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Abstract

Thesis Title: A File Transfer Program for a Personal Computer
Author: Karl D, Wright

Thesis Adviser: Dr, Jerome Saltzer, Professor of Computer Science

This thesis explores engineering deeisions involved in implementing
a network file transfer program on a personal computer in response to
criteria of low ecost and reasonable efficienecy, The issues inelude
choice of hardware, design of the network, choice of implementation
language, choice of communication protocols, and choice of software
structure. A machine level protocol is designed. A project incorporat-
ing these and other ideas is undertaken and the ideas thus evaluated.
Insight is gleaned into the performance expected under varying operating
system and interrupt environments. A notion of an "ideal" operating
system interface for applications similar to file transfer (which ecan
exploit concurrency) is developed. Finally, possible improvements on
the actual project are suggested based in part on the effieiency data

obtained.
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Personal computers are in the process of revolutionizing many
aspects of modern life, Information exchange is one area whieh will be
affected greatly in coming years. As personal computers become com-
monplace, it is likely that people will wish to connect them together to
form networks in order to send mail, transfer programs and data, and use
community-owned mass storage devices or other such localized, expensive
hardware, Some way of transfering files is a necessary means towards
accomplishing this goal,

In this thesis, I will examine some of the engineering issues in-
volved in implementing a file transfer protocol on a personal computer.
A protocol is a conecrete and thoroughly specified set of actions which
allow different computers (or hosts) to communicate intelligibly via a

network. Some of the engineering criteria which I attempted to conform

with are:




1, File transfer must be straightforward, applicable to a large
number of existing networks and machines, and reasonably effi-
cient.

2. The network used must be low cost and hardware for it must be
readily obtainable,

8. The protocol(s) used must be supportable by a wide range of
hardware, e.g., the protocol(s) cannot require certain forms of
eoncurrency since some personal computers do not have that

capability.

Some of the more abstract issues that arise are the following:

1, What should be done to handle the case of a host whiech is not
there some of the time?

2. How can the transfer program be structured to allow maximum
concurrency between independent activities, and hence meximum
efficiency?

3. What kind of efficiency can be expected using this structure

under various kinds of operating system environments?

Finally, I will examine the insight this project gave into what
personal computer hardware and operating systems should be like in order

to support efficient network file transfer protocols.



Chapter 1: Design

In this chapter I will recount some of the design deecisions made in

order to implement the file transfer program. Decisions were made on

the following questions:

What machine should be used?

How should a local network be constructed from these machines?
What protocol(s) should be used?

How should the transfer program be structured to allow maximum
possible efficiency?

In what language should the transfer program be written?

All of these decisions had to be made in the light of the following

considerations:

Overall cost must be low.

Hardware must be readily available,

Compatibility with large networks already built should be main-
tained,

The program should be readily transportable to other machines,
The hardware should be amenable to the projeet, i.e, the re-
sulting program should have the possibility of being reasonably

efficient and not be overly constrained by the hardware.

e




The machine chosen was the new IBM Personal Computer, The features
that made it attractive for this project are centered around its ability
to support concurrent peripheral communication activities, In par-
ticular, the disk controller is of the direet memory access type, which
means that the processor is free to do other things while data is being
read from or written to the disk, This is important because it allows
the processor to concern itself with the network while disk access is in
progress, In addition, this machine comes with a standard serial data
port capable of running at speeds up to 56 thousand bits-per-second,
which is quite fast enough to support a network,

This led immediately to the choice of the RS-232 serial line as the
networking medium. Serial ports are standard on most personal computers
and are thus easily obtainable at very low cost. This satisfies all the

engineering criteria mentioned concerning networking medium,

A. Network and Low Level Protocol Design

The current network design is due in large part to Dr. Jerome
Saltzer and Wayne Gramlich, It was decided to use a gateway already
under development to do packet switehing among Personal Computers or
between a Personal Computer and outside networks, A gateway is &
machine whose sole purpose in life is to route packets of data from
network to network. Our geteway was dubbed the C-Gateway, since gll the

software for it is written in the C language,



(Figure 1: Design of Personal Computer Network)
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Since this configuration requires one connection point for each
Personal Computer attached to the network, the load on the C-Gateway in-
ereases quickly to an intolerable level, and thus the design does not
scale up readily, Nevertheless, it is a reasonable interim solution,
and it was chosen for reasons of availability.

The network design has important implications in the design of the
lowest level of communication protocol., This level of protocol is
direetly involved with the actual hardware, in contrast to higher levels
of protocol which are considered standard and thus are the same across
many different hardware configurations, The design ecriteria for this
hardware-level protocol rests on the following considerations: First,
because the C-Gateway will have a tendency to be extremely busy, it
should not have data coming in too fast or at an inopportune time since
data will be lost under these conditions, A maximum data transmission
rate of 9600 bits per second was chosen to help meet this criteria (and
also because the current C-Gateway hardware cannot support anything
faster), Even at this speed, the C-Gateway cannot listen to more than
one or two Personal Computers at a time, and provision must be made for
the possibility that the C-Gateway will not be ready to receive a packet
of data that a Personal Computer wishes to send. The argument can apply
equally well in the other direction, since the Personal Computer may
either be doing something else or be turned off., In these cases, the
packet is undeliverable and the C-Gateway should be aware of it, in case
error actions need be undertaken, In addition, the protocol must be

prepared to handle lost bytes, since the communication media can occa-
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sionally lose characters due to noise or synchronization problems.
Finally, the protocol should support simultaneous data transmission in
both directions for reasons of efficiency and generality. The following

ready-acknowledge protocol fulfills these eriteria:

Machine A wants to send a packet of data to machine B (A and B are

directly connected to each other by an RS-232 serial line):

1. Machine A sends B a RDY request. "Are you listening?"

2. Machine B sends A an ACK reply. "I'm ready; let "er rip!"

3. Machine A sends B a data packet encoded in such a way that RDY,
ACK, or END never appear in the data, "Here it is,"

4. Machine A sends B an END signal, "I'm done,"

The encoding procedure used on the data is known as gharacter
stuffing. One character is designated as a prefix character, and all
occurrences of that character or any of the signals are translated into
the prefix character followed by another ( non-signal) eharacter.

If machine A sends @ RDY but does not receive an ACK for too long a
period of time, it retransmits the RDY and repeats once or twice, in
case either the RDY request or the ACK reply was lost, If it is still
unsuccessful, it assumes machine B is dead or not interested in talking.

If machine B sees a RDY in the middle of data, it assumes that the
entire packet was sent, but the END signal was lost, If machine B is

receiving deta, and the data stops coming for long enough, machine B
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assumes that the END signal was lost but the packet is complete. [Any
errors in this assumption will be detected by a higher level of
protocol.] If machine B sees an END signal while it is expeeting data,
it knows the packet is complete, If machine B sees an ACK reply in the
middle of data, it sets a flag so that the transmitting side knows that
an ACK reply has been received. This is how bidirectional simultaneous
transfers are supported. A typical bidirectional transfer looks (or

sounds) like this:

1, Machine A is sending data to B,

2, Machine B decides it wants to send data to A at the same time,
so it sends A a RDY request,

3. Machine A sees the RDY request and immediately stuffs an ACK
reply in with the data it is sending,

4. Machine B sees the ACK among the data it is receiving and
begins sending its data to A,

5. Both transfers continue simultaneously,

Notice that either side can enforce monodirectional communication
by simply not responding to RDY requests until no packet is in the
process of transmission.

The interface to the Low Level Protocol (LLP) was designed with a
wide range of applications in mind, For example, applications requiring
parallelism mean the interface has to to have the characteristic that a

program trying to send or receive data never gets "stuck™ waeiting for a
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packet to be sent or received, or waiting for the other machine to
scknowledge a request., This is necessary to take full advantage of the
bidirectionality of the protocol, since a program may want to send and
receive packets simultaneously and therefore must pay attention to both
the sending line and the receiving line, In the case of a file transfer
protocol, the program may wish to do disk aecess and receive or send &
packet simultaneously, The interface chosen for the task is the follow-

ing:

receive_packet_status_check: Returns a flag indicating whether or
not & packet has been completely re-
ceived and is waiting, Side effect:

Performs funetions of LLP.

get_received_packet: Waits for a packet if there is not one
already there, and returns the packet

received,

send_packet_status_check: Returns a flag indicating whether or
not a packet has been completely sent
and routines are ready to handle
another, Side effect: Performs fune-

tions of LLP.
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send_packet: Waits until the last packet is complet-
ely sent, then starts sending a new

one,

This interface satisfies the criteria mentioned above. In addi-
tion, it is important to note that the function of the LLP is pot per-
formed by the routines which actually receive and send individual char-
acters on interrupts. The decision not to do LLP work on individual
character send or receive interrupts came about for two reasons, First,
part of the funection of the LLP is to allow programs who do not wish to
receive data to simply ignore the existence of the network. Second, im-
plementing LLP at interrupt level would require extensive and complex
assembly code, which is difficult to maintain and could eventually
interfere with the ability to run the communication lines at a faster
rate, since the maximum data transfer rate is strongly dependent on the
the delay inherent in the interrupt handler. Nonetheless, as 1 will
mention later on, it may eventually prove worthwhile to implement LLP on
the interrupt level, In this case the interface need not be changed,
but the status routines will no longer have to be called to carry out

the funetion of the LLP.

The file transfer protocol chosen for this projeet is the Trivial
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File Transfer Protoeol (or TFTP) [1]. This protocol is considered
"triviel" because of its simple flow control and total ignorance of
complex issues like protection and aceess. It is a lock-step protocol,
which means that only one packet of data is sent at a time, and an
acknowledgement for that packet must be received before the next packet
is sent, Thus TFTP is inherently a monodirectional protocol, i.e., only
one packet is in transit at any given time, This protocol was chosen
because of its relative ease of implementation, its widespread use among
the networks at MIT, and its trivial treatment of protection issues,

TFTP is built on top of the User Datagram Protocol (UDP) [2],
whieh, in turn, is built on top of the Internet Protocol (IP) [3], which
also happens to be the Defense Department standard., These protocols
provide packet checksums and a length (which is redundant in view of the
low level protocol) for reliable ecommunication., Thus, TFTP has high
useability and is fairly straightforward to implement,

Two real choices were possible for the selection of the programming
language in which to write TFTP for the Personal Computer. The language
PASCAL is distributed by MieroSoft for use on the Personal Computer,
but, unfortunately, it turned out to be inefficient as a compiler and
did not have the ability to interface to assembly language at the time
the project was undertaken. This was a serious problem since there was
apparently no way to access the serial port from PASCAL. The other
choice was the C language, Traditionally, C compilers produce highly
efficient code which has ready access to assembly language. The major

drawback to the use of C as the medium in whieh to econstruet TFTP was
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that ell the software development tocls would have to be written from
scratch, although most of the compiler itself could be generated by mod-
ifying code already written, Nevertheless, this was the course chosen,
and thanks to the effort of Chris Terman, Wayne Gramlich, John Romkey,
and David Bridgham, a full set of software tools for the C language on

the Personal Computer were available in time to complete this paper,

The principal problem with implementing TFTP on the Personal Com-
puter is one of efficiency. Both the serial communication line and the
disk are rather slow relative to the speed of the processor. Hence, any
sort of parallelism that exists must be taken adventage of if & reason-
able speed is to be attained by the end program. In particular, disk
access and packet input or output must overlap in time as much as poss-
ible to squeeze out the maximum data transfer rate, However, as
mentioned before, TFTP is a lock-step protocol, which means that only
one packet can be processed at a time, That somewhat limits the maximum
possible overlap achievable, The diagram on the following page illus-
trates various timing possibilities, It illustrates three levels of
concurrency: none, totel, and partial, Partial concurrency (as drawn)

is based on two assumptions:
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1. No network access can start while a disk access is in progress,
2. Packet reception is not under interrupt control, so reception

cannot oeccur during disk access,

These happen to be the conditions which prevail in the Personal

Computer and LLP, thus partial concurrency (as drawn) is what is

achieved in this TFTP implementation,
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(Figure 2: Timing diagram)
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Another design consideration for TFTP is the relative speed of the
TFTP software itself, Long delays in packet encoding and decoding will
result in the loss of overlap and hence a reduction in the rate of data
transfer. One heuristic measure often used for gauging efficieney of
network software is the total number of times the data need be copied
between the time it resides on the disk and the time it is aectually
moving around on the network. A lower number of copies signifies &
program whieh is likely to behave more efficiently than one with a
higher number of copies. Thus the software structure should be echosen
so as to reduce the number of copies wherever possible,

The pertinent design criteria are summarized below:

1, The design should permit a maximum amount of eontrol over con-
currency between independent processes,

2. It should encourage as few copies as possible,

3. It should be flexible enough to allow for later changes in
system configuration, e.g., an increase in speed of the serial

line or disk, or a restructuring of the operating system.

There are two logical choices for overall system structure:

1. Packet handling is performed by each distinet protocol layer
individually., As an example, suppose the TFTP layer wants to
send a packet of data, It contructs the packet, then hands it

to the UDP layer with the instructions, "Here's a packet, Send
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2.

it to sueh and such a network address, and tell them so and so
sent it," The UDP layer takes the packet, adds some informa-
tion to it, then turns around and wakes up the I[P layer, who,
in turn, adds still more information, and then proceeds to hand

the packet to the LLP for transmission,

Packet handling is done by a sort of "eradle-to-grave" packet
tracking system, similar to a finite state machine and data
path. The top layer explicitly performs all operations on the
packet, and all the lower layers simply perform alterations
without moving the packet sround. As an example, suppose the
TFTP control layer wishes to move a packet of data from the
disk to the network. It first calls the disk driver with the
instructions, "Get me such an such & block of data.” The disk
driver fetches the data, at which point the TFTP control layer
tells another routine to turn it into & bona-fide TETP-UDP-IP
packet (note that this procedure in itself may involve nested
calls to several layers). Finally it tells the LLP to transmit
it. Note that the data flow is explicitly controlled by the
topmost layer (or gontrol layer) in this kind of structure, and
note furthermore that modularity and layering need not be vio-

lated by using this approach.
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(Figure 3: Code structures)
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Of the two choices, only the second fulfills the design criteria.
The first not only promotes more copies, but makes the overlap of disk
and network access virtually impossible, since the prineciple difference
between the two is where low level access occurs,

It is possible to show that, using the second option in conjunetion
with the correct low-level interfaces, a program that accomplishes
generalized and maximally efficient overlap can be written, pno matter
what speed the disk or the serial line runs at, This requires that the
disk interface have the same sort of characteristics as the LLP inter-
face defined earlier. The procedure such & program would follow is to
poll each low-level interface repeatedly until one required servicing
(e.g., & packet is ready), at which point the polling would be briefly
interrupted while the necessary action was undertaken (e.g., the packet
is decoded and disk writing is started),

Unfortunately, the interface to the Personsl Computer's disk oper-
ating system is typical of most of the microcomputer operating systems
currently available in that it does not permit the processor to engage
in other sactivity while disk access is in progress. This is known as
blocking. It is enforced even though the Perscnal Computer hardware can
easily support activities proceeding in parallel with disk access, In a
later chapter I will explore such operating system questions more
thoroughly. Nevertheless, because the processor can be interrupted by
the serial line while it is waiting inside the operating system for a
disk operation to be completed, a high degree of overlap can still be

attained, since (as is apparent from the timing diagram) most potential
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overlap for TFTP ocecurs between individual packet transmission and disk
access,

One can make a structure argument about error handling as well,
Errors should not generally be handled in the routine in whieh they
oceur, sinee the routine which called it may need the kﬁowledge that an
error occurred or may even want to do something different with it under
different circumstances. Thus, an error should propagate outweards to
the layer which knows what to do with it, From an error handling
viewpoint, it does not make sense to treat LLP as if it were a subfune-
tion of IP, since transmission errors and decoding errors mean different
things and therefore imply different actions,

The software structure resulting from all these considerations is

portrayed in the following diagram:
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(Figure 4: TFTP software structure)
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Notice that the total number of copies required for the
implementation is minimized: One copy is performed by the operating
system, one copy is performed in order to encode and decode netaseii,
and & third copy is performed to encode or decode LLP packets, This
copy could later be eliminated by performing LLP funection at interrupt
level, as mentioned earlier. The fourth and final copy involves moving
the packet from the memory to the serial line.

An issue whiech was ignored in the actual implementation is packet
reconstruction after fragmentation, The Internet Protocol, upon whieh
TFTP is eventually construeted, allows for the possible fragmentation of
packets when they are routed through networks with a constrietive upper
bound on maximum packet size, Although all the networks in local use at
MIT are capable of handling the largest possible TFTP packet without
fragmentation, it is conceivable that sometime in the future it will
become necessary to implement the packet reconstruction feature, Packet
reconstruction implies that another copy need be performed in order to
receive a complete packet, This, in turn, implies the following addi-

tions to the TFTP control path and IP layer:

-95-



(Figure 5: TFTP software structure with packet reassembly)
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The packet reassembly module should be treated (from the outside)
as a device which is always ready to asccept packets but whiech may not
produce a packet as a result, This differs slightly from the interface
specified for the IP, UDP, and TFTP modules in that data is actually
copied, and thus, the input packet is not guaranteed to be in the same
place as the output one, This is an important point in light of the UDP
checksumming algorithm, which accesses date in the Internet header [2].
Therefore packet reassembly cannot be accomplished cleanly alongside
normal internet packet deccding. The best interface for the reassembly

module looks like this:

assemble_packet: Takes a packet, performs packet reconstruetion
algorithm using hidden buffers and bitmaps, and returns
either (1) A completely reconstructed IP packet (i.e.,
a pointer to an internal buffer), or (2) some signal

indicated no packet is ready for output,

This interface hides a multitude of complexity from the TFTP con-
troller, yet is also straightforward to implement, It can easily be in-
tegrated with TFTP by replacing all "get_packet" calls to the LLP with
that same call followed by a call to the packet assembly routine. A
signal indiecating no packet is ready yet should be treated in the exaect
same way as is an illegal packet signal from the UDP or IP layers,

Another feature which has been written but not debugged or ineluded
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with the current TFTP is an implementation of the Name Server Protocol
[4], intended as an enhancement to the user interface, The Name Server
Protocol zllows the TFTP user to reference remote machines by name
rather than internet address. This feature should be easy to incorpor-
ate into TFTP once the C-Gateway is working, since it is completely
self-contained and is structured in a way similar to TFTP.

This design discussion has completely ignored an aspect of disk
systems known as gynchronization. Because disks are not true random-
access devices but instead rely on & form of sequential access (the
ordering of sectors on a track), it is not necessarily true that disk
accesses take the same time to complete in different situations, For
example, since the operating system has been optimized to read files
sequentially with little delay between read requests, it is entirely
possible that far less time will be needed to read a file quickly into
memory than to read blocks individually from disk. It is therefore con-
ceivable that sueh gains could surpass any gains made due to concur-
rency, in whieh case it would be more efficient to first read a given
file into main memory before transmitting it, even though there would no
longer be &any concurrency between these operations. This point was

ignored (temporarily) for two reasons:

1. Any effects of this type are very strongly dependent on the
actual kind of machine, e.g., a different kind of personal com-
puter would have a different disk format where synchronization

is not a problem,
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2.

A given user program using TFTP may not have room in memory to
buffer the entire file, at whieh point the disk-to-memory
transfer is done piecemeal, Because of the extra copy required
under this scheme and the lack of any sort of concurrency, it
is unclear at which point one approach (concurrency) becomes
more efficient than the other approach (copying to main memory

first), This is an area where further research need be done,
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Chapter 2: Performance Copsiderations

In this chapter I will document the performance tests done on the
TFTP implemented as described in the previous chapter. Each performance
test description will be accompanied with expected results and actual
results obtained.,

All performance tests were carried out between two Personal Com-
puters for two reasons, First, connection to the actual network can
introduce delays which are not dependent on the Personal Computer TFTP
implementation, and hence would have to be factored out of any perfor-
manece evaluation, Second, the C-Gateway suffered a substantial imple-

mentation delay and was not ready for use at the time of this writing,

A. Crude Timing

This performance test is a simple timing of & typical file trans-
fer. A 20-thousand byte file was transfered between the two Personal
Computers and the total time required was logged. In addition, a number
of minor modifications were made to the program on an experimental
basis, First, the size of the interrupt-level transmit buffer was
varied in order to gauge the amount of overlap between disk access and
packet transmission, The expected correlation is that as the interrupt

character transmit buffer gets smaller overlap decreases, and thus the
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amount of time needed to complete the transfer ineresases, approaching
some maximum value (which represents no cverlap). By looking at the
maximum and minimum times, it is possible to judge just how much overlap
is occurring.

Forty-five seconds were required to transfer a 20-thousand byte
file in the case where the interrupt transmit buffer was large enough to
contain an entire TFTP packet and the speed of the line was 9600 bits-
per-second, This translates into an effective data transmission rate of
4400 bits-per-second on the serial line, out of a theoretical maximum of
8500 bits-per-second. The theoretical maximum is based on the size of
the TFTP-UDP~-IP packets in relation to the amount of file data actually
contained within, In particular, to move a given bloeck of 512 bytes of
actual data, at least 576 bytes of data must be transferred between the
two communicating machines (544 in the data packet and 32 in the
acknowledge packet)., Thus, about 10% of the total 9600 bit-per-second
bandwidth of the serial line is used up by protoecol overhead., Of the
remeaining 90%, roughly 40% is wasted because of the combination of soft-
ware delay and disk delay.

Notice that TFTP achieved only 3500 bits per second as far as the
actual data was concerned, since the serial line uses ten bits to trans-
mit each 8-bit byte. This is a point of eclarification only, since my
entire analysis will treat bytes as having ten bits each and thus ignore
the effects of the underlying serial line protocol.

With & minimal interrupt transmit buffer, TFTP took substantially

longer to transfer the same file, Under these conditions, the total
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time required turned out to be about 65 seconds. Thus, 20 seconds are
required for actual packet transmission and the rest of the time is used
in software and disk delays. These numbers indicate that, assuming
there are no software delays, the data transmission rate can be cut
almost in half without affecting the speed of the TFTP transfer in the
least, since it is apparent that (at 9600 bits per second) data trans-
mission takes about half the time of disk access,

The next step was to verify that the serial line speed could be
reduced without affeeting TFTP in any way. The interrupt transmit
buffer was restored to full size and data speeds other than the 9600
bits per second already documented were tried. Two that were originally
chosen are 19,200 bits per second and 4800 bits per second, doubling and
halving the originsl data rate, The 19,200 rate turned out to be equiv-
alent from the performance viewpoint to the original 9600 rate, as one
would expect from data already gleaned, but the 4800 rate caused TFTP to
run substantially slower, In order to get a handle on exactly how mueh
delay is due to disk access and how mueh is due to software, I decided
to choose other numbers between 4800 and 9600, in particular, 8228,
7200, 6400, and 5760 bits-per-second. The transfer rates obtained are
portrayed on the following graph. Note that there is a sharp cutoff
where transmission rate begins to matter at roughly 7000 bits-per-

second,
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(Figure 6: Performance vs, Transmission Rate)
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Notice that it is now possible to estimate the portion of time
whieh is due to TFTP-UDP-IP software overhead, Since the actual trans-
mission rate is known to be about 4400 bits-per-second, and the data
rate et which overlap is maximal is somewhere around 7000 bits-per-
second, the difference must be attributable to TFTP overhead (i.e.,
packet headers and acknowledges), LLP overhead, and software delay,
TFTP overhead accounts for about 600 bits-per-second, while LLP accounts
for an indeterminate amount anywhere from zero to 5000 bits-per-second,
depending on the amount of character stuffing going on. This number is
in the vicinity of zero for the file being transfered., Therefore, about
2000 bits-per-second are not being used due to software delay, or about
20%., This figure is necessarily a ballpark figure, however., The next
section explores & way to get a much better idea of exactly where the

performance is going.

B. Profiling

A profiler is & program which periodically records where the test
program is running, building up a count of how many times the test
program is caught in each area of memory. This information is useful
because it deseribes exaetly how muech time is used performing a given
task within the program, with few exceptions. The profiler used on this
implementation of TFTP is based on a clock which interrupts execution

18,2 times per second. This rate is fortunately not a multiple of the
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baud rate clock (which drives character transmission and reception) or
the disk drive spin rate. Thus it must produce a&an accurate picture of
the operation of TFTP, since it is asynchronous to activities performed
within TFTP.

Nevertheless, because the profiler is interrupt driven, it cannot
report the amount of time spent in the interrupt routine or any other
routine which disables interrupts. Instead, time used for interrupts is
logged in the routine which was executing at the time of the interrupt.

The profile results of the typical transfer as mentioned above are

as follows:

(Figure 7: Profile Results)

Eunetion Time spent Percentage of total
Operating system 364 units 43 %

Low level protocol 234 units 28 %

File I/0 library 122 units 14 %

Clock routines 34 units 4 %

TFTP control layer 33 units 4 %

Packet encoding 32 units 4 %

Netascii encoding 29 units 3%

Total: 848 units = 46 seconds
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Notice that the totel file system delay accounts for 57% of the
processor time, whereas actual TFTP work accounts for only 11%. 1
separated out the eloek routines for the reason that they are used
mainly during packet transmission and reception loops, and thus deserve
to be lumped in with the LLP time,

Profiles were also done of the same standard transfer with the
serial line running at 19,200 bits-per-second and 4800 bits-per-second,
The former differed in no appreciable aspeet from the numbers in the
table above, while the latter showed a more even distribution between
time spent in the cperating system and time spent waiting for packets in
the Low Level Protocol,

Notice that these results do_pot give any coneclusive indications of
the efficiency of LLP except for an upper bound on the amount of time
spent deing LLP work. This is because time spent waiting for packets to
arrive or characters to be transmitted also is a part of the LLP profile
count, Nevertheless, less than 12 seconds are actually spent doing LLP
work (this is 28% of 46 seconds), Since 22,500 characters are being
transmitted, less than 530 microseconds are required per character,
which translates into a data transmission rate of 19,000 bits-per-
second, This number represents & lower bound on the maximum data trans-
mission rate which LLP can keep up with, Thus, LLP is a good protocol
to use up to and somewhat beyond a transmission rate of 19,200 bits-per-

second.

“Rgs



Chapter 3: Conclusions

In this chapter I will summarize what I have learned from the TFTP
project that relates to issues raised in the introduction of this

thesis. In particular, I will cover the following:

1. What can be expected in different operating system environments
with or without interrupts.

2. What the ideal operating system environment is for & maximally
concurrent TFTP implementation.

3. What improvements can be made to the file transfer program as

it now stands.,

A. Other Operating Sysiems

As was apparent in the previous two chapters, the only conecurrent
activity that Personal Computer's operating system allows is interrupts.
This resulted in partial overlap between disk access and packet trans-
mission and caused a 25% reduction in data transmission time, for the
case where the Personal Computer was buffering an entire packet and
running the serial line at 9600 bits-per-second. The result was that &
transfer of 20,000 bytes took 45 seconds, or roughly 2 milliseconds per

data character.
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It is easy to imagine an operating system in which po concurrent
activity is allowed. Systems like this are widespread; examples are the
TRS-80 and the APPLE, to name but a few, In these systems, no overlap
is possible, and the best one can hope for is about 65 seconds to trans-
fer 20,000 bytes of data, This number was obtained by eliminating all
concurrency from the Personal Computer implementation (as described in
Chapter 2).

It is also possible to imagine a system which has very little oper-
ating system delay. With the advent of Winchester technology, medium-
speed hard disks are becoming cheaper and more readily available. In a
system like this, the major bottlenecks are the serial line and the
software, in that order. The software delay costs about 11% of the
total time on the Personal Computer, This delay, which comes to about 5
seconds, is dependent only on the quantity of data being transmitted.
Therefore the time required would be 22,5 seconds (serial line delay for
20,000 x 576/512 characters) + 5 seconds (software delay), or about 28
seconds for 20,000 bytes of data,

A system with mueh faster or slower communications is also a
possibility, The timing tests show coneclusively that data rates faster
than 7000 bits-per-second do not significantly improve performance,
given the operating system constraints of the Personal Computer.
Markedly slower rates have not been an emphasis of this thesis, but one
would expect performance to drop off linearly with decreasing date
transmission rate, since the disk and software delays are essentially

fixed,
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B. The Ideal Environment

The ideal operating system environment for TFTP must promote
maximum parallelism., To do this, an operating system with no explieit
multiple processes must support independent peripheral aetivities with-
out bloeking, Thus the format of gll peripheral interfaces should have

iwo parts:

1. A status routine: "Are you ready to perform the funection?” or
"Are you done performing the funetion?”
2. An execution routine: "Perform the funetion,” This routine

performs blocking if the deviee is not ready.

For example, the disk read interface might have a routine "Read"
and a routine "Read_done?" whieh initiate a read and notify of comple-
tion, respectively.

Preferably, the status routine should have nothing to do with
actually performing the funection, since it is confusing to have to
specify that such-and-such a status routine must be called every so-and-
so seconds or the world blows up, or, more probably, the funection does
not get performed. This premise is violated in the current TFTP imple-
mentation by the LLP; the status call does indeed perform LLP funetion,

The reasons behind the deecision to do it this way are documented in
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Chapter 1,

C. Possible Improvements

The following, in order of importance, is a list of possible im-

provements which could be made to TFTP, LLP, UDP, IP, the interrupt

environment, or the operating system enviroment that would enhance

either efficiency or useability:

1,

Replace the current status-call-driven LLP with an interrupt-
driven version of the same protocol., This buys useability in
the low-level ecommunication area, i.e., makes it easier to
write other protocols or programs which use LLP, It also buys
efficiency in two ways: First, packet reception can proceed
concurrently with disk access (as already occurs with packet
transmission). Currently, if the Personal Computer is busy
with disk access and the C-Gateway wants to send & packet to
it, the RDY request does not get acknowledged until the end of
the disk operation, If LLP handling occurred at interrupt
level, the RDY request would be acknowledged immediately and
packet transmission could start., This can save time, espe-
cially on transfers from the network to the disk (see Figure
2). Second, one less copy need be performed, since charaecter

stuffing can be done on the fly by the interrupt handler.
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2. Improve user interface of TFTP by completing the implementation
of the Name Server Protocol package. This adds useability for
the end user of TFTP.

3. Upgrade to an operating system and input/output package that
has an interface of the type discussed in the previous section.
This would buy efficieney,

4. Add packet reconstruction as detailed in Chapter 1. This buys
useability by increasing the number of machines which can be

reached through this TFTP implementation,
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