. 
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VPC Operation 

As noted above, the VPC is run whenever an event occurs that needs it attention. For example. a 
process leaving the runnable (or running) state, an interrupt event occunng or a message bemg 
lent from a process. In later Implementation some of these occurances might bypass the coordmator, 
but for now It Is assumed that all complicated low level operations Involve the coordmator. 

The basic operation of the VPC consists of three loops: 

I. Scanmng for processes by state, 1 e. unsafe and exceeded limns. 
2. Scanning for advanced interrupt ceiU. ThiS means that there IS an 1mphc11, rather than an 

explic1t advance done on the cells by the PAM. 
S. Proces.smg of explictt messages to the coordinator. 

Note that each loop is entered only if an associated flag has been set to Indicate that there may be 
work of the specified type to be performed. When the processing is done the VPC unbinds a set 
of physical processors so that they may adjust to the new state of the world. It is only necessary to 
unbind those processors that are running the "n" lowest priority processes where "n" is the number 
of processes that have been made runnable by the YPC. 

In more detail, the processing conslm of: 

I. This loop scans the Virtual Processor Table (VPT) examining the state of each process that is 
found. Each sto#ltd YP 1S removed from the chain of runnable processors and an 
eventcount is advanced to notify the level two traffic controller. Note that l<.ernel processes 
should never be stopped. If an unsafe process is found, a debuggmg proce.ss should be 
notified or the system crashed. m1 

2. Next the interrupt and fault counters are scanned for any that have been incremented by 
comparing against an earlier set stored in the YPC and the appropriate waiting processes are 
notified. (For the interim implementation with a single "interrupt side" processor there is an 
additional event counter to indicate that any interrupt has occured). As a special case of 
mterrupt handling, the system clock can be interogated and compared wnh the value for the 
next timer event of interest 

S. Scan for messages from other processes. 

1. RUN. Places the specified YP mto the runnable state and chams It mto the queue of 
runnable VP's. 

11. NOTIFY notifies processors that are AWAITing that counter. 
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iii. DELETE CPU. Leave a note for the specified processor to deconfigure itself and then 
unbind from any virtual processor it may be running it via a connect. 

iv. ADO CPU. Leave a message telling a CPU to come to llfe and send a connect to It, 
forcing it to initialize itself. 

A final note on locking. Normally the VPC looks at the VPT without setting a lock because 11 1s 
the only process that may change the VPT. When it does change the VPC It loop locks to prevent 
conflicts with the PAM that may be searching the chain. The VPC itself is run whenever its 
wakeup-waiting switch is set by the PAM Indicating that there may be work for it to do. Th1s flag 
is reset whenever the VPC is placed in the runnable. Any events of interest that occur after this 
time will set the VPC wakeup-waiting switch in case it hasn't done all of Its processing in irs 
previous incarnation. Thus for example, if no paging communication buffer is available when the 
VPC looks and one becomes available while the VPC is running, no race condition arises became 
the VPCJun flag will be set anyway so that the VPC will be run again to make use of the buffer 
immediately after it unbinds to wait 

Also some efficiency considerations. As pointed out above it is possible to bypass some of the 
mechanism described above should the running of the VPC be considered too expensive. The 
VPC need not be expensive. Its operations are simple and it avoids the major expensive operation 
in PL/1, the full subroutine call. The only call it needs make is to an ALM procedure that is used 
for basic utility operations. This call only involves minimal housekeeping making it more efficient 
than a full PL/1 call. 
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M odifications to page control 

Unlike the current Multlcs, a page fault is not handled by the process taking the fault. This 
approach greatly simplifies the construction of a process because 11 removes the need to handle 
"awkward" sltuauon such as a page fault occurlng when the fault handler as copymg fault data out 
of the VPT.E. It also makes it possible to take a page fault on any page of the user's descnptor 
segment removing the necessary for wiring any pages of a process smce the other requirement for 
wired pages - external interrupt handling, as also removed by havang interrupts handled by 
dedicated processes. 

T he page fault processing itself is simplified sance the use of a process dedicated to thas functions 
greatly reduces the locking problems associated with page fault handhng. The modafacauons to 
page fault handling a.re manama! sance page fault already runs an an envaronment that has hnle to 
do wath its host process and as thus easily decoupled. Some comaderataon has been gaven to usang 
the modified version of page control designed by Andy Huber and refined by Bob Mabee. 

T he PAM generates a message to the page fau lt process by extracting the retevent data from the 
SCU data. Faults on page zero of the descriptor segment are permitted. The messages u placed an 
a nng buffer. The format on an entry is: 

declare l page_request based, 
2 pointer fixed binary, I• In AHT or WMT •I 
2 segment , 

3 astep pointer, I • ASTE En try • I 
3 uid bit(36) aligned , '* To ma ke sure still same . *' 

2 eventcount_index fixed binary; I• To notify process • I 

The meter poanter is dascussed an more detail below an the discussaon of the Active Meterang Table. 
When the request is queue the AMTE wire count is ancremented. After the meier is mcremented to 
charge for the processing, the wire count Is decremented to release the meter. The event count is 
derived from the segment unique-id and the page number within the segment. This value is 
hashed Into a wired table of page events. It Is the Index of this entry that is placed In the page 
request. The use of a preallocated table removes the problem of allocaung wired storage. We can 
use a small table wathout hmaung the number of outstanding page faults by not requiTing that the 
assignments of eventcounts to pagang operations be umque. There as no requarement that the event 
be umque, at as only a matter of efficiency. At worst, a processor may get a spurious notafy. anempt 
to execute, and fault agaan. 

The modafications to page control consist of: 

Removal of the code that handles the fault darectly as this as now done by the PAM. 

Removal of the exphcat anteractions w1th pxss. 
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Removal of the code mvolved m locking the page table since this process has exclus1ve 
acceu to its databases. 

Changing the references to metering data m the APT entnes to use the AMT. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The Active Metering Table 

Note: The discussion of the active metering table is included for 
completeness. The actual details of the mechanism are not yet fully 
worked out and the Implementation of a layered system need not be 
dependent upon the current AMT design. 

In a "real" system it is necessary to account for resource usage and to limit such usage against 
predetermined limits. In the current Multics system, many of the resource measu rements are 
associated with processes. Since the processes are known to the lowest levels of the system, not even 
deactivated, the Active Process Table (APT) has become a repoSitory for such information, or at 
least the resource measurement information. 

In the multilevel system, only virtu<LI processors exist at the lower levels. Since the processes 
assigned to this virtual processors do not exhibit the continuity of the present Mult1cs processes it 
is necessary to develop a separate mechanism for measuring resource usage. Furthermore, if we 
look beyond just supporting the current measurements, a restructuring of the metenng would 
permit the offering of improved mechanisms such as resource limits and shared meters at the base 
level; mechanisms which have been proposed in the past but which have not been implemented. 

There are two primary components to resource measurement -- the long term and the short term. 
The long term measurements in current Multics are stored in the PDT (Project Definition Table) 
and consist of dollar usage and more detailed resource usage measurements. Short term 
measurements are maintained in the APT. Periodically the Answering Service cop1es 
measurements from short term to long term storage. 

In the proposed Multics a similar mechanism is used except that the choice of short term meters is 
more explicit and not directly related to processes. At present we are mainly concerned with meters 
that must be available to ring zero# - those that correspond to the APT information. In addition, 
to simplify the design of page control, the meter (and limit) for storage system usage is also of 
interest. For the duration of its existence, each such meter resides in the Active Meter Table. It is 
only necessary for a meter to exist as such while the resource it is measuring may incur charges. 
For example, the meter of a process' processor usage can only be incremented while the processor is 
bound to a VP. Thus the level two traffic controller can create the meter at the time that it the 
process gets assigned to a VP and destroy it (after reading out the value) when the process 1s 
deassigned61• In contrast a process can Incur memory usage charges after the process has been 

i Need better term 

iiiJn fact, the VCPU meter is a special case and is kept in the VPTE m the current PAM des•gn; 
but could reasonably be Incorporated into the AMT mechanism as soon as the operation of the 
AMT is better described, i.e. when I finish writing this section 



-77-

Two-level Process Implementation 

deassigned from its VP. A third example of a meter as the storage quota meter. Sance this meter 
must be accessible from page control when assigning additional pages to a segment, it seems logical 
to assoclat~ the Information with the wired AST entry. Because the meter is actually shared by 
Multaple segments, it as actually kept separately an the AMT. Note that as a benefit of this 
aproach the quota limit is andependent of the darectory hierarchy and that storage system usage can 
be associated directly with accounts Instead of just to superior quota. 

Note that the meters described thus far share a special property - they must be accessible without 
taking a page fault; i.e. they must be wired. This is accomplished by maintaining a Wired Meter 
Table (WMT). 

An entry in the Active Metering Table takes the form: 

declare 1 ~TE based, 
2 fd bft(7Z), 
2 value fixed binary(71) , 
z lfCiit 

3 limit_set bit(l), 
3 value fixed binary(71), 

2 eventcount fixed binary(71), 
2 wtre_count fixed binary; 

When a meter IS to be ancremented (via amte~ladd), the meter id is used to hash mto the W MT 
and then the AMT to find the entry. If none 1s found, one is created in the AMT. To make the 
search more efficient, a meterJeference is used which contains a meterJndex in addition to 
address the table entry. When the entry is found via the index. it is checked to make sure the 
meterJd an the entry matches that an the reference, If it does not, the hash search must be used 
and the Index Is updated to make .the next reference more efficient. 

declare 1 meter_reference based, 
2 index fixed binary, 
2 home fixed binary(l), 
2 ld bit(72); 

'* Index fn AHT or WHT *' 
I* AHT or WHT •I 

A meter may reside in either the AMT or the WMT, but not both In order to make limit checking 
work. When the wire count changes to or from zero the entry is moved. Thas move as not 
necessary if the meter is bemg created m one or the other, or is beang read and cleared. 

The AMT is managered by the active_meter _table_manager (amtm). The following entnes 
are available. 
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declare amtmlset_limit entry (1 like amte, 1 like meter_reference, 
fixed blnary(35)); 

call amtmSset_limit (amte, meter_reference, code); 

As noted above, meter entries are created when an attempt Is made to use them. For entries such 
as page quotas, it Is necessary to initialize the entries with a limit value. It Is necessary for 
programs ~tting and using limits to cooperate such that programs do not check limits unless the 
limits have been set. For example, as part of activating a segment, a quota limit is set in the AMT. 
This entry is cleared when all segments sharing that limit are deactivated. 

declare amtmlread entry (1 like amte, 1 like meter_reference, fixed 
binary(35)); 

call amtmSread (amte, meter_reference, code); 

Returns values for the specified meter enrry. lf the entry does not exist, zeros are returned for the 
values. 

declare amtmlread_clear entry (1 like amte, 1 like meter_reference, 
fixed binary(35)); 

call amtmSread_clear (amte, meter_reference, code); 

Same as the read entry, except clears the value. This is the entry used to read a meter out so it can 
be updated tn a higher level table. The AMT entry may be deleted !I It is not wired and does not 
have a limit set. 

declare amtmlread_clear_l1mit entry (1 like amte, 1 like 
meter_reference, fixed 
binary( 35)); 

call amtmlread_clear_limit (amte, meter_reference, code); 

This entry is similar to the previous but also dears the limit setting so that the entry may be 
deleted from the AMT If not wired. 

declare amtmladd entry (fixed binary(71), 1 like meter_reference, fixed 
binary(35)); 

call amtmladd (value, meter_reference, code); 

Adds the specified value to the given meter. A code is returned if the value exceeds the meters 
limit. If the meter does not exist, it is created. 
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declare amtmSadd_conditional ly entry (fixed binary(7I) , I like 
meter_reference, fixed 
binary(35)); 

call amtmSadd_conditionally (value, meter_reference, code); 

This is like the add entry. except the meter value is left unchanged if the limit is exceeded. 

declare amtmSwire entry (I like meter_reference, fixed binary(35)); 

call amtmSwire (meter_reference, code); 

The wire count for the specified meter is incremented. If the meter is already In the AMT, it is 
moved to the WMT.If it sdoes not exist at ali, it is created in the WMT. 

declare amtmSunwire entry (I like meter_reference, fixed binary(35)); 

call amtmSunwire (meter_reference, code); 

The wire count for the specified meter is decremented. If the count reaches zero, it Is moved from 
the WMT to the AMT. 

declare amteSunwire_read_c lear entry (I like amte, I like 
meter_reference, fixed 
binary(35)); 

call amteSunwire_read_clear (value, meter_reference, code); 

Combines unwire and read_clear. 
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Notification and Events 

The basic mechanism for coordinating processes in the proposed system is the event More 
precisely, event counts are used to store state information about events.The eventcounts are 
discussed in detail in a CSR/RFC by Dave Reed and Raj Kanodia_ When an event occurs the 
value of the eventcount associated with the event is advanctd. A process in terested in the 
occurance of the event can await this advance. 

Evemcounts are identified by eventcount names. To the user an eventcount is simply a word in 
memory and thus its name is irs address. To convert this into a system-wide address the segment 
number is replaced by the segment-unique id. The eventcount can then be referenced by the 
system-wide name in order to do a notification. The actual reference to the value or the 
eventcount within the process awaiting or advancing the primitive is done using the pointer for 
efficiency. 

Eventcounts form a robust mechanism because, though a process may await a transition, the 
eventcounter Itself always maintains its state for later examination. Since the counter IS 

monotonically Increasing the await operation can be implemented by simply comparing the current 
value of the counter with a previous value. If the previous value has not been surpassed the 
process can loop waiting for the change, or can go blocked. This block is actually implemented v1a 
the callp/await primitive described above. Complementary to going blocked Is the mechanism 
for getting awakened. This is the notification mechanism. 

The notification is performed by the VPC as a result of a callp/notify operation. This 
primitive is invoked by the VPlSadvance interface. Note that only the advance interface IS 

available outside the PAM. While this Is not strictly necessary it does preserve the semantics of 
eventcounts. When the VPC gets a message to perform a notification, it scans the VPTEs which 
are In the aruailing state and places them in the runnable state. For efficiency, the VPC can 
actually check to make sure the value awaited has been reached since the value is copied into the 
VPTE, but this is not strictly necessary since the VPC can simply compare eventcount names. 

Spurious notifies are not harmful since the callp/await primitive checks the values anyway 
before returning. callp/await also checks the eventcount values after putting the process into the 
awaiting state to prevent any loss of notifies sent just before the process entered the awaiting state. 

Eventcounts associated with interrupts and page fault processing completion must be wired and 
preallocated. To simplify this a Wired Event Table is maintained. We can go further and require 
that all events originating at level one be in this table. Note that, unlike current IPC, the use of a 
wired table does not have the danger of overflowing since no messages are placed in the table. 
eventcounts are simply incremented. 

We can take advantage of the restriction on level one originated requests when implementing the 
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level two primitive for event counts. Observe that there is a fixed maxsmum for the number of 
events upon whtch a process may wast. The user interface need not, and should not, have such a 
restmtion. The level two traffic controller can implement its own await/notify mechanism s1mslar 
to the lower level mechanism except using virtua.l memory to get around the restriction on the 
number of events.. 

A level one process (i.e. a kernel process) can simply use the VPl event count interface (advance and 
notify) directly. For level 2 processes, there is a VPZ mterface for these primiuves. Since a level 
two process may have an arbitrary large number of events and may be unbmd from a V P whsle 
awaitiug, it is necessary for the level two interface to provide much of the functionality of the 
interface. To aid level two a special event count is provided that ss advanced whenever a level one 
event count IS advanced, the outwardJtgnal counter. This is dsscussed m more detail m the 
description of the implementation of the level two traffic controller. Other event countes used for 
communicating with the level two traffic controller include the stopfHd event advanced whenever a 
VP Is stopped and the clock. event that Is advanced at fixed intervals. 

As described abon eventcounts are passive m that they don't affect a process unless the process 
examines Its value or awaits an advance. Thss is not suffident to implement the current IPS 
mechanism. What Is needed Is a means of faulting a process so that It can examme eventcounts 
which it thmks are Important. This consists of setting a process' pendmg interrupt flag wh1le 
unbound at level two. When the process is to be run, the flag is examined by the PAM which w111 
cause a fault to be simulated. Note that the fault Itself doesn't tell the process what has happened; 
the process is simply told that something of smmedtate mterest hu occured. To g•ve the effect of 
current IPS, there would be an eventcounter assocsated with the terminal 1/0 channel for quits, the 
realtime clock and the virtual clock. 
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The Level Two Traffic Controller 

The lowest levels of Multics described above do not prov1de all of the functionality of the current 
system. The implementation requires a second level of control that multtplexes the virtual 
processors among user processes. Tnls second level is conceptually much m.e the lower level in that 
It multiplexes a limited number of processors to give tne effect of a larger number. While the first 
level emphasises simplicity, the second level emphasises function. The second level removes 
restrictions on the number of processors provided and the number of events that can be observed. 
It Is able to do so because it can make use of the virtual memory mechanisms for managing its 
databases. Note that the term process Is used In the conventional Mulllcs sense, of a user's address 
space and control point. The level two process is representation of the logical processor that 
executes a user's instructions. 
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The Implementation of old IPC and IPS 

Basic to the design of any change to Multlcs is the requirement that the new mechanism provide 
an external interface that Is compatable to any preexisting Interface. The lnterprocess 
Commun&canons Mechanism of Multic.s is basic to many programs and must be supported. 

IPC is relatively stmple to implement and offers a subset of the facilities of the eventcount 
mechanism. Most significantly !PC lacks the access controls afforded by ustng normal memory 
words a means of commomcauons and coordination. To implement IPC a per-process segment of 
eventcounts assoctated with IPC channels can be maintained. In addition a per-system segment 
could be used to transmit messages between users. An alternative is to provide each process with a 
segment for receiVIng its messages so that the access control can be used . 

Much of the complexity of IPC comes from the requirements of wired programs and programs 
requiring a very high degree of efficiency. Since the wired programs will be converted to use 
eventcounts, the IPC implementation is greatly sunphfted. Similarly for programs usmg fast IPC 
channels, they can be conve"ed to use eventcounts, though they can sun operate usang !PC dunng 
a transition period. 

The implementation of IPS has been discussed in the section on notificataon. The mechanism has 
been generalized to separate the occurance of the sagnal from the message associated wath It Thus 
one IS not hmited to the sagnals currently defined in the APT entry. For example, the quit signal 
can be associated with the terminal as an 1/0 device without requ1ring that It have special 
significance as the process' controllmg terminal. 

The !PC facility offers an ability not offered by event counts alone - the sending of mesages In 
addition to the wakeup. Thas can be accomplished by using the message segment facility 
accompanied by eventcounts withtn the message segments. 
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Implementation 

Both top·down and bottom·up views of the implementation of the layered system are applicable. 
The top·down views entails examming the eximng Mulucs implementation and determming what 
one must change to retain is functionality. The section on initjalization examines the 
implementation from the bottom·up view. The following section on transition examanes the 
Implementation from the view of modifying and preserving the existing Multics system. 
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I ni tializa tion 

The bouom·up view begins by recognizing that level one of the layered Multics is sufficient for 
supporting a simple operating system directly without the features provided by level two. In fact 
this is an environment that is much more sophisticated than BOS in that it permits the use of 
processes and programming in PL/1. 

By making the first stage of Implementation the programming of an environment consisting of 
just level l primitives. An environment can be brought up without requiring the modification of 
the existing Multics. Most importantly, such an implementation result In a running system that 
can support a set of debugging tools for the later software. The psychological value of having a 
completely running piece of software should not be ignored. The level implementation a I so 
provides a starting point for the initialization of Multics itself and is thus a necessary first step. 

The level one implementation consiSts of relatively few programs: 

I. A program to initialize the level one system within collection one. Associated with this is a 
program to generate a relocation diCtionary for the PAM. In addition to initializing the 
PAM tables, the program also creates processes for the VPC, the idles processes and an 
interrupt side process. 

2. The PAM. 

3. The VPC. 

i . An interrupt side process. In order to simplify Implementation 1/0 programs wlll continue to 
run much as they do now except all programs that normally run in response to mterrupts 
will run in a single processes in response to the correspond eventcount being advanced. The 
old interrupt handlers themselves should be able to run unchanged. 

5. A debugger. 

That is a II that is stnctly necessary. An additional nicety might be to Implement the existing BOS 
within a process so that its functions can slowly be spread to multiple processes without the need to 
continue to support a second 68/80 operating system and without the alternative of rewriting all of 
the code from scratch. 

Initialization consists of load ing the kernel processes necessary to support the full level one 
environment and then the ones needed for level two. There is a discussion on page 39 of creating 
YP's as necessary as part of the operation. To fill out the level one environment the following 
functionality must be brought up: 

I. Disk Control 



-86-

Two·level Process Implementation 

2. Segment Control 

3. Page Control 

i. The Level 2 Traffic Controller 

Once the level 2 traffic controller is brought up Mulucs ts enenually runnmg. An answenng 
servtce process can be created to create user processes. Given that processes can be created eastly, 
the answering service does not need the primacy It currently enjoys. 
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T ransition 

One quemon that must be considered 1f the Implementation of the two level traffic controller IS to 
be taken senously u that of how to get from the current implementation of Multics to the new one. 
The d1ff1culty IS that a complete transition IS necessary. ThiS is not an msurmountable obstacle m 
that we hue had such trans1Uons m the past as in the case of the new storage sys1em and earlier 
file system flag days. Wh1le the need to convert over completely is present, the d1ff1culty 1s not 
comparable to that of a mapr change to the file system. Most of the Mult1cs system will contmue 
to operate as It presently does. The changes conmt of 

I. Changes requ1nng new software 

I. A level one lnitlahzalion program must be written. 

2. The bas1c mechanisms of the PAM, VPl and YPC must be implemented. The YPC 
would be Implemented in PL/1. 

3. The initialization path must be modified to build up a system from one running at 
unadorned level one to a full Multics environment. 

i. The level two traffic controller must be implemented While it must acquire all of the 
functionality of pxss, the level two traffic controller function Is less critical •• the vast 
majority of the scheduling deciSIOns are made by the PAM and the YPC. Thus the 
initial Implementation need not be highly optimized for demonstration of its feasibility. 

5. A pnm1Uve vers1on of the amtm must be Implemented to support basic accountmg 
funcuons. 

II. Mod1f1tallons to ex1stmg software 

I. A replacement must be prov1ded for IPC using events. 

2. Page control must be removed to 1ts own process. Much of the work has been done 
already. Th1s tuk IS s1mphf1ed by the fact that the page control env1ronment 1s already 
very constramed so u not to be dependent upon the process m wh1ch 1t is a parasite. 
This IS discussed m detail on page 23. 

3. The Interrupt handlers must be moved to their own processes. As with page control, 
they already operate 1n a constrained environment and thus providmg them With their 
own process w11l not depnve them of features and will simplify them by the removal of 
the need to do direct Interrupt handling and will remove the need for separate interrupt 
side and user side components. As an Interim implementation all interrupt side programs 
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can be written unchanged within a smgle processes wtth only iom_manager begm 
modified. 

4. pxss would simply be removed from the system. 

5. System initializati.on must be modified and possibly redone. Much of the exisung 
software can be used. For example disk support must mil be intuahzed. The 
i'nitialization would, however, be done as part of setting up the disk control process. 

6. Present H-Procs could be simplified by replacing them with kernel processors. 

7. The accounting software must be supported. 
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Extensions 

The thesis has been concerned mamly with presenting a clean model processor mulliplexing. In 
actual implementation some additional iuues can be considerrd. Some of thu are s1mple extensions 
and others represent a different pomt of view on the part of the implementor. 

I. Robustness 

The layered implementation provides a much cleaner mucture than the current Mulucs 
system. Th1s structuring provides an environment in wh1ch the Implementation of features 
to make the higher levels more robust by providing a low level In which the Implementation 
of such support facillues 1s simplified 

I. A Level I debugging process. 

2. Ability to recover from trouble faults -- spare repair processes. 

3. Ease of umeouts and error recovery by 1/0 processes. 

i. Daemon kernel processes. 

II. Takang advantage of the implementation 

This section lists some ways of taking advantage of the existing software In implementing 
fadhttes on Multlcs. 

I. Waiting on messages. 

One can associate an event counter with each message segment (or mailbox) that gets 
advanced whenever a mess,age gets placed in it. Th1s 1s an effective and much more 
powerful replacement for !PC. Some of the advantages include the ability to have 
lnterProcess (message) Commun1ta11on with access control There is also no limit to the 
number of processes that can be awaiting the message. Since the transmission of the. 
message is via a segment in the hierarchy the problem of setting up and communicating !PC 
channel numbers IS eliminated. One fmal advantage of the proposrd Implementation is that 
any process with access to await a mma&e can specify immediate auention (1.e. an Interrupt) 
when the value is changrd. 

These facilities can provide a buis for a number of features. It is possible to 1mplemen1 
notification upon the receipt of mall. Alternatively a server can be awaiting messages and 
then create processes the handle them (I.e. potential processes). 

Ill. Changes to the model 
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I. One of the bas1c assumpuons in the model is that Virtual Processors at level 1 are 
neither created or destroyed. Thu assumption actually complicates the system by 
requ1ring that all uses of kernel processes be predetermined. In particular 1he 
mniahzation of the system must be carefully planned with respect to the use of VP's. 
This is similar to requinng that all Muhics tables used In managing the system such as 
the AST be determined when the system is generated, as opposed to during lnllialitation 
as is presently done. 

The reason for the restriction on VP's comes from two primary sources: the need for 
simplicity and the attempt to carefully structure management of memory. The simplidty 
argument is not one of absolute slmplictty but a choice of what to simplify. One must 
pay the price of carefully preplannlng use of these processors. In particular when one 
dynamically reconfigures the system to add a new device (logical or phys1cal) and one 
needs to ded1cate a VIrtual processor to liS management, one cannot tolerate the lack of 
a vailabihty of such a processor, nor can one reduce the number of vmual processors 
managed by level 2 since that would change the level of muluprogramming 9f the 
system. 

While the requirement of a program that is able to assign primary memory addressable 
by the PAM might add additional complexity to the system, It does not affect the 
layering of memory memory management since it Is not dependent the management of 
virtual memory. In fact in an Ideal processor such a mechanism would be simply 
structured such that it can be shared by both the page frame allocation mechanism and 
the primary memory allocation Interface. The 68/80 processor Is a little more complicated 
In that the PAM Is unable to easily address more than the first 256K of memory. But 
th1s requirement IS already present for l/0 buffer management. To summanze, this 
mechanism must exut anyway for performing 1/0 and filS Wlthm the structure of the 
memory management hierarchy so that 11 does not really add complexity to the system. 

Thus the ab1hty to dynam1cally create virtual processors would simplify the 
Implementation without affecung the layered model of the system. 
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The existing implementation 

A test tmplememauon of the basic level one portion of the two level system has been completed. It 
supports the functions of level I with the exception of pagmg and the handling of faults reflected 
to user processes. 

lt is a modification of collection one of Multacs anitializauon. Interrupt and fault processang have 
been replaced by the PAM and the YPC. The YPI interfaces for "run", "await", "advance", 
"crash_sysrem" and "clear _cache" are supported. The system spawns kernel processors (including 
the VPC and the idle processors). 

The only 1/0 dev1ce supported Is the console typewriter. The interrupt side procemng for the 1/0 
is performed in a processor dedicated to that function. The stopped (to ind1ca1e a processor 
entenng the stopped state) and the clock events are supported. The 1dle processes share a 
descriptor segment. 

The following changes were made to the system: 

I. The PAH was Implemented to handle all faults and anterrupts. 

2. The VPC was Implemented to: 

a. Convert Interrupts (as noted by the PAI1) into notified events. 

b. Manage the clock evenL 

c. Advance the stopped event when a YPT stops. 

d . Process run and notafy messages. 

3. init_collections was modified to call init_basic:_ll and not to call 
initial ize_faults. PYT inaualiution and tape tmtiahzataon was also ehmmated. 

4. init_basic_ll was implemented to initialize the PAI1 and the YPT. II spawns the 
VPC and idle processors. 

5. create_kerne l_proc:ess was Implemented to inatlalize a YPT entry. 

6. init_ll_get_segment was Implemented to create segments for processes' dsescriptor 
segment and pds. 

7. The prds was eliminated. 
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8. privi leged_master _mode_ut was modified to use the pam for entering 80S and for 
clearing the cache and associative memories. 

9. init_sst (and the sst) was modified to remove masl<.s was for inhibiting and 
generating interrupts. 

10. pxss was eliminated. So was tc_data. 

II. The fim and i i were replaced by stubs since at this point the system Is unable to 
handle reflected faults. These routines will have to be redone. The same goes for 
emergency_shutdown and related programs. 

12. The pds was cleaned up to remove unneeded storage for fault data in the header. 

13. VPl and VP _util were implemented to interface to the pam and to support the idle 
process. 

li. run_basic_ll was Implemented as a process to give periodic status messages. The 
mor it i c 1 an was implemented in a similar manner to monitor stopped processors. It 
uses status_report which, in turn, uses octal for typeouts. 

1!1. interrupt_process_driver was implemented to manage the interrupt side process. 

IS. ocdcm_ was modified to use eventcounts to govern contention on locks. 

17. A pxss was implemented to provide a write-around to addevent and notify primitives. 
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Glossary 

Some suffixes are commonly associated with abbreviations. "E" Is used to indicate an 
entry in table and "p" is used to designate a pointer. 

The Add Delta modifier causes the effect address to be computed using an indirect 
word and increments the value of the word by a specified amoum. It is of interest 
because it is atomic with respect to other Instructions using the mod lfler. 

Active Meter Table. 

Active Meter Table Manager. 

Active Process Table. The APT in current Multics would be replaced by three 
databases. At levels zero and one there is the VPT. The level two traffic controller 
maintains the APT, and for efficiency, an I PT. 

Active Segment Table. 

Basic Operating System. This Is a standalone operating system for the H68/80. It 
provides utility functions when the full Multics environment is not available. Such as 
when actually bootloading or debugging Multics. 

"Call Processor, an instruction Implemented using t.he faulong mme4 and interpretted 
by the PAM. 

Clear Associative Memory PTWs. 

Clear Assoc.iative Memory SDWs. 

Inactive Process Table. Th1s Is maintained by the level two traffic controller and 
corresponds to the APT, except that for reasons of locality the entries that are 
referenced Infrequently are moved mto the IPT. 

Level Two Traffic Controller. 

The Master Mode Entry i mstructlon simply causes a fault. The fault handler will 
interpret this to be a ca l l p operat1on if the fault Is taken while eltecutlng In a 
pnviliged segment. 

Processor Assignment Manager. 

Processor Binding Manager; older term for PAM. 



VCPU 

-94-

Two-level Process Implementation 

Proje<t Definttton Table. 

Page Table Word 

Segment Descnptor Word 

Store Instruction Counter plus one. Thts tnstruction is used to set a flag to be tested 
with sznc. It is of interest because it does not affect registers, is atomic with respect to 
sznc and stores a nonzero value. 

Set Zero Negative and Clear. Thts instructton is used to test a flag set by stcl. It does 
not affect registers and rests the flag after test Since it is atomic with respect to stc l 11 
is good for low level synchronttallon primitives. 

Vmual Central Processtng Usage. A measure of the time assigned and executing. 

Virtual Processor. 

The procedure that interfaces to the callp instruction. 

Virtual Processor Coordinator. 

Virtual Processor Table. 

Wired Event Table 

Wired Meter cable 
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FURTHER RESULTS WttH MULTI-PROCESS PAGE CONTROL 

by R. F. Mabee 

-

This memo updates performance measurements reported by Andy Huber 

in his recent thesis "A Multi-process Design of a Paging System", now 

available as ~IAC-TR 171. The PL/1 code is brought up to date with 

NSS, and improved by removing many external subroutine calls from the 

critical page fault paths. This gives a performance improvement of 

about 30%. Many detailed measurements have been made; the results are 

used to determine where time is spent in both this and the standard 

page control. 

This should be the final report on this project, as no further 

development is expected. 
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I. Review 

In one chapter of his thesis, "A Multi-process Design of a Paging 

System", Andy Huber reports measurements made on two versions of 

Multics, one using his multi- process page control (}IPPC) and the other 

using the standard page control . The former has two H-procs (fast 

system processes) that run the resource freeing functions of page 

control, and perform some operations for segment control (typically 

truncating a page table). Most of the code was rewritten in PL/1, 

except for the bulk store DIM, a piece of the fault handler, and the 

system interrupt handler, which are essentially unchanged. The 

results show comparatively poor performance by the MPPC in two 

respects: 

1) The number of page faults (during a 

benchmark run) is much higher. 

standardized 

2) The CPU time spent by the PC processes is excessive, 

doubling the time per page fault . 

The increase in page faults can be attributed to the reduced size 

of the paging pool. The wired stacks, the RWS buffer, the increased 

size of the PL/1 code, and the free core list reduce the paging pool 

by 10 to 20 pages. This could be cut in half by careful tuning of the 

algorithm, and becomes unimportant in systems with larger memory. 

Huber also points out that MPPC disconnects pages before writing them, 

while the standard PC leaves modified pages connected for an extra 

lap . If modified pages are more likely to be referenced than 

unmodified pages, then the standard PC will have fewer page faults. 

The increased paging isn't very interesting, because it's readily 

explained and wouldn't much matter in more reasonable configurations . 
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For comparisons of CPU time, we adjust tbe sizes of the paging pools 

so that the metering run takes about the same number of page faults 

with each version of PC. 

There are two special processes in MPPC: the core manager and the 

paging device (PD) manager. They perform functions that are mostly 

done at page fault time in the standard PC, so the MPPC should spend 

much less time in the page fault handler . Instead, the time is 

slightly higher (3%). This is the effect of using PL/1. Huber 

predicts a 40% improvement by replacing external calls with internal 

calls, With the resulting times shown in tbe last column of the table . 

Page fault handler 
PC processes 

Standard PC 
1973 

MPPC 
2043 
2641 

Predicted 
1226 
1585 

Table I . usee per fault . Adapted from Huber. 

Three modifications should be made to these numbers for more 

accurate comparison . In both versions of PC, the fault time meter is 

updated about 500 usee too soon, before tbe bulk store read (if any) 

is posted. There is no question that tbe time should be accounted to 

the page fault handler; it's just a bug. Also, the time spent by the 

PC processes on operations other than page faults (primarily 

truncation) should be subtracted from the tota l s; by reasonable 

extrapolation from more recent measurements this amounts to 336 usee 

per fault. Thirdly, the cost of interr upt handling and of 

inter-process svapping (getwork time) should be included; again, these 

numbers are taken from recent runs. The corrected figures appear in 

the next table. Comparing the total times, we find MPPC just under 

twice as expensive . 
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Standard PC MPPC Predicted 
Page fault handler 2473 2543 1726 
PC processes 2305 1383 
Interrupts and getwork 445 684 684 

2918 5532 3824 

Table II . usee per fault. Approximate corrections added . 

II. Recent changes 

For this new series of experiments I used version 28-10 of 

~uutics, with both standard and MP page control subsystems. Among 

other changes since Huber's experiments was the introducti on of NSS 

(New Storage System) , with many consequent effects in page control . 

NSS resulted in a 200 usee improvement in page fault times for the 

standard PC, although no corresponding improvement was observed in 

MPPC. I believe this shows the benefit of the long, careful tuning 

process applied to standard PC; MPPC must compete without such tuning. 

Page faults in the IPC benchmark have increased by 10% during 

this time, probably due mostly to online changes and only somewhat to 

reduced paging pool . As before, timing measurements are made with 

paging pools adjusted so the two versions of PC handle about the same 

number of faults during a standard metering run. 

The final version of MPPC is optimized by embedding subroutines 

as internal procedures of the page_ fault and core_manager programs so 

that most external calls and redundant assignments (i.e. "sstp = addr 

(sst$ ) ;") are avoided. If all of the external calls could have been 

removed, then the predictions in Table 11 would be real i zed . However, 

the cal ls to ALH subroutines (such as the bulk store DI M) coul dn't be 

removed. Moreover, some of the calls that Huber counted to make his 
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predictions are executed only once in several page faults; in that 

case the cost per fault is proportionally lower, reducing possible 

optimize tion. 

Six external calls were removed from page_fault, leaving only 

four calls, all involving ALM. Seven external calls were removed from 

core_manager, leaving four to or from ALM. However, three of the 

calls removed were executed only half the time (when a page must be 

written). If each external call costs 70 usee , the net gain is only 

800 usee, or 14%. The rarer cases aren't optimized, on the grounds 

that a small improvement in an unusual case wouldn't affect the 

average times very much. Specifically, only PO reads, page creations, 

virtual writes, and PO writes not requiring PO allocation are 

optimized. This handles 84% of the cases. 

As another optimization, the core_manager page removal algorithm 

is made more efficient, although complex , by starting writes for 

several pages before waiting on any. The overall results are shown in 

Table III. 

28-10 Original Predicted Observed 
Standard KPPC by Huber by me 

Fault handler 2531 2543 1756 2162 
Core manager 1985 1191 1272 
PO manager 320 192 312 
Interrupts and getwork 445 684 684 684 

2976 5532 3823 4430 

Table Ill. usee per fault. Results of optimizations. 

III . Where the time goes 

It is possible to attribute the total CPU time spent on a page 

fault to the various functions performed. The bulk store DIM alone 

accounts for about 500 usee per read or write in both systems, which 

- - - - --- - - - - - --- - - - - - --- - - - - - --- - - - - - --- - - - --- - -- - - - -- -
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is surprisingly high. This apparently indicates that the I/0 greatly 

slows the CPU by competing for memory cycles. Of course, this 

behavior should be unique to the test configuration combining MOS 

memory with bulk store. Depending on whether the CPU is locked out 

entirely or just slowed down, this effect may also be slowing down the 

rest of PC. Another 500 usee is spent (mostly by page$done) to report 

completion of the I/0 . In the following table, the measured time for 

the standard PC page_fault is arbitrarily divided between freeing core 

and real page_fault in the proportion measured for the MPPC system . 

The unusual cases of page creation or forced write to disk are 

ignored. 

28-10 28-10 MPPC MPPC 
us/event us/fault us/event us/ fault 

Real page_fault 482 482 1162 1162 
Getwork awaiting core 637 54 
DIM and page$done 1000 1000 1000 1000 
Getwork awaiting disk 692 69 637 64 
Interrupts, disk read 1921 192 2102 210 
Getwork for pre-empt 692 69 637 so 

Freeing core frame 297 297 715 715 
Dr.! if must write 1000 557 1000 557 
Getwork by core_manager 637 124 

Freeing PD record 580 83 1400 200 
DI~ if must RWS 2000 112 2000 112 
Getwork by pd_manager 637 56 
Interrupts, RI<S 1921 115 2102 126 

2976 4430 

Table IV. Detailed breakdown of page fault cost. 

The total CPU time per fault for MPPC is 1454 usee longer, or 

about 49%. Approximately 230 usee of the excess is spent in getwork 

when any process has to wait for a PC process to refill some free 

list, or when the PC process is done and goes to sleep. Perhaps an 
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equal amount (unmeasured) is spent in calls to perform the 

An inter-process communication required for the PC processes. 

estimated 300 usee represents the effect of less common paths that I 

didn't bother to optimize, and the cost of putting free frames on a 

separate list, and the cost of the extra metering done in this 

version . The rest of the excess (estimated at 700 usee) is directly 

caused by using PL/1 to express the algorithms, which apparently 

increases the execution time of comparable operations by about 80%. 

(Note that Huber chose PL/I for ease of implementation, and not for 

performance.) 

One important factor adding to the cost of PL/I is the frequent 

use of the pointer built-in function (to follow the many threads used 

by PC). In the ALM version this is done by one instruction, loading 

an index 

generated 

register . 

code; this 

The 

is 

PL/I compiler optimizes to shorten the 

not always best for execution speed. 

Furthermore, the ALM version optimizes register usage over a much 

larger scope. Hostly these are problems inherent in the use of PL/I, 

so (unless some gross bug is found) the best performance that might be 

achieved must still be 20% poorer (in total CPU time per fault) than 

the standard PC. It's worth noting that the interrupt times for MPPC 

are only slightly higher (181 usee). The system interrupt handler and 

disk DIM (both unchanged) use most of the time; the difference is in 

page$done, a very short procedure conver ted to PL/I for HPPC. Its 

execution time is around 400 usee, so the 80% PL/1 overhead is still 

consistent. 

In the test configuration, the page fault rate is somewhat less 

than 100 per second . Since the excess time for MPPC is 1454 usee per 
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fault, it should cost less than 145400 usee per second, or only 14% of 

the elapsed time for any run. However, overall system performance is 

not that much worse. In fact, the faulting process is delayed 369 

usee less by the fault (from Table Ill), so it seems to run faster, 

and can respond to interactions faster (if it needs only a few new 

pages) . 

The PC processes sometimes run during time that would otherwise 

be idle. The benchmark results show this effect clearly if the 

working set estimator is enabled -- that reduces multiprogramming and 

increases idle time, so the MPPC system completes the benchmark in 

just 8% more elapsed time . (Tuning parameters: WSF = 1, Max Elig = 4; 

about 150 pages; 23% idle with standard PC.) The HPPC will provide 

faster service than the standard PC if there is enough idle time. If 

the PC processes always take what would otherwise be idle time, the 

page fault costs 369 usee less; if they never do, the fault costs 1454 

usee more. At a point in between, the extra cost of MPPC is zero; 

this happens if the PC processes take idle time 80% of the time. Thus 

MPPC performs better than the standard PC if there is at least 80% 

idle time . 

The paging function is exercised so heavily in the tiny test 

con figuration that its cost is exaggerated in importance. A system 

with much larger main memory and no bulk store, which seems to be the 

right approach for Multics, might, for example, take only ten page 

faults per second per CPU. In this environment MPPC (minus the PO 

process) would cost only 4% of the total time, versus 2.8% for the 

standard PC. The reduction in the paging pool caused by maintaining a 

free list (in MPPC) would also be unimportant in such a configuration. 
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Since choosing the right page to evict would become relatively more 

important than doing it fast, alternative strategies should be tried, 

and for such experiments the modularity, readability, and PL/I-ness of 

MPPC make it ideal. 

IV. Conclusions 

First, the negative recommendations: MPPC as coded is not 

suitable for installation on a thrashing system like HIT-Multics. It 

is not ready for use anywhere because of glossed- over NSS issues, 

incomplete error handling, and just plain bugs. 1 have no intention 

of updating the code to more recent Multics releases than 28-10. 

There are many positive results . The cost of the inter-process 

communication and swapping is not too bad (400 usee per fault?), and 

it could be made much lower by making the free lists longer . (The 

measurement runs were made with a maximum of 12 free cmes on the list. 

Because of the interaction with paging rate this size free list would 

be used only with paging pools from 500-1000.) The delay seen by a 

process when it faults is slightly reduced. The PL/1 version of page 

control is available as a better base for experimentation and metering 

than the ALM version . 

It turns out that the cost of using general-purpose processes and 

inter-process communication facilities, while small, is intrinsic . 

This cost would probably not be much reduced using another 

implementation of the process, such as Dave Reed's Virtual Processor, 

since a lot of the cost is in unavoidable overhead of process 

switching or of calls to perform IPC . Many of the !PC operations 

either implement a cross-process call to a specific routine, or merely 

---------------------------------------------------------------------------------------------
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indicate that (say) the core_manager should be run sometime soon to 

free up more core frames. The latter function could be more cheaply 

implemented, at the expense of modularity, if the scheduler called the 

core_manager directly just before going idle. Of course, if the 

core_ manager isn't a real process, it loses the ability to wait on I/0 

or on a lock. 

By far and away, the biggest performance problem is the use of 

PL/I. It has already forced a non- modular design for the main 

programs, by imposing a stiff penalty for good design; it also handles 

the list-structured objects of page control very poorly . In order to 

obtain better performance, I would have to rewrite the programs to use 

constructs for which the code is known to be particularly good; that 

means picking out the machine language sequence I want first, then 

fooling the compiler into emitting it . It just isn't worth writing 

any program in higher- level language if its performance is so 

important and the language so poorly suited. 

Let us momentarily suspend disbelief, to consider an AIJI version 

of ~PC. It should execute similar functions at the same speed as the 

standard PC, so the extra cost i s just the 400 usee presumed for IPC 

and swapping, or only an 8% increase in CPU time per fault. The delay 

at fault time becomes 1049 usee less (from Table IV), so overall 

performance is improved for any load up to 72% (i . e . more than 28% 

idle). In fact, if the IPC and swapping were optimized as previously 

suggested, the overall performance might be improved at any realistic 

load . 

Even the ALM ~WPC would cause some loss in throughput if there 

were no otherwise-idle time to give to the PC processes. ln the face 
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of scrong real- world emphasis on execution speed, ic's sometimes hard 

to explain why the program with good organization and modularity, 

clearly expressed in higher-level language, is better than its 

assembly language predecessor. We have no way of measuring the 

intangible benefit of any such 'improvement or of weighing it against a 

known cost in CPU cycles or dollars . All we can fall back on is the 

general philosophy, "Good is better than evil , because it's nicer." 




