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Abstragt 
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Karl D. Wright 

Dr. Jerome Saltzer, Professor of Computer Science 

This thesis explores engineering decisions involved in implementing 

a network file transfer program on a personal computer in response to 

criteria of low cost and reasonable efficiency. The issues include 

choice of hardware, design of the network, choice of implementation 

language, choice of communication protocols, and choice of software 

structure. A machine level protocol is designed. A project incorporat­

ing these and other ideas is undertaken and the ideas thus evaluated. 

Insight is gleaned into the performance expected under varying operating 

system and interrupt environments. A notion of an "ideal" operating 

system interface for applications similar to file transfer (which can 

exploit concurrency) is developed. Finally, possible improvements on 

the actual project are suggested based in part on the efficiency data 

obtained. 
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Introduction 

Personal computers are in the process of revolutionizing many 

aspects of modern life. Information exchange is one area which will be 

affected greatly in coming years. As personal computers become com­

monplace, it is likely that people will wish to connect them together to 

form networks in order to send mail, transfer programs and data, and use 

community- owned mass storage devices or other such localized, expensive 

hardware. Some way of transfering files is a necessary means towards 

accomplishing this goal. 

In this thesis, I will ex amine some of the engineering issues in­

volved in implementing a file transfer protocol on a personal computer. 

A protocol is a concrete and thoroughly specified set of actions which 

allow different computers (or hosts) to communicate intelligibly via a 

network . Some of the engineering criteria which I attempted to conform 

with are: 
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1. File transfer must be straightforward, applicable to a large 

number of existing networks and machines, and reasonably effi­

cient. 

2. The network used must be low cost and hardware for It must be 

readily obtainable. 

3. The protocol( s) used must be supportable by a wide range of 

hardware, e.g. , the protocol( s) cannot require certain forms of 

concur rency since some personal computers do not have that 

capabUity. 

Some of the more abstract Issues that arise are the following: 

1. What should be done to handle the case of a host which is not 

there some of the time? 

2. How can the transfer program be structured to allow maximum 

concurrency between independent activities, and hence maximum 

efficiency? 

3. What kind of efficiency can be expected using this structure 

under various kinds of operating system environments? 

Finally, I will examine the Insight this project gave into what 

personal computer hardware and operating systems should be like in order 

to support efficient network file transfer protocols. 
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Chapter 1: Desin 

In this chapter I will recount some of the design decisions made in 

order to implement the file transfer program. Decisions were made on 

the following questions: 

1. What machine should be used? 

2. How should a local network be constructed from these machines? 

3. What protoc ol(s) should be used? 

4. How should the transfer program be structured to allow maximum 

possible efficiency? 

5. In what langua.ge should the transfer program be written? 

All of these decisions had to be made in the light of the following 

considerations: 

1. Overall cost must be low. 

2. Hardware must be readily available. 

3. Compatibility with large networks already built should be main­

tained. 

4. The program should be readily transportable to other machines. 

s. The hardware should be amenable to the project, i.e, the re­

sulting program should have the possibility of being reasonably 

efficient and not be overly constrained by the hardware. 
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The machine chosen was the new IBM Personal Computer. The features 

that made it attractive for this project are centered around its ability 

to support concurrent peripheral communication activities. In par­

ticular, the disk controller is of the direct memory access type, which 

means that the processor is free to do other things while data is being 

read from or wl'itten to the disk. This is important because it allows 

the processor to concern itself with the network while disk access is in 

progress. In addition, this machine comes with a standard serial data 

port capable of running at speeds up to 56 thousand bits-per-second, 

which is quite fast enough to support a network. 

This led immediately to the choice of the RS-232 serial line as the 

networking medium. Serial ports are standard on most personal computers 

and are thus easily obtainable at very low cost. This satisfies all the 

engineering criteria mentioned concerning networking medium. 

A. Network apd Low Leyel Protocol neyrn 

The current network design is due in large part to Dr. Jerome 

Seltzer and Wayne Gramlich. It was decided to use a gateway already 

under development to do packet switching among Personal Computers or 

between a Personal Computer and outside networks. A gateway is a 

machine whose sole purpose in life is to route packets of data from 

network to network. Our gateway was dubbed the C-Gateway, since all the 

software for it is written in the C language. 
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(Figure 1: Design of Personal Computer Network) 
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, 

Since this configuration requires one connection point for each 

Personal Computer attached to the network, the load on the C-Gateway in­

creases quickly to an intolerable level, and thus the design does not 

scale up readily. Nevertheless, it is a reasonable interim solution, 

and it was chosen for reasons of availability. 

The network design has Important implications in the design of the 

lowest level of communication protocol. This level of protocol is 

directly involved with the actual hardware, in contrast to higher levels 

of protocol which are considered standard and thus are the same across 

many different hardware configurations. The design criteria for this 

hardware-level protocol rests on the following considerations: First, 

because the C-Gateway will have a tendency to be extremely busy, it 

should not have data coming in too fast or at an inopportune time since 

data will be lost under these conditions. A maximum data transmission 

rate of 9600 bits per second was chosen to help meet this criteria (and 

also because the current C-Gateway hardware cannot support anything 

faster). Even at this speed, the C-Gateway cannot listen to more than 

one or two Personal Computers at a time, and provision must be made for 

the possibility that the C-Gateway will not be ready to receive a packet 

of data that a Personal Computer wishes to send, The argument can apply 

equally well in the other direction, since the Personal Computer may 

either be doing something else or be turned off. In these cases, the 

packet is undeliverable and the C-Gateway should be aware of it, in case 

error actions need be undertaken. In addition, the protocol must be 

prepared to handle lost bytes, since the communication media can occa-
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sionally lose characters due to noise or synchronization problems. 

Finally, the protocol should support simultaneous data transmission in 

both directions for reasons of efficiency and generality. The following 

ready- acknowledge protocol fulfills these criteria: 

Machine A wants to send a packet of data to machine B (A and B are 

directly connected to each other by an RS-232 serial line): 

1. Machine A sends B a RDY request . "Are you listening?" 

2. M aehine B sends A an ACK reply. "1' m ready; let 'er rip!" 

3. M aehine A sends B a data packet encoded in such a way that RDY, 

ACK, or END never appear in the data. "Here it is." 

4. Machine A sends B an END signal. "I'm done." 

The encoding procedure used on the data is known as character 

stuffing. One character is designated as a prefix character, and all 

occurrences of that character or any of the signals are translated into 

the prefix character followed by another (non-signal) character. 

If machine A sends a RDY but does not receive an ACK for too long a 

period of time, it retransmits the RDY and repeats once or twice, in 

ease either the RDY request or the ACK reply was lost. If it is still 

unsuccessful, it assumes machine B is dead or not interested in talking. 

If machine B sees a RDY in the middle of data, it assumes that the 

entire packet was sent, but the END signal was lost. If machine B is 

receiving data, and the data stops coming for long enough, machine B 
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assumes that the END signal was lost but the packet is complete. [Any 

errors in this assumption will be detected by a higher level of 

protocol.) If machine B sees an END signal while it is expecting data, 

it knows the packet is complete. If machine B sees an ACK reply in the 

middle of data, it sets a flag so that the transmitting side knows that 

an ACK reply has been received. This is how bidirectional simultaneous 

transfers are supported. A typical bidirectional transfer looks (or 

sounds) like this: 

1. Machine A is sending data to B. 

2. Machine B decides it wants to send data to A at the same time, 

so it sends A a RDY request. 

3. Machine A sees the RDY request and immediately stuffs an ACK 

reply in with the data it is sending. 

4. Machine B sees the ACK among the data it is receiving and 

begins sending its data to A. 

5. Both transfers continue simultaneously. 

Notice that either side can enforce monodirectional communication 

by simply not responding to RDY requests until no packet is in the 

process of transmission. 

The interface to the Low Level Protocol ( LLP) was designed with a 

wide range of applications in mind . For example, applications requiring 

parallelism mean the interface has to to have the characteristic that a 

program trying to send or receive data never gets "stuck" waiting for a 
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packet to be sent or received, or waiting for the other machine to 

acknowledge a request. This is necessary to take full advantage of the 

bidirectionality of the protocol, since a program may want to send and 

receive packets simultaneously and therefore must pay attention to both 

the sending line and the receiving line. In the case of a file transfer 

protocol, the program may wish to do disk access and receive or send a 

packet simultaneously. The interface chosen for the task is the follow­

ing: 

receive_ packet_ status_ chec k: 

get_received_ packet: 

send_packet_status_ check: 

Returns a flag indicating whether or 

not a packet has been completely re­

ceived and is waiting. Side effect: 

Performs functions of LLP. 

Waits for a packet if there is not one 

already there, and returns the packet 

received. 

Returns a flag indicating whether or 

not a packet has been completely sent 

and routines are ready to handle 

another. Side effect: Performs func ­

tions of LLP. 
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send_packet: Waits until the last packet is complet­

ely sent, then starts sending a new 

one. 

This interface satisfies the criteria mentioned above. In addi­

tion, it Is important to note that the function of the LLP is ll21.. per­

formed by the routines which actually receive and send individual char­

acters on interrupts. The decision not to do LL P work on individual 

character send or receive interrupts came about for two reasons. First, 

part of the function of the LLP is to allow programs who do not wish to 

receive data to simply ignore the existence of the network, Second, im­

plementing LL P at Interrupt level would require extensive and complex 

assembly code, which Is difficult to maintain and could eventually 

interfere with the ability to run the communication Jines at a faster 

rate, since the maximum data transfer rate is strongly dependent on the 

the delay inherent in the Interrupt handler. Nonetheless, as I will 

mention later on, it may eventually prove worthwhile to implement LLP on 

the interrupt level. In this case the Interface need not be changed, 

but the status routines will no longer have to be called to carry out 

the function of the LL P. 

B. Transfer Protos;ol Choice and Implementation Conalderations 

1'he file transfer protocol chosen for this project is the Trivial 
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File Transfer Protocol {or TFTP) [1]. T his protocol is c onsidered 

"trivial" because of its simple flow control and total ignorance of 

complex issues like protection and access. It is a lock-step protocol , 

which means that only one packet of data is sent at a time, and an 

acknowledgement for that packet must be received before the next packet 

is sent. Thus TFTP is inherently a monodirectional protocol, i.e., only 

one packet is in transit at any given time. This protocol was chosen 

because of its relative ease of implementation, its widespread use among 

the networks at MIT, and its trivial treatment of protection issues. 

TFTP is built on top of the User Datagram Protocol {UDP) [2], 

which, in turn, is built on top of the Internet Protocol (IP) [3], which 

also happens to be the Defense Depar tment standard . These protocols 

provide packet checksums and a length {which is redundant in view of the 

low level protocol) for reliable communication. Thus, TFTP has high 

useability and is fairly straightforward to implement. 

Two real choices were possible for the selection of the programming 

language in which to write TFTP for the Personal Computer. The language 

PASCAL is distributed by MicroSoft for use on the Personal Computer, 

but, unfortunately, it turned out to be inefficient as a compiler and 

did not have the ability to interface to assembly language at the time 

the project was undertaken. This was a serious problem since there was 

apparently no way to access the serial port from PASCAL. The other 

choice was the C language. Traditionally, C compilers produce highly 

efficient code which has ready access to assembly language. The major 

drawback to the use of C as the medium in which to construct TFTP was 
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that all the software development tools would have to be written from 

scratch, although most of the compiler itself could be generated by mod­

ifying code already written. Nevertheless, this was the course chosen, 

and thanks to the effort of Chris Terman, Wayne Gramlich, John Romkey, 

and David Bridgham, a full set of software tools for the C language on 

the Personal Computer were available in time to complete this paper. 

C. TPTP Dnjgn Criteria apd Beapltinr Program struc;ture 

The principal problem with implementing TFTP on the Personal Com­

puter is one of efficiency. Both the serial communication line and the 

disk are rather slow relative to the speed of the processor. Hence, any 

sort of parallelism that exists must be taken advantage of if a reason­

able speed is to be attained by the end program. In particular, disk 

access and packet input or output must overlap in time as much as poss­

ible to squeeze out the maximum data transfer rate. However, as 

mentioned before, TFTP is a lock-step protocol, which means that only 

one packet can be processed at a time. That somewhat limits the maximum 

possible overlap achievable. The diagram on the following page illus­

trates various timing possibUities. It illustrates three levels of 

concurrency: none, total, and partial. Partial concurrency {as drawn) 

is based on two assumptions: 
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1. No network access can start while a disk access is In progress. 

2. Packet reception is not under interrupt control, so reception 

cannot occur during disk access. 

These happen to be the conditions which prevail in the Personal 

Computer and LLP, thus partial concurrency (as drawn) is what is 

achieved in this TFTP implementation. 
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(Figure 2: Timing diagram) 
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Another design consideration for TFTP is the relative speed of the 

TFTP software itself. Long delays in packet encoding and decoding will 

result in the loss of overlap and hence a reduction in the rate of data 

transfer. One heuristic measure often used for gauging efficiency of 

network software is the total number of times the data need be copied 

between the time it resides on the disk and the time it is actually 

moving around on the network, A lower number of copies signifies a 

program which is likely to behave more efficiently than one with a 

higher number of copies. Thus the software structure should be chosen 

so as to reduce the number of copies wherever possible, 

The pertinent design criteria are summarized below: 

1. The design should permit a maximum amount of control over con­

currency between independent processes. 

2. It should encourage as few copies as possible. 

3. It should be flexible enough to allow for later changes in 

system configuration, e.g., an increase in speed of the serial 

line or disk, or a restructuring of the operating system, 

There are two logical choices for overall system structure: 

1. Packet handling is performed by each distinct protocol layer 

individually. As an example, suppose the TFTP layer wants to 

send a packet of data, It contructs the packet, then hands it 

to the UD P layer with the instructions, "Here's a packet, Send 

-19-



it to such and such a network address, and tell them so and so 

sent it. n The UD P layer takes the packet, adds some inform a­

tion to it, then turns around and wakes up the IP layer, who, 

in turn, adds still more information, and then proceeds to hand 

the packet to the LLP !or transmission, 

2. Packet handling is done by a sort of "cradle-to-grave" packet 

tracking system, similar to a finite state machine and data 

path. The top layer explicitly performs all operations on the 

packet, and all the lower layers simply perform alterations 

wjthout moying the packet around. As an example, suppose the 

TFTP control layer wishes to move a packet of data from the 

disk to the network. It first calls tbe disk driver with the 

instructions, "Get me such an such a block of data." The disk 

driver fetches the data, at which point the TFTP control layer 

tells another routine to turn it into a bona-fide TFTP-UDP-IP 

packet (note that this procedure in itself may involve nested 

calls to several layers) . Finally it tells the LLP to transmit 

it. Note that the data flow is explicitly controlled by the 

topmost layer (or control layer) in this kind of structure, and 

note furthermore that modularity and layering need not be vio­

lated by using this approach. 
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(Figure 3: Code structures) 
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Of the two choices, only the second fulfills the design criteria. 

The first not only promotes more copies, but makes the overlap of disk 

and network access virtually Impossible, since the principle difference 

between the two is where low level access occurs. 

It is possible to show that, using the second option In conjunction 

with the correct low-level interfaces, a program that accomplishes 

generalbed and maximally efficient overlap can be written, no matter 

what speed the djsk or the serjal line runs at. This requires that the 

disk Interface have the same sort of characteristics as the LLP Inter­

face defined earlier. The procedure such a program would follow is to 

poll each low-level interface repeatedly until one required servicing 

(e.g. , a packet is ready), at which point the polling would be briefly 

interrupted while the necessary action was undertaken (e.g., the packet 

is decoded and disk writing Is started) . 

Unfortunately, the interface to the Personal Computer's disk oper­

ating system is typical of most of the microcomputer operating systems 

currently available in that it does not permit the processor to engage 

in other activity while disk access is in progress. This is known as 

blockjng, It is enforced even though the Personal Computer hardware can 

easily support activities proceeding in parallel with disk access. In a 

later chapter I will explore such operating system questions more 

thoroughly. Nevertheless, because the processor can be interrupted by 

the serial line while it is waiting Inside the operating system for a 

disk operation to be completed, a high degree of overlap can still be 

attained, since (as is apparent from the timing diagram) most potential 
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overlap for TFTP occurs between individual packet transmission and disk 

access. 

One can make a structure argument about error handling as well . 

Errors should not generally be handled in the routine in which they 

occur, since the routine which called it may need the knowledge that an 

error occurred or may even want to do something different with it under 

different circumstances. Thus, an error should propagate outwards to 

the layer which knows what to do with it. From an error handling 

viewpoint, it does not make sense to treat LLP as if it were a subfunc­

tion of IP, since transmission errors and decoding errors mean different 

things and therefore imply different actions. 

The software structure resulting from all these considerations is 

portrayed in the following diagram: 
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(Figure 4: TFTP software structure) 
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Notice that the total number of copies required for the 

implementation is minimized: One copy is performed by the operating 

system, one copy is performed in order to encode and decode netascti, 

and a third copy is performed to encode or decode LLP packets. This 

copy c ould later be eliminated by performing LLP function at interrupt 

level, as mentioned earlier. The fourth and final copy involves moving 

the packet from the memory to the serial line. 

An issue which was ignored in the actual implementation is packet 

reconstruction after fragmentation. The Internet Protocol, upon which 

TFTP is eventually constructed, allows for the possible fragmentation of 

packets when they are routed through networks with a constrictiv4; upper 

bound on maximum packet size. Although all the networks in local use at 

MIT are capable of handling the largest possible TFTP packet without 

fragmentation, it is conceivable that sometime in the future it will 

become necessary to implement the packet reconstruction feature. Packet 

reconstruction implies that another copy need be performed in order to 

receive a complete packet. This, in turn, implies the following addi­

tions to the TFTP control path and IP layer: 
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(Figure 5: TFTP software structure with packet reassembly} 
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The packet reassembly module should be treated (from the outside) 

as a device which is always ready to accept packets but which may not 

produce a packet as a result. This differs slightly from the interface 

specified for the IP, UDP, and TFTP modules in that data is actually 

copied, and thus, the input packet is not guaranteed to be in the same 

place as the output one. This is an important point in light of the UDP 

checksumming algorithm, which accesses data in the Internet header [2]. 

Therefore packet reassembly cannot be accomplished cleanly alongside 

normal internet packet decoding. The best interface for the reassembly 

module looks like this: 

assemble_packet: Takes a packet, performs packet reconstruction 

algorithm using hidden buffers and bitmaps, and returns 

either ( 1) A completely reconstructed IP packet (i.e., 

a pointer to an internal buffer), or (2) some signal 

indicated no packet is ready for output. 

This interface hides a multitude of complexity from the TFTP con­

troller, yet is also straightforward to implement. It can easily be in­

tegrated with TFTP by replacing all "get_ packet" calls to the LLP with 

that same call followed by a call to the packet assembly routine. A 

signal indicating no packet is ready yet should be treated in the ex act 

same way as is an illegal packet signal from the UDP or IP layers. 

Another feature which has been written but not debugged or included 
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with the current TFTP is an implementation of the N arne Server Protocol 

[ 4], intended as an enhancement to the user interface. The N arne Server 

Protocol allows the TFTP user to reference remote machines by name 

rather than internet address. This feature should be easy to incorpor­

ate into TFTP once the C- Gateway Is working, since it is completely 

self-contained and is structured in a way similar to TFTP. 

This design discussion has completely ignored an aspect of disk 

systems known as synchronization. Because disks are not true random­

access devices but instead rely on a form of sequential access (the 

ordering of sectors on a track), it is not necessarily true that disk 

accesses take the same time to complete in different situations. For 

example, since the operat{ng system has been optimized to read files 

sequentially with little delay between read requests, It is entirely 

possible that far less time will be needed to read a file quickly into 

memory than to read blocks individually from disk. It is therefore con­

ceivable that such gains could surpass any gains made due to concur­

rency, in which case it would be more efficient to first read a given 

file into main memory before transmitting it, even though there would no 

longer be any concurrency between these operations. This point was 

ignored (temporarily) for two reasons: 

1. Any effects of this type are very strongly dependent on the 

actual kind of mac hine, e.g. , a different kind of personal com­

puter would have a different disk format where synchronization 

is not a problem. 
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2. A given user program using TFTP may not have room in memory to 

buffer the entire file, at which point the disk-to-memory 

transfer is done piecemeal. Because of the extra copy required 

under this scheme and the lack of any sort of concurrency, it 

is unclear at which point one approach (concurrency) becomes 

more efficient than the other approach (copying to main memory 

first). This is an area where further research need be done. 
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Chapter 2z Perlormapc;e Conliderations 

In this chapter I will document the performance tests done on the 

TFTP implemented as described in the previous chapter. Each performance 

test description will be accompanied with expected results and actual 

results obtained. 

All performance tests were carried out between two Personal Com­

puters for two reasons. First, connection to the actual network can 

introduce delays which are not dependent on the Personal Computer TFTP 

implementation, and hence would have to be factored out of any perfor­

mance evaluation. Sec ond, the C- Gateway suffered a substantial imple­

mentation delay and was not ready for use at the time of this writing. 

A. Crgde Timing 

This performance test is a simple timing of a typical file trans­

fer. A 20-thousand byte file was transfered between the two Personal 

Computers and the total time required was logged . In addition, a number 

of minor modifications were made to the program on an experimental 

basis. First, the size of the interrupt-level transmit buffer was 

varied in order to gauge the amount of overlap between disk access and 

packet transmission. The expected correlation is that as the interrupt 

character transmit buffer gets smaller overlap decreases, and thus the 
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amount of t ime needed to complete the transfer increases, approaching 

some maximum value (which represents no overlap). By looking at the 

maximum and minimum times, it is possible to judge just how much overlap 

is occurring, 

Forty-five seconds were required to transfer a 20-thousand byte 

file in the case where the interrupt transmit buffer was large enough to 

contain an entire TFTP packet and the speed of the line was 9600 bits­

per-second, This translates into an effective data transmission rate of 

4400 bits-per-second on the serial line, out of a theoretical maximum of 

8.500 bits-per-second . The theoretical maximum is based on the size of 

the TFTP-UDP-IP packets in relation to the amount of file data actually 

contained within, In particular, to move a given block of 512 bytes of 

actual data, at least 576 bytes of data must be transferred between the 

two communicating machines (544 in the data packet and 32 in the 

acknowledge packet) . Thus, about 10% of the total 9600 bit- per- second 

bandwidth of the serial line is used up by protocol overhead, Of the 

remaining 90%, roughly 40% is wasted because of the combination of soft­

ware delay and disk delay. 

Notice that TFTP achieved only 3500 bits per second as far as the 

actual data was concerned, since the serial line uses ten bits to trans­

mit each 8-blt byte, This is a point of clarific!ition only, since my 

entire analysis will treat bytes as having ten bits each and thus ignore 

the effects of the underlying serial line protocol. 

With a minimal interrupt transmit buffer, TFTP took substantially 

longer to transfer the same file. Under these conditions, the total 
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time required turned out to be about 65 seconds. Thus, 20 seconds are 

required for actual packet transmission and the rest of the time is used 

in software and disk delays. These numbers indicate that, assuming 

there are no software delays, the data transmission rate can be cut 

almost in half without affecting the speed of the TFTP transfer in the 

least, since it is apparent that {at 9600 bits per second) data trans­

mission takes about half the time of disk access. 

The next step was to verify that the serial line speed could be 

reduced without affecting TFTP in any way. The interrupt transmit 

buffer was restored to full size and data speeds other than the 9600 

bits per second already documented were tried. Two that were originally 

chosen are 19,200 bits per second and 4800 bits per second, doubling and 

halving the original data rate. The 19,200 rate turned out to be equiv­

alent from the performance viewpoint to the original 9600 rate, as one 

would expect from data already gleaned, but the 4800 rate caused TFTP to 

run substantially slower. In order to get a handle on exactly how much 

delay is due to disk access and how much is due to software, I decided 

to choose other numbers between 4800 and 9600, in particular, 8228, 

7200, 6400, and 5760 bits-per-second. The transfer rates obtained are 

portrayed on the following graph. Note that there is a sharp cutoff 

where transmission rate begins to matter at roughly 7000 bits-per­

second. 
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(Figure 6: Performance vs, Transmission Rate) 
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Notice that it is now possible to estimate the portion of t ime 

which is due to TFTP-UDP-IP software overhead, Since the actual trans­

mission rate is known to be about 4400 bits-per-second, and the data 

rate at which overlap is maximal Is somewhere around 7000 bits- per­

second, the difference must be attributable to TFTP overhead (i.e., 

packet headers and acknowledges), LLP overhead, and software delay. 

TFTP overhead accounts for about 600 bits-per-second, while LLP accounts 

for an indeterminate amount anywhere from zero to 5000 bits-per- second, 

depending on the amount of character stuffing going on. This number is 

in the vicinity of zero for the file being transfered. Therefore, about 

2000 bits- per-second are not being used due to software delay, or about 

20%, This figure is necessarily a ballpark figure, however. The next 

section explores a way to get a much better idea of exactly where the 

performance is going. 

B. Profiling 

A profiler is a program which periodically records where the test 

program is running, building up a count of how many times the test 

program is caught in each area of memory. This information is useful 

because it describes exactly how much time is used performing a given 

task within the program, with few exceptions. The profller used on this 

implementation of TFTP is based on a clock which interrupts execution 

18.2 times per second , This rate Is fortunately not a multiple of the 
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baud rate clock (which drives character transmission and reception) or 

the disk drive spin rate. Thus it must produce an accurate picture of 

the operation of TFTP, since it is asynchronous to activities performed 

within TFTP. 

Nevertheless, because the pro filer is interrupt driven, it cannot 

report the amount of time spent in the interrupt routine or any other 

routine which disables interrupts. Instead, time used for interrupts is 

logged in the routine which was executing at the time of the interrupt. 

The profile results of the typical transfer as mentioned above are 

as follows: 

(Figure 7: Profile Results) 

Functjon Tjme spent Percentage of total 

Operating system 364 units 43 !II 

Low level protocol 234 units 28 !II 

File II 0 library 122 units 14 % 

Clock routines 34 units 4% 

TFTP control layer 33 units 4 ~ 

Packet encoding 32 units 4 ~ 

N etascii encoding 29 units 3 ~ 

Total: 848 units = 46 seconds 
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Notice that the total file system delay accounts for 57% of the 

processor time, whereas actual TFTP work accounts for only 11%. I 

separated out the clock routines for the reason that they are used 

mainly during packet transmission and reception loops, and thus deserve 

to be lumped in with the LLP time. 

Profiles were also done of the same standard transfer with the 

serial line running at 19,200 bits-per-second and 4800 bits-per-second. 

The former differed in no appreciable aspect from the numbers in the 

table above, while the latter showed a more even distribution between 

time spent in the operating system and time spent waiting for packets in 

the Low Level Protocol. 

Notice that these results li.Q..Jl21.. give any conclusive indications of 

the efficiency of LLP except for an upper bound on the amount of time 

spent doing LLP work. This is because time spent waiting for packets to 

arrive or characters to be transmitted also is a part of the LLP profile 

count. Nevertheless, less than 12 seconds are actually spent doing LLP 

work (this is 28% of 46 seconds). Since 22,500 characters are being 

transmitted, less than 530 microseconds are required per character, 

which translates into a data transmission rate of 19,000 bits-per­

second. This number represents a lower bound on the maximum data t rans­

mission rate which LLP can keep up with. Thus, LLP is a good protocol 

to use up to and somewhat beyond a transmission rate of 19,200 bits-per­

second. 
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Chapter 3: Conclgsiogs 

In this chapter I will summarize what I have learned from the TFTP 

project that relates to issues raised in the introduction of this 

thesis. In particular, I will cover the following: 

1. What can be expected in different operating system environments 

with or without interrupts. 

2. What the ideal operating system environment is for a maximally 

concurrent TF TP implementation. 

3. What improvements can be made to the file transfer program as 

it now stands. 

A. other Ooerating systems 

As was apparent in the previous two chapters, the only concurrent 

activity that Personal Computer's operating system allows is Interrupts . 

This resulted in partial overlap between disk access and packet trans­

mission and caused a 25~ reduction in data transmission time, for the 

case where the Personal Computer was buffering an entire packet and 

running the serial line at 9600 bits-per- second. The result was that a 

transfer of 20,000 bytes took 45 seconds, or roughly 2 milliseconds per 

data character. 
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It is easy to Imagine an operating system in which llQ. concurrent 

activity is allowed. Systems like this are widespread; examples are the 

TRS-80 and the APPLE, to name but a few. In these systems, no overlap 

is possible, and the best one ean hope for Is about 65 seconds to trans­

fer 20,000 bytes of data. This number was obtained by eliminating all 

eoncurrency from the Personal Computer implementation (as described in 

Chapter 2 ). 

It is also possible to imagine a system which has very little oper­

ating system delay. With the advent of Winchester technology, medium­

speed hard disks are becoming cheaper and more readily available. In a 

system like this, the major bottlenecks are the serial line and the 

software, in that order. The software delay costs about 11% of the 

total time on the Personal Computer. This delay, which comes to about 5 

seconds, is dependent only on the quantity of data being transmitted. 

Therefore the time required would be 2 2.5 seconds (serial line delay for 

20,000 x 576/512 characters) + 5 seconds (software delay), or about 28 

seconds for 20,000 bytes of data. 

A system with much faster or slower communications is also a 

possibility. The timing tests show coneluslvely that data rates faster 

than 7000 bits-per-second do not significantly improve performance, 

given the operating system constraints of the Personal Computer . 

Markedly slower rates have not been an emphasis of this thesis, but one 

would expect performance to drop off linearly with decreasing data 

transmission rate, since the disk and software delays are essentially 

fixed. 
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B. The Ideal Enyiropment 

The ideal operating system environment for TF TP must promote 

maximum parallelism. To do this, an operating system with no explicit 

multiple processes must support independent peripheral activities with­

out blocking. Thus the format of ill. peripheral interfaces should have 

two parts: 

1. A status routine: "Are you ready to perform the function?" or 

"Are you done performing the function?" 

2 . An execution routine: "Perform the function." This routine 

performs blocking if the device is not ready. 

For example, the disk read interface might have a routine "Read" 

and a routine "Read_done?" which initiate a read and notify of comple­

tion, respectively. 

Preferably, the status routine should have nothing to do with 

actually performing the function, since it is confusing to have to 

specify that such- and- such a status routine must be called every so- and­

so seconds or the world blows up, or, more probably, the function does 

not get performed. This premise is violated in the current TFTP imple­

mentation by the LLP; the status call does indeed perform LLP function. 

The reasons behind the decision to do it this way are documented in 
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Chapter 1. 

C. PopJble Improvements 

The following, in order of importance, is a list of possible im­

provements which could be made to TFTP, LLP, UDP, IP, the interrupt 

environment, or the operating system enviroment that would enhance 

either efficiency or useability: 

1. Replace the current status-call-driven LLP with an interrupt­

driven version of the same protocol. This buys useability in 

the low- level communication area, i.e., makes it easier to 

write other protocols or programs which use LLP. It also buys 

efficiency in two ways: First, packet receotjon can proceed 

concurrently with disk access (as already occurs with packet 

transmission). Currently, if the Personal Computer is busy 

with disk access and the C-Gateway wants to send a packet to 

it, the RDY request does not get acknowledged until the end of 

the disk operation. If LLP handling occurred at interrupt 

level, the RDY request would be acknowledged immediately and 

packet transmission could start. This can save time, espe­

cially on transfers from the network to the disk (see Figure 

2) . Second, one less copy need be performed, since character 

stuffing can be done on the fly by the interrupt handler. 
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2. Improve user interrace of TFTP by completing the implementation 

of the Name Server Protocol package. This adds useability for 

the end user ot TFTP. 

3. Upgrade to an operating system and input/ output package that 

has an interface of the type discussed in the previous section. 

This would buy efficiency. 

4. Add packet reconstruction as detailed in Chapter 1. This buys 

useability by increasing the number of machines which can be 

reached through this TFTP implementation. 
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