
© AFIPS 1970. The original roff source file that generated this
document has not been located. This file is the result of scan,
OCR, and rendering via pages.app, starting with an original
paper copy.

TECHNICAL AND HUMAN ENGINEERING PROBLEMS IN
CONNECTING TERMINALS TO A TIME-SHARING SYSTEM

J. F. Ossanna
Bell Telephone Laboratories, Inc.

Murray Hill, New Jersey

J. H. Saltzer
Massachusetts Institute of Technology

Department of Electrical Engineering; and,
Project MAC

Cambridge, Massachusetts

Send any correspondence to:
J. F. Ossanna
Bell Telephone Laboratories, Inc
Hurray Hill, New Jersey, 07974
Phone: 201-582-3520, or
 201-267-9408

DRAFT 4/12/70

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 2 -

ABSTRACT

Human engineering factors affecting the interactive use of

computer systems are discussed with emphasis on the design of

good input/output strategies. The design of the terminal, the

terminal control hardware, the terminal control software, the

command stream interpreter, and the commands themselves are shown

to collectively affect the viability of the system as seen by the

terminal user. A detailed discussion of the design factors

affecting this user-system interface is given for each of these

areas. Examples are given from the design of the Multics system

to illustrate various techniques.

J. F. Ossanna and J. H. Saltzer, 4/12/70 DRAFT

Introduction

Today, an increasing number of computer systems are used

interactively by their user communities. Interactive use of

computers, involving more prolonged man-machine contact than non-

interactive use, requires a well human engineered user-system

interface. The interactive user's performance -- his rate of

doing work and his ability and desire to utilize system

capability -- is a sensitive function of the success of this

human engineering. In turn, the computer system's effectiveness

depends on achieving a satisfactory level of user performance

with reasonable efficiency.

This paper will be concerned with the human engineering of

connecting typewriter-like terminals to general purpose

time-sharing systems. Examples of such systems are Digital

Equipment's 10/50 system for the PDP-10, IBM'S Time-Sharing

System for the 360/67, the Dartmouth Time-Sharing System, and the

Project MAC Multics system. Such systems are used by a wide range

of users doing many kinds of work. Typewriter-like terminals

constitute the majority of general-purpose remote terminals in

use today; examples are the Model 37 teletypewriter [1] and the

IBM Model 2741 [2]. Although more complex terminals, such as

those providing true graphical capability, are not specifically

treated, many of the factors to be discussed apply to them. The

special behavior and needs of specialized systems are not

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 1 -

treated, but some of the ideas presented will apply in individual

cases.

Value judgements about human engineering factors always involve a

degree of individual taste which in turn depends in part on

individual experience. Many of the ideas expressed here are the

outgrowth of experience obtained during the growth and use of

Project MAC'S CTSS system [3,4] and during the development of

Multics [5].

Good user performance becomes possible when the user can easily

and rapidly do what he wants to do. Consequently, many of the

human engineering factors to be discussed relate to the user's

ability to provide input as rapidly as desired, to control

output, and to avoid unnecessary interaction.

First, we will discuss input/output strategies, since they

broadly affect most of the other areas to be covered. Then we

will discuss in turn, terminal features, the terminal control

hardware, and the terminal control software -- working from the

user into the system. Finally, we will briefly mention character

sets and character stream processing.

Input/Output strategies

The user's input consists of system commands, requests to

programs, data, answers, etc. From the user’s point of view,

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 2 -

input can be divided into components according to whether or not

it is expected that the component will cause output to occur.

Some input is expected to cause output to occur -- for example, a

command to list a file directory. Other input may be expected to

cause output only conditionally; for example, a command to rename

a file may output an error comment only if the named file doesn't

exist. Still other input may be expected to cause no output --

for example continuous text input into an editor.

From the system's point of view, the user's input can be

considered a character stream containing certain characters

indicating that action should be taken. In the common

line-by-line input case, a return or new-line character is the

only action character. In general, there may be a number of

action characters. In certain applications treating all

characters as action characters may be appropriate. The user

ordinarily should know what action characters are currently in

effect, since typing one of them initiates execution, which may

in turn cause output.

The human engineering problem in collecting s user's input arises

primarily because the user frequently knows much of what his

input is to be well in advance. He may know the next several

commands or the next several editing requests he wishes to input.

In general, the components of this known-in-advance input can

fell into all three output relationship classifications. Although

the user often knows when to expect output, the system can not.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 3 -

The user should not be unnecessarily prevented from providing

such input as fast as he can think of it and can type it. By

collecting input asynchronously rather than synchronously with

respect to the systems utilization of the input, the user and the

computer can work asynchronously and in parallel rather than

synchronously and serially.

There are four mechanisms that can individually or collectively

facilitate providing input.

First, input can be collected whenever there is no output

occurring. If the operation is full-duplex (*1 (footnotes are at

the end of the paper)), it is even possible to collect input

while output is occurring. The typing of action characters should

trigger program execution but not inhibit further input. Such

asynchronous collection of input is usually referred to as

read-ahead or type-ahead. A number of present day systems [4,5]

provide a read-ahead strategy.

Read-ahead permits overlap of input with both system response

time and program execution. Also, it permits programs such as

text editors to gather text input continuously. Because erroneous

input may be encountered, programs must be able to produce

conditional output and also discard existing read-ahead to

prevent compounding of errors.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 4 -

A second mechanism is to allow more than one independent input

component between action characters. For example, a system using

new-line as an action character should permit more than one

command on a line. Editors in such a system should permit more

than one editor request per line. This outlook should pervade

every level of programming.

Third, commands and other programs should be designed to avoid

unnecessary interaction. One aid in doing this is to allow the

typing of arguments to a command on the same line as the name of

the command. For example, typing "edit zilch" is preferable to

typing only "edit" and later answering the question, "Filename?".

Default parameter values can frequently be assumed in the absence

of typed arguments. Permitting both multiple commands and

arguments enables various schemes for inputting factored command

and argument sequences [5].

Fourth, it is convenient if the user can create a file containing

potential input and subsequently cause the system to take input

from this file.

The use of these mechanisms can also improve system efficiency by

reducing the number of separate program executions, since the

program may find more input and be able to do more work during

each execution.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 5 -

The user should have reasonable control over his output. For

example, whenever a stream o£ unwanted output occurs, it should

be possible to stop it, without undesirable side effects, such as

losing too much of the results of immediately previous

interactions. An interrupt mechanism, such as that detailed

later, can be used to stop the output, cause execution to halt,

and discard any read-ahead. If the system allows an interrupted

program to catch the user's interrupt signal, a program desiring

an extra degree of sophistication can be designed to recover from

various conditions such as unintended execution loops or unwanted

output due to unwise input. User control over output code

conversion is desirable and will be discussed later. The ability

for the user to direct program output to destination(s) other

than his terminal is quite useful. For example, the output from a

program which generates a large volume of output can usefully be

directed to a file for later printing.

Remote terminal characteristics

An excellent treatment of features desireable in typerwriter-like

terminals can be found in [6]. We will treat here certain

important terminal design features which strongly affect the

system designer's ability to human engineer the system-user

interface.

A typewriter may be viewed as a collection of data sources -- the

keyboard, the receive-data lead of the modem or data set, and

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 6 -

possibly a paper-tape reader -- and data sinks -- the printer, a

control detector, the send-data lead of the data set, and

possibly a paper-tape punch. Figure (la) shows such a collection

and possible interconnections. Flexible user and/or system

control over these source-sink interconnections permits

implementation of various input/output strategies.

As a specific example. Figure (1b) shows the interconnection

control of a Model 37KSR teletypewriter. Control of the switches

occurs by detection of control character sequences by the control

detector associated with the printer. The interrupt detector and

generator are discussed below. When the keyboard-to-printer

connection is closed the terminal is in half-duplex mode and

direct local copy of keyboarded data occurs. When this connection

is open the terminal is in full-duplex mode, and the relationship

between keyboarded data and printed copy is under control of the

computer system. One common use of the full-duplex mode is to

collect passwords without printing them. The full-duplex mode

allows the printed characters to be simple mappings of or even

arbitrarily elaborate functions of the keyboarded characters. The

ability to lock and unlock the keyboard allows the system to

constrain the user to type only when input is being collected by

the system.

The program interrupt ability previously mentioned can be

achieved by full-duplex operation of both the terminal and

computer, which permits an interrupt-implying character to be

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 7 -

typed at any time. Another method, which does not require

full-duplex operation, is the "line-break" technique (2*), where

an always generatable unique signal can be transmitted. In

addition, the ability of the terminal to respond to a break or

interrupt signal from the computer regardless of its state

provides a method of restoring the terminal to a desired state --

typically ready to receive control or text information. As an

example, the Model 37 responds to a break by locking the

keyboard; the Model 37 break generator and detector are shown in

Figure (1b).

The system should be able to maintain knowledge of and control

over the states of the terminal. In particular, the system should

be able to force the terminal into a state where the system can

print on the terminal without user interference. As many terminal

actions as possible -- for example, those causing carriage and

paper motion, color shift, source-sink interconnections -- should

be initiated by character sequences whether terminal or computer

generated. This implies that the character set used should be

sufficiently rich in control characters.

The terminal should not inherently hinder implementation of a

read-ahead strategy. For example, the keyboard should not lock

automatically after the typing of what the terminal assumes is an

action character, such as at the end of a line; such terminal

behavior is a violation of a general rule that the terminal

shouldn't try to "outguess the software" [6]. When a system

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 8 -

controls input by keyboard locking the user should know when the

keyboard is useable without having to test it. For example, the

Model 37 lights a "proceed" lamp when the keyboard is unlocked.

Using a "new-line" function (combined carriage-return and

line-feed) is simpler for both man and machine than requiring

both functions for starting a new line. The American National

Standard X3.4-1968 [7] permits the line-feed code to carry the

new-line meaning. The terminal should have adequate functions for

speeding up both input and output; Horizontal tabs are essential,

form feed and vertical tabs are useful. They are the most useful

when the user can easily set the stops himself using control

character sequences; this is possible in some present day

terminals [1,8]. -

When a terminal has reached the system via a switched telephone

network, the system may not apriori know anything about the

calling terminal, and it can be useful if the terminal can send

an identification sequence to the system upon demand. This

sequence can be used to uniquely identify the terminal, to

determine the terminal type, and to indicate terminal options.

The Model 37 answer-back scheme is an example of a more than

adequate identification. The economic advantage of having

different terminal types statistically share computer ports is a

strong motivation for the system to be able to experimentally

determine the terminal type. It is necessary only that each

terminal to be supported be able to respond to a transmission

from the system and that either the transmission or the response

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 9 -

be unique. Multics currently supports four types of terminals and

determines which type by performing an experiment involving

identification responses.

The Model 37 teletypewriter and the General Electric TermiNet-300

[8] (Registered Trade Mark of the General Electric Company)

provide nearly all of the above-mentioned features. Consider the

standard version of IBM'S Model 2741 [2] terminal, which is

widely used as a time-sharing terminal. This terminal can only be

used in the half-duplex mode, so there is no way to inhibit

direct local copy or to exploit full-duplex operation. The

terminal cannot be interrupted by the system while the keyboard

is unlocked; thus the system can't force the terminal to accept

output while the user is able to type. This property makes

read-ahead a somewhat dangerous strategy, since conditional

output is impossible while the user is able to type. The keyboard

locks as a result of typing "return" (new-line), and requires the

system to respond and unlock the keyboard before the user can

proceed. Even with instant system response, the delay before

typing can continue (caused by the transmission of control

characters) is noticeable, so that any read-ahead strategy is

degraded. No keyboard-unlocked indication is provided for the

user. Adding an identification mechanism, enabling interrupt to

be always generatable and receivable, adding a local-copy

suppress mode, and eliminating the automatic keyboard lock, are

possible modifications; unfortunately, as is characteristic of

post-initial design changes, they add significant cost.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 10 -

Computer system terminal control hardware

The terminal control hardware used today broadly falls into two

categories. One is the peripheral stored-program controller; the

other is the hard-wired controller operated directly by the main

computer. The major difference between these in practice is in

the way the control software is modularized. The various

functions to be performed by the terminal control hardware and

software together can be divided between them almost arbitrarily.

The decisions made when allocating logic between a main machine

control program and a hard-wired or stored-program controller

involve a variety of economic and other management

considerations; it is not our intention here to discuss relative

virtues of hard-wired and stored-program controllers. In either

case, if the controller provides a primitive but complete set of

functions, the terminal control program in the main computer can

assume primary logistic control over the terminals. Such a

controller is assumed in the following discussion, which

describes suitable controller functions.

Because it may be safely assumed that new and better terminals

will continue to be introduced, the terminal controller should be

flexible enough to permit operating these new terminals with

minimum modification. Specifically, parameters such as the number

of bits per character, the character parity, and the bit rate

should be program controllable or at least field modifiable. At

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 11 -

any given time, there are usually several terminal types worth

supporting. The controller must be able to handle the

corresponding variety of line control requirements without undue

programming effort and without undue main processor intervention;

this implies suitable controller command chaining, which is

described later.

When terminals reach the system via a switched telephone network,

the system needs to be fully aware of call-ins, disconnects, and

line failures. Thus the controller should make available to the

software all status available from the modem or data set, and

allow the system to enable interrupts for status changes.

Similarly, the controller should allow the system to set all the

control leads of the data set, so the system can control data set

answering, make lines in hunt groups appear busy, and initiate

disconnects. Such control allows the system to disable improperly

working lines and to exercise system load control.

Certain terminal functions (tabs, form-feed, new-line, .etc.)

require that a delay sufficient for completion follow its

initiation. If this delay is provided by the inclusion of "fill"

characters (causing no terminal actlon), only the needed number

should be transmitted. Experience suggests that accurate delay

calculation, providing only the actual delay necessary, speeds up

output and gives the system a smoother and speedier image (*3),

Preferably, delays should be calculated to the nearest bit time

rather than to the nearest character time.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 12 -

An important controller feature is the ability to act on a list

of queued commands from the control software. The command

repertoire should include commands to set controller and data set

modes, obtain controller and data set status, transmit from a

buffer, read into a buffer, transmit a literal bit string, and

transfer to another command. The tandem execution of two or more

read or write commands is usually called "data chaining". The

tandem execution of a list of mixed commands is usually called

"command chaining". A transfer command allows the list to be

conveniently built of sublists and dynamically threaded together.

The ability to transmit literal bit strings allows the

transmission of delays (all 1s), breaks (all Os), and canned

control character sequences.

The ability to data chain while reading is an important help in

allowing continuous input, because it allows a more relaxed

software response to an exhausted buffer. To simplify buffer

management, the controller should be able to interrupt on an

action character and continue reading sequentially into the same

buffer; an interrupt should also occur on data-chaining to alert

the software of an exhausted buffer. It is useful if the action

character(s) detected can be dynamically set by the software. If

the action character(s) can be associated with each individual

read command and the action to be taken individually specified,

the ability to chain a list of mixed read and write commands

permits handling a variety of terminal types and the design of

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 13 -

good read-ahead strategies. The detection of a received "break"

signal should halt the controller and cause an interrupt.

Figure 2 shows a hypothetical command list similar to lists

implemented in Multics. The list illustrates reading the keyboard

of an IBM 2741 (modified to accept break signals), and employs

several sublists. After an interrupt from the controller

indicating the exhaustion of buffer one, the control software

would ordinarily replace the transfer in step 9 with a transfer

to another read sequence. The keyboard-locking sequence stops

input should the system fail to obtain another buffer prior to

exhaustion of buffer two.

General Electric's General Input/Output Controller (GIOC) used

with the GE 645 system (on which Multics is implemented) is an

example of a communication controller that provides most of the

above-mentioned controller functions. Reference [9] fully

describes the design of the GIOC.

Terminal control software

The following discussion will be concerned with terminal control

software in a main computer using a flexible terminal controller.

We will discuss the need for flexibility of design and operation,

the implementation of input/output strategies, some of the

responsibilities to other system software, and a little about the

interface to user programs.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 14 -

The major areas where flexibility is important in terminal

control software are the ability to operate various terminal

types, and the ability to adapt to the variable behavior and

needs of users.

The advantages of being able to operate a variety of terminals

are; (1) freedom from dependence on one terminal supplier; (2)

ability to take advantage of newer terminals; (3) user access to

terminal features not all found on one terminal; and (4)

satisfaction of individual user needs and preferences. The

ability to operate various terminals and to easily extend

operation to new terminals requires a flexible and convenient

method for converting between internal system character codes and

physical device codes, and for handling the different kinds of

terminal control.

If the terminal control software is designed to be driven by a

collection of tables, it should be possible to embed device

differences and perhaps user options in the tables rather than in

the harder-to-change program. Flexibility and extensibility can

be achieved by sufficient ingenuity in choosing what information

is to be relegated to tables. The generality required in such

tables depends on the range of terminals to be controlled.

Control driving tables can include the following:

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 15 -

1. Input and output code conversion tables.

2. Device parameter tables.

3. Tables of controller command sequences for identifying

and operating the various devices.

The system-device code mappings contained in the code conversion

tables would include suitable "escape" character sequences for

handling system-defined characters not present on some terminals

(*4). Also^ additional tables could be provided for alternative

conversion modes on the same terminal (*5), and to accomodate,

for example, the user who wants to use a non-standard print

element on an IBM Model 2741 or an extended-character type-box on

a Model 37 teletypewriter.

The device parameter table would contain such information as

default action characters, default output line overflow length,

default code conversion table name, carriage return speed for

delay calculations, character parity, etc.

The operating command sequence information includes sequences for

initiating a write, writing, terminating a write, initiating a

read, etc. The identification command sequences are the ones used

for terminal type determination; often the terminal

identification code is obtained as a by-product of type

determination.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 16 -

If the hardware controller can interrupt on an action character

and otherwise continue, then only a small fixed buffer space need

be associated with each active terminal – that needed for current

physical input/output by the controller. All other buffer space

can be pooled and assigned to individual terminals on demand. A

simple read-ahead strategy can be implemented by copying input

characters from physical collection buffers at action character

interrupt time into a linked list of input buffers obtained

dynamically from the buffer pool. When the user program requests

input, the input is taken from the user's input buffer list.

Similar buffer schemes heave been long used for handling devices

such as magnetic tapes, but are not often seen used for terminal

control.

Similarly, a user program's output can be copied into a

dyamically grown buffer list. Physical output occurs by refilling

from the output list the physical buffer associated with each

terminal every time its contents have been output. With

half-duplex operation, emptying the output list should reinstate

read-ahead. Letting a user program emit substantial output before

suspending its execution (referred to as permitting write-behind)

usually improves system efficiency by reducing the number of

separate program executions. Physical output should initiated

as soon as there is any, and not delayed perhaps waiting for a

buffer to fill. Aside from distorting the sense of program

progress, such output delay can make program debugging very

difficult. For example, debugging often involves inserting

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 17 -

additional output statements in various program branches to

obtain flow information. It is misleading not to see this flow

information prior to a program entering an unintended loop,

because of inappropriate output delay.

Of course, reasonable limits must be put on how much read-ahead

and write-behind is permitted, lest a single user or his program

seize all available buffers. Adequate total buffer space should

exist to cover reasonable fluctuations in total demand.

Algorithms to limit the buffer space that can be claimed by one

user should be generous when conditions permit to avoid losing

the advantages of read-ahead and write-behind. During peaks in

total demand that tax the available space, these algorithms

should be gracefully restrictive. Some successful limiting

algorithms [4] involve allowing each user to accumulate a fixed

fraction of either the total buffer space set aside for all such

terminals, or of the current remaining space. Because the average

output character rate is typically ten times the average input

character rate [11], the limiting algorithms must prevent

write-behind demands from completely depleting the available

buffer space, so that some space is kept available for collecting

input.

The terminal control software is responsible for blocking further

execution of the user's program when it requests input and none

is available, and whenever it exceeds the write-behind limit. In

the waiting-for-input case, the program must be restarted when an

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 18 -

action character is detected. In the waitinq-for-output case, the

program should be restarted when the back-logged output has

dropped to an amount whose physical output time will

approximately correspond to the restart delay (system response),

so that the physical output can occur continuously.

Another responsibility of the control software is to detect and

report disconnects and the user's interrupt (break) signals.

Disconnects should be reported to the system module responsible

for reclaiming the communication line and making it available to

other users. The interrupt should be reported to the system

module responsible for suspending the execution of the user's

program, pending input from the user indicating the reason for

the interrupt.

The subject of the interface between the terminal control

software and a user program is too large to be covered thoroughly

in this paper. The flexibility built into the control software

should be available to the user program. It should be possible,

for example, to request a different code conversion table,

specify a new line-overflow length, discard existing read-ahead

input, turn off and on the terminal's local copy, disconnect the

terminal (if it is on a phone line), request the terminal's

identification code, etc. A particularly bad interface example

occurs in some systems In use today, in which it is not possible

to simply read from the terminal. The user program can only issue

a write-read sequence. Output is forced to occur between each

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 19 -

line of input. Consequently, the user program is scheduled and

executed to perform this obligatory output. The overall effect is

to degrade system efficiency as well as seriously slow down the

user at the terminal.

The typewriter control software in the Multics system is almost

completely driven by tables organized along the lines described

above. A single control program currently operates the Model 37

teletypewriter, IBM Models 1050 and 2741, and the General

Electric TermiNet-300. Full read-ahead and write-behind are

implemented with a maximum limit which corresponds to about 700

characters for both the read and write buffer lists. A buffer

pool of 250 14-character blocks has proven ample in a 35 user

system. In addition each active typewriter has physical read- and

write buffers of about 100 characters each. After a program

exceeds the write-behind limit and is blocked from execution, it

is restarted when the write-behind has dropped to about 60

characters.

Character set and character stream considerations

The choice of of a suitable character set and suitable processing

of the input and output character streams are extremely important

human engineering issues which can affect the user's view of the

system as much as any of the factors already discussed. An

earlier paper [10] contains a detailed treatment of these issues;

it includes discussion of character set choice, input and output

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 20 -

code conversion, input text canonicalization, and input line

editing.

Conclusions

The total effectiveness of a time-sharing system and its user

community depends a great deal on the human engineering of the

system-user interface seen by the user from the vantage point of

his termina1. We have concentrated on the factors affecting the

user's ability to provide input at the rate he wishes and to

control output. Suitable input/output strategies can allow the

user to work in parallel with the computer. We have maintained

that a coordinated design of the terminal, the terminal control

hardware, the terminal control software, the system's command

stream interpreter, the commands, and other programs, are all

necessary to achieve the desired goal.

Many of the individual factors discussed, of course, have been

recognized as important in the design of various systems. It is

rare, however, to find a sufficient set of these factors

implemented to a satisfactory extent. One reason for this is that

the system designer is often faced with using previously designed

terminals and terminal control hardware, and even previously

written software. Another reason is that even with experience

using a variety of interactive systems it can be difficult to

assess the sensitivity of the human interface to differences in

design. Too often, this lack o£ complete design control together

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 21 -

with insufficient experience results in a system design lacking

some important features.

Acknowledgments

Many of the techniques described here were developed over a

several year time span by the builders of the 7094 Compatible

Time-Sharing System at MIT Project MAC, and by the implementors

of Multics, a cooperative research effort by the General Electric

Company, the Bell Telephone laboratories, Inc., and the

Massachusetts Institute of Technology. Among those contributing

to the understanding of how to effectively implement typewriter

input/output were F. J. Corbató, R. C. Daley, S. D. Dunten, E. L.

Glaser, R. G. Mills, D. M. Ritchie and K. L. Thompson.

Work reported here was supported in part by the Advanced Research

Projects Agency, Department of Defense, under Office of Naval

Research Contract Nonr-4102(01). Reproduction is permitted for

any purpose of the United States Government.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 22 -

FOOTNOTES

(*1) In full duplex operation, transmission can occur

independently in both directions. This requires independent

keyboard and printer operation at the terminal, as well as

independent input and output at the computer. The modems (or data

sets) typically used to connect the kind of typewriter being

discussed to the telephone line ordinarily provide full-duplex

transmission.

(*2) The "line-break" or "break" signal usually consists of

approximately 200 milliseconds of "space" ("O" bits). This is

distinguishable from ordinary characters and is easily detected

independently, without the necessity of being able to receive

characters.

(*3) This effect was noticed during the early development and use

of Project MAC'S CTSS. Subsequently on both CTSS and Multics,

users quickly noticed longer-than-needed delays on new terminals

or due to untuned new software.

(»4) For example, the sequence "¢<" could be used to represent a

"[" on an IBM 2741 [10].

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 1 -

(*5) If the default mode utilizes escape sequences for missing

characters, an alternative mode could print blanks for such

characters to permit inking them in.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 2 -

REFERENCES

[1] Model 37 Teletypewriter Stations for DATA-PHONE (Registered

Trade Mark of the Bell System) Service, Bell System Data

Communications Technical Reference, American Telephone and

Telegraph Company, September 1968.

[2] IBM 2741 Communications Terminal, IBM Form A24-3415-2, IBM

Corporation, New York.

[3] The Compatible Time-Sharing System: A Programmers' Guide,

Second Edition, MIT Computation Center, Edited by P. A. Crisman,

The, MIT Press, Cambridge, Massachusetts, 1965.

[4] J. H. Saltzer, CTSS Technical Notes, MAC Technical Report No.

16, Project MAC, Massachusetts Institute of Technology, March 15,

1965.

[5] The Multiplexed Information and Computing Service:

Programmers' Manual, M. I. T. Project MAC. Cambridge, Mass., 1969

(to be published).

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 3 -

[6] T. A. Dolotta, Functional Specifications for Typewriter-Like

Time Sharing Terminals, Computing Surveys, Vol. 2, No. 1, March

1970, pp5-31.

[7] American National Standard X3.4-1968, American National

Standards Institute, Oct. 1968.

[8] Programmers' Manual for the General Electric TermiNet-300

Printer, No, GEK-15002, General Electric Company, 1969.

[9] J. F. Ossanna, L. E. Mikus, and S. D. Dunten, Communications

and Input/Output Switching in a Multiplex Computing System, AFIPS

Conference Proceedings, Vol. 27, Part 1, 1965, (1965 Fall Joint

Computer Conference), Spartan Books, Washington, D. C., pp

231-241.

[10] J. H. Saltzer and J. F. Ossanna, Remote Terminal Character

Stream Processing in Multics, AFIPS Conference Proceedings, Vol.

36, 1970, (1970 Spring Joint Computer Conference), AFIPS Press,

Montvale, New Jersey, to be published.

[11] P. E. Jackson and C, D. Stubbs, A Study of Interactive

Computer Communication, AFIPS Conference Proceedings, Vol. 34,

1969, (1969 Spring Joint Computer Conference), AFIPS Press,

Montvale, New Jersey, pp 491-504.

J. F. Ossanna and J. H. Saltzer! DRAFT 4/12/70

- 4 -

