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Abstract

We consider a resource allocation problem where individual users wish to send data across
a network to maximize their utility, and a cost is incurred at each link that depends on the total
rate sent through the link. It is known that as long as users do not anticipate the effect of their
actions on prices, a simple proportional pricing mechanism can maximize the sum of users’
utilities minus the cost (called aggregate surplus). Continuing previous efforts to quantify the
effects of selfish behavior in network pricing mechanisms, we consider the possibility that
users anticipate the effect of their actions on link prices. Under the assumption that the links’
marginal cost functions are convex, we establish existence of a Nash equilibrium. We show
that the aggregate surplus at a Nash equilibrium is no worse than a factor of 4

√
2 − 5 times

the optimal aggregate surplus; thus, the efficiency loss when users are selfish is no more than
approximately 34%.

The current Internet is used by a widely heterogeneous population of users; not only are differ-
ent types of traffic sharing the same network, but different end users place different values on their
perceived network performance. This has led to a surge of interest in congestion pricing, where
the network is treated as a market, and prices are set to mediate demand and supply of network
resources; see, e.g., [5, 9].

We investigate a specific price mechanism considered by Kelly et al. in [16] (motivated by the
proposal made in [14]). For simplicity let us first consider the special case of a single link; in this
case the mechanism works as follows. Each user submits a bid, or total willingness-to-pay, to the
link manager. This represents the total amount the user expects to pay. The link manager then
chooses a total rate and price such that the product of price and rate is equal to the sum of the bids,
and the price is equal to marginal cost; note, in particular, that the supply of the link is elastic, i.e.,
it is not fixed in advance. Finally, each user receives a fraction of the allocated rate in proportion to
their bid. It is shown in [16] that if users do not anticipate the effect of their bid on the price, such
a scheme maximizes the sum of users’ utilities minus the cost of the total allocated rate, known as
the aggregate surplus (see [20], Chapter 10).
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The pricing mechanism of [16] takes as input the bids of the users, and produces as output the
price of the link, and the resulting rate allocation to the users. Kelly et al. [16] continue on to
discuss distributed algorithms for implementation of this market-clearing process: given the bids
of the users, the authors present two algorithms which converge to the market-clearing price and
rate allocation. Indeed, much of the interest in this market mechanism stems from its desirable
properties as a decentralized system, including both stability and scalability. For details, we refer
the reader to [11, 13, 27, 28].

One important interpretation of the price given to users in the algorithms of [16] is that it can
provide early notification of congestion. Building on the Explicit Congestion Notification (ECN)
proposal [22], this interpretation suggests that the network might charge users proactively, in hopes
of avoiding congestion at links later. From an implementation standpoint, such a shift implies that
rather than a hard capacity constraint (i.e., a link is overloaded when the rate through it exceeds
the capacity of the link), the link has an elastic capacity (i.e., the link gradually begins to signal
a buildup of congestion before the link’s true capacity is actually met). Many proposals have
been made for “active queue management” (AQM) to achieve good performance with Explicit
Congestion Notification; see, e.g., [2, 15, 18, 19]. This issue is of secondary importance to our
discussion, as we do not concern ourselves with the specific interpretation of the cost function at
the link. (An insightful discussion of the relationship between active queue management and the
cost function of the link may be found in [10].)

In this paper, we investigate the robustness of the market mechanism of [16] when users attempt
to manipulate the market. Formally, we consider a model where users anticipate the effects of
their actions on the link prices. This makes the model a game, and we ask two fundamental
questions: first, does a Nash equilibrium exist for this game? And second, how inefficient is such
an equilibrium relative to the maximal aggregate surplus? We show that Nash equilibria exist,
and that the efficiency loss is no more than a factor 6 − 4

√
2 of the maximal aggregate surplus

(approximately 34%) when users are price anticipating.
Such an investigation forms part of a broader body of work on quantifying efficiency loss in

environments where participants are selfish. Results have been obtained for routing [7, 17, 21],
traffic networks [6, 25] and network design problems [1, 8]. Our work is most closely related to
that of [12], where the same market mechanism as in this paper was considered for the case where
the supply of a link is fixed, or inelastic; this was the mechanism first presented in [14]. Johari and
Tsitsiklis show the efficiency loss when users are price anticipating is no worse than 25% [12].

The outline of the remainder of the paper is as follows. We start by considering a single link
in isolation. In Section 1, we describe the market mechanism for a single link, and recapitulate the
results of Kelly et al. [16]. In Section 2, we describe a game where users are price anticipating, and
establish the existence of a Nash equilibrium. We also establish necessary and sufficient conditions
for a strategy vector to be a Nash equilibrium. These conditions are used in Section 3 to prove the
main result of the paper for a single link: that when users are price anticipating, the efficiency
loss—that is, the loss in aggregate surplus relative to the maximum—is no more than 34%.

In Section 4, we compare the settings of inelastic and elastic supply. In particular, we consider
a limit of cost functions which approach a hard capacity constraint. We show that if these cost func-
tions are monomials and we let the exponent tend to infinity, then the efficiency loss approaches
25%, which is consistent with the result of [12].

In Section 5, we extend the results to general networks. This extension is done using the same
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approach as [12]. We consider a game where users submit individual bids to each link in the
network, and establish existence of a Nash equilibrium. Using techniques similar to the results
proven in a network context in [12], we show that the efficiency loss is no more than 34% when
users are price anticipating, matching the result of Section 3. Some conclusions are offered in
Section 6.

1 Background

Suppose R users share a single communication link. Let dr ≥ 0 denote the rate allocated to user r.
We assume that user r receives a utility equal to Ur(dr) if the allocated rate is dr. In addition, we
let f =

∑

r dr denote the total rate allocated at the link, and let C(f) denote the cost incurred at
the link when the total allocated rate is f ≥ 0. We will assume that both Ur and C are measured in
the same monetary units. A natural interpretation is that Ur(dr) is the monetary value to user r of
a rate allocation dr, and C(f) is a monetary cost for congestion at the link when the total allocated
rate is f .

We make the following assumptions regarding Ur and C.

Assumption 1 For each r, over the domain dr ≥ 0 the utility function Ur(dr) is concave, strictly
increasing, and continuously differentiable, and the right directional derivative at 0, denoted
U ′

r(0), is finite.

Assumption 2 There exists a continuous, convex, strictly increasing function p(f) over f ≥ 0
with p(0) = 0, such that for f ≥ 0:

C(f) =

∫ f

0

p(z)dz.

Thus C(f) is strictly convex and strictly increasing.

Concavity in Assumption 1 corresponds to elastic traffic, as defined by Shenker [26]; such traffic
includes file transfers such as FTP connections and peer-to-peer connections. Note that Assump-
tion 2 does not require the price function p to be differentiable. Indeed, assuming smoothness of p
would simplify some of the technical arguments in the paper. However, we later require the use of
nondifferentiable price functions in our proof of Theorem 8.

Given complete knowledge and centralized control of the system, a natural problem for the
network manager to try to solve is the following [14]:

SYSTEM:

maximize
∑

r

Ur(dr) − C

(

∑

r

dr

)

(1)

subject to dr ≥ 0, r = 1, . . . , R. (2)

Since the objective function (1) is continuous, and Ur increases at most linearly while C increases
superlinearly, an optimal solution dS = (dS

1 , . . . , dS
R) exists for (1)-(2); since the feasible region is
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convex and C is strictly convex, if the functions Ur are strictly concave, then the optimal solution
is unique. We refer to the objective function (1) as the aggregate surplus; this is the net monetary
benefit to the economy consisting of the users and the single link [20]. For convenience, we define
a function surplus(d) which gives the aggregate surplus at an allocation d:

surplus(d) ,
∑

r

Ur(dr) − C

(

∑

r

dr

)

. (3)

Due to the decentralized nature of the system, the resource manager may not have an exact
specification of the utility functions [14]. As a result, we consider the following pricing scheme
for rate allocation. Each user r makes a payment (also called a bid) of wr to the resource manager.
Given the vector w = (w1, . . . , wr), the resource manager chooses a rate allocation d(w) =
(d1(w), . . . , dR(w)). We assume the manager treats all users alike—in other words, the network
manager does not price differentiate. Thus the network manager sets a single price µ(w); we
assume that µ(w) = 0 if wr = 0 for all r, and µ(w) > 0 otherwise. All users are then charged the
same price µ(w), leading to:

dr(w) =











0, if wr = 0;

wr

µ(w)
, if wr > 0.

Associated with this choice of price is an aggregate rate function f(w), defined by:

f(w) =
∑

r

dr(w) =















0, if
∑

r wr = 0;

∑

r wr

µ(w)
, if

∑

r wr > 0.
. (4)

We will assume that wr is measured in the same monetary units as both Ur and C. In this case,
given a price µ > 0, user r acts to maximize the following payoff function over wr ≥ 0:

Pr(wr; µ) = Ur

(

wr

µ

)

− wr. (5)

The first term represents the utility to user r of receiving a rate allocation equal to wr/µ; the second
term is the payment wr made to the manager. Observe that since utility is measured in monetary
units, the payoff is quasilinear in money, a typical assumption in modeling market mechanisms
[20].

Notice that as formulated above, the payoff function Pr assumes that user r acts as a price
taker; that is, user r does not anticipate the effect of his choice of wr on the price µ, and hence
on his resulting rate allocation dr(w). Informally, we expect that in such a situation the aggregate
surplus will be maximized if the network manager sets a price equal to marginal cost, i.e., if the
price function satisfies:

µ(w) = p(f(w)). (6)

We show in the following proposition that a joint solution to (4) and (6) can be found; we
then use this proposition to show that when users optimize (5) and the price is set to satisfy (6),
aggregate surplus is maximized.
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Proposition 1 Suppose Assumption 2 holds. Given any vector of bids w ≥ 0, there exists a unique
pair (µ(w), f(w)) ≥ 0 satisfying (4) and (6), and in this case f(w) is the unique solution f to:

∑

r

wr = fp(f). (7)

Furthermore, f(·) has the following properties: (1) f(0) = 0; (2) f(w) is continuous for w ≥ 0;
(3) f(w) is a strictly increasing and strictly concave function of

∑

r wr; and (4) f(w) → ∞ as
∑

r wr → ∞.

Proof. Fix a vector w ≥ 0. First suppose there exists a solution to (4) and (6). Then from (4),
we have:

∑

r

wr = f(w)µ(w).

After substituting (6), the preceding relation becomes (7). Conversely, if f(w) solves (7), then
defining µ(w) according to (6) makes (7) equivalent to (4).

Thus, it suffices to check that there exists a unique solution f to (7). By Assumption 2, p is
strictly increasing, and since p is convex, p(f) → ∞ as f → ∞; thus defining g(f) = fp(f), we
know that g(0) = 0; g is strictly increasing, strictly convex, and continuous; and g(f) → ∞ as
f → ∞. Thus g is invertible, and crosses the level

∑

r wr at a unique value f(w) = g−1(
∑

r wr).
From this description and the properties of g it is not hard to verify that f has the four properties
stated in the proposition. 2

Observe that we can view (7) as a market-clearing process. Given the total revenue
∑

r wr

from the users, the link manager chooses an aggregate rate f(w) so that the revenue is exactly
equal to the aggregate charge f(w)p(f(w)). Due to Assumption 2, this market-clearing aggregate
rate is uniquely determined. Kelly et al. present two algorithms in [16] which amount to dynamic
processes of market-clearing; as a result, a key motivation for the mechanism we study in this
paper is that it represents the equilibrium behavior of the algorithms in [16]. Kelly et al. show in
[16] that when users are non-anticipating, and the network sets the price µ(w) according to (4) and
(6), the resulting allocation solves SYSTEM. This is formalized in the following theorem, adapted
from [16].

Theorem 2 (Kelly et al., [16]) Suppose Assumptions 1 and 2 hold. For any w ≥ 0, let (µ(w), f(w))
be the unique solution to (4) and (6). Then there exists a vector w such that µ(w) > 0, and:

Pr(wr; µ(w)) = max
wr≥0

Pr(wr; µ(w)), r = 1, . . . , R. (8)

For any such vector w, the vector d(w) = w/µ(w) solves SYSTEM. If the functions Ur are strictly
concave, such a vector w is unique.

Proof. Let dS be any solution to SYSTEM; as discussed above, at least one such solution exists.
Let fS =

∑

r dS
r , and define wS

r , dS
r p(fS) for each r. Observe that with this definition, we have

∑

r wS
r =

∑

r dS
r p(fS) = fSp(fS); thus fS satisfies (7), and we have f(wS) = fS , d(wS) = dS .
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Given Assumptions 1 and 2, observe that any solution to SYSTEM is identified by the following
necessary and sufficient optimality conditions:

U ′
r(d

S
r ) = p

(

∑

s

dS
s

)

, if dS
r > 0; (9)

U ′
r(0) ≤ p

(

∑

s

dS
s

)

, if dS
r = 0. (10)

Now, since p(0) = 0 but U ′
r(0) > 0 for all r, we must have fS =

∑

r dS
r > 0; thus µ(w) =

p(fS) > 0. But then dS
r = wr/p(fS) for each r, so the preceding optimality conditions become:

U ′
r

(

wr

p(fS)

)

= p(fS), if wr > 0;

U ′
r(0) ≤ p(fS), if wr = 0.

These conditions ensure that (8) holds.
Conversely, suppose we are given a vector w such that µ(w) > 0, and (8) holds. Then we sim-

ply reverse the argument above: since (8) holds, we conclude that the optimality conditions (9)-(10)
hold with d(w) = w/µ(w) = w/p(f(w)), so that d(w) is an optimal solution to SYSTEM. Fi-
nally, if the functions Ur are each strictly concave, then the solution dS to SYSTEM is unique, so
the price p(fS) is uniquely determined as well. As a result, for each r the product dS

r p(fS) is
unique, so the vector w identified in the theorem must be unique as well. 2

Theorem 2 shows that with an appropriate choice of price function (as determined by (4) and
(6)), and under the assumption that the users behave as price takers, there exists a bid vector w

where all users have optimally chosen their bids wr, with respect to the given price µ(w); and at this
“equilibrium,” the aggregate surplus is maximized. However, when the price taking assumption is
violated, the model changes into a game and the guarantee of Theorem 2 is no longer valid. We
investigate this game in the following section.

2 The Single Link Game

We now consider an alternative model where the users of a single link are price anticipating, rather
than price taking, and play a game to acquire a share of the link. Throughout the remainder of this
section and the next, we will assume that the link manager sets the price µ(w) according to the
unique choice prescribed by Proposition 1, as follows.

Assumption 3 For any w ≥ 0, the aggregate rate f(w) is the solution to (7):
∑

r wr = f(w)p(f(w)).
Furthermore, for each r, dr(w) is given by:

dr(w) =











0, if wr = 0;

wr

p(f(w))
, if wr > 0.

(11)
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Note that we have f(w) > 0 and p(f(w)) > 0 if
∑

r wr > 0, and hence dr is always well defined.
We adopt the notation w−r to denote the vector of all bids by users other than r; i.e., w−r =

(w1, w2, . . . , wr−1, wr+1, . . . , wR). Given w−r, each user r chooses wr ≥ 0 to maximize:

Qr(wr;w−r) , Ur(dr(w)) − wr, (12)

over nonnegative wr. The payoff function Qr is similar to the payoff function Pr, except that the
user now anticipates that the network will set the price according to Assumption 3, as captured
by the allocated rate dr(w). A Nash equilibrium of the game defined by (Q1, . . . , QR) is a vector
w ≥ 0 such that for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (13)

In the next section, we show that a Nash equilibrium always exists, and give necessary and
sufficient conditions for a vector w to be a Nash equilibrium. In Section 2.2, we outline a class of
price functions for which the Nash equilibrium is unique.

2.1 Existence of Nash Equilibrium

In this section we establish that a Nash equilibrium exists for the game defined by (Q1, . . . , QR).
We start by establishing certain properties of dr(w) in the following proposition.

Proposition 3 Suppose that Assumptions 1-3 hold. Then: (1) dr(w) is a continuous function of
w; and (2) for any w−r ≥ 0, dr(w) is strictly increasing and concave in wr ≥ 0, and dr(w) → ∞
as wr → ∞.

Proof. We first show (1): that dr(w) is a continuous function of w. Recall from Proposition 1
that f(w) is a continuous function of w, and f(0) = 0. Now at any vector w such that

∑

s ws > 0,
we have p(f(w)) > 0, so dr(w) = wr/p(f(w)); thus continuity of dr at w follows by continuity
of f and p. Suppose instead that w = 0, and consider a sequence wn such that wn → 0 as
n → ∞. Then

∑

r dr(w
n) = f(wn) → 0 as n → ∞, from parts (1) and (2) of Proposition 1;

since dr(w
n) ≥ 0 for all n, we must have dr(w

n) → 0 = dr(0) as n → ∞, as required.
We now show (2): that dr(w) is concave and strictly increasing in wr ≥ 0, with dr(w) → ∞

as wr → ∞. From Assumption 3, we can rewrite the definition of dr(w) as:

dr(w) =











0, if wr = 0;

wr
∑

s ws

f(w), if wr > 0.
(14)

From this expression and Proposition 1, it follows that dr(w) is strictly increasing in wr. To show
dr(w) → ∞ as wr → ∞, we only need that f(w) → ∞ as wr → ∞, a fact that was shown in
Proposition 1.

It remains to be shown that for fixed w−r, dr is a concave function of wr ≥ 0. Since we
have already shown that dr is continuous, we may assume without loss of generality that wr > 0.
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We first assume that p is twice differentiable. In this case, it follows from (7) that f is twice
differentiable in wr. Since wr > 0, we can differentiate (14) twice to find:

∂2dr(w)

∂w2
r

= −
2
∑

s6=r ws

(
∑

s ws)3
f(w) +

2
∑

s6=r ws

(
∑

s ws)2
· ∂f(w)

∂wr

+
wr
∑

s ws

· ∂2f(w)

∂w2
r

.

From Proposition 1, f is a strictly concave function of
∑

s ws; thus the last term in the sum above
is nonpositive. To show that dr is concave in wr, therefore, it suffices to show that the sum of the
first two terms is negative, i.e.:

f(w)
∑

s ws

≥ ∂f(w)

∂wr

.

By differentiating both sides of (7), we find that:

∂f(w)

∂wr

=
1

p(f(w)) + f(w)p′(f(w))
.

On the other hand, from (7), we have:

f(w)
∑

s ws

=
1

p(f(w))
.

Substituting these relations, and noting that f(w)p′(f(w)) ≥ 0 since p is strictly increasing, we
have:

f(w)
∑

s ws

=
1

p(f(w))
≥ 1

p(f(w)) + f(w)p′(f(w))
=

∂f(w)

∂wr

,

as required. Thus dr(w) is concave in wr, as long as p is twice differentiable.
Now suppose that p is any price function satisfying Assumption 2, but not necessarily twice

differentiable. In this case, we may choose a sequence of twice differentiable price functions pn

satisfying Assumption 2, such that pn → p pointwise as n → ∞ (i.e., pn(f) → p(f) as n → ∞,
for all f ≥ 0).1 Let dn

r be the allocation function for user r when the price function is pn; then by
the argument in the preceding paragraph, dn

r (w) is concave in wr, for each n. In order to show that
dr(w) is concave in wr, therefore, it suffices to show that dn

r → dr pointwise as n → ∞. From
(14), this will be true as long as fn → f pointwise as n → ∞, where fn is the solution to (7) when
the price function is pn.

Fix a bid vector w; we now proceed to show that f n(w) → f(w) as n → ∞. For each n,
define gn(f) = fpn(f), and let g(f) = fp(f). By continuity, gn(f) → g(f) as n → ∞, for all
f ≥ 0. Furthermore, from (7),

∑

r wr = g(f(w)). Fix ε > 0, and choose δ > 0 so that:

δ < min

{

∑

r

wr − g(f(w) − ε), g(f(w) + ε) −
∑

r

wr

}

.

1Define p(f) = 0 for f ≤ 0, and consider a sequence of twice differentiable functions φn, such that φn has
support on [−1/n, 0], and

∫

∞

−∞
φn(z) dz = 1. Then it is straightforward to verify the sequence pn defined by

pn(f) =
∫

∞

−∞
p(z)φn(z − f) dz has the required properties.
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(Note that such a choice is possible because g is strictly increasing.) Now for sufficiently large n,
we have:

gn(f(w) − ε) − g(f(w) − ε) < δ, and g(f(w) + ε) − gn(f(w) + ε) < δ.

From the definition of δ, this yields:

gn(f(w) − ε) <
∑

r

wr < gn(f(w) + ε).

Since gn is strictly increasing, and fn(w) satisfies gn(fn(w)) =
∑

r wr, we conclude that |fn(w)−
f(w)| < ε for sufficiently large n, as required. 2

The previous proposition establishes concavity and continuity of dr; this guarantees existence
of a Nash equilibrium, as the following proposition shows.

Proposition 4 Suppose that Assumptions 1-3 hold. Then there exists a Nash equilibrium w for the
game defined by (Q1, . . . , QR).

Proof. We begin by observing that we may restrict the strategy space of each user r to a
compact set, without loss of generality. To see this, fix a user r, and a vector w−r of bids for all
other users. Given a bid wr for user r, we note that dr(w) ≤ dr(wr;0−r), where 0−r denotes the
bid vector where all other users bid zero. This inequality follows since wr = dr(w)p(f(w)); and
if
∑

s ws decreases, then p(f(w)) decreases as well (from Proposition 1), so dr(w) must increase.
We thus have Qr(wr;w−r) ≤ Ur(dr(wr;0−r)) − wr. By concavity of Ur, for wr > 0 we have:

Qr(wr;w−r) ≤ Ur(0) + U ′
r(0)dr(wr;0−r) − wr = Ur(0) + wr

(

U ′
r(0)

p(f(wr;0−r))
− 1

)

. (15)

Now observe from (7) that:
wr = f(wr;0−r)p(f(wr;0−r)).

Since p is convex and strictly increasing, we have limf→∞ p(f) = ∞; thus we conclude that
p(f(wr;0−r)) → ∞ as wr → ∞. Consequently, using (15), there exists Br > 0 such that if
wr ≥ Br, then Qr(wr;w−r) < Ur(0). Since Qr(0;w−r) = Ur(0), user r would never choose
to bid wr ≥ Br at a Nash equilibrium. Thus, we may restrict the strategy space of user r to the
compact interval Sr = [0, Br] without loss of generality.

The game defined by (Q1, . . . , QR) together with the strategy spaces (S1, . . . , SR) is now a
concave R-person game: applying Proposition 3, each payoff function Qr is continuous in the
composite strategy vector w, and concave in wr (since Ur is concave and strictly increasing, and
dr(w) is concave in wr); and the strategy space of each user r is a compact, convex, nonempty
subset of R. Applying Rosen’s existence theorem [24], we conclude that a Nash equilibrium w

exists for this game. 2

In the remainder of this section, we establish necessary and sufficient conditions for a vector
w to be a Nash equilibrium. Because the price function p may not be differentiable, we will use
subgradients to describe necessary local conditions for a vector w to be a Nash equilibrium. Since

9



the payoff of user r is concave, these necessary conditions will in fact be sufficient for w to be a
Nash equilibrium.

We begin with some concepts from convex analysis [3, 23]. An extended real-valued function is
a function g : R → [−∞,∞]; such a function is called proper if g(x) > −∞ for all x, and g(x) <
∞ for at least one x. We say that a scalar γ is a subgradient of an extended real-valued function
g at x if for all x ∈ R, we have g(x) ≥ g(x) + γ(x − x). The subdifferential of g at x, denoted
∂g(x), is the set of all subgradients of g at x. Finally, given an extended real-valued function g, we
denote the right directional derivative of g at x by ∂+g(x)/∂x and left directional derivative of g at
x by ∂−g(x)/∂x (if they exist). If g is convex, then ∂g(x) = [∂−g(x)/∂x, ∂+g(x)/∂x], provided
the directional derivatives exist.

For the remainder of the paper, we view any price function p as an extended real-valued convex
function, by defining p(f) = ∞ for f < 0. Our first step is a lemma identifying the directional
derivatives of dr as a function of wr; for notational convenience, we introduce the following defi-
nitions of ε+(f) and ε−(f), for f > 0:

ε+(f) ,
f

p(f)
· ∂+p(f)

∂f
, ε−(f) ,

f

p(f)
· ∂−p(f)

∂f
. (16)

Note that under Assumption 2, we have 0 < ε−(f) ≤ ε+(f) for f > 0.

Lemma 5 Suppose Assumptions 1-3 hold. Then for all w with
∑

s ws > 0, dr(w) is directionally
differentiable with respect to wr. These directional derivatives are given by:

∂+dr(w)

∂wr

=
1

p(f(w))

(

1 − dr(w)

f(w)
· ε+(f(w))

1 + ε+(f(w))

)

; (17)

∂−dr(w)

∂wr

=
1

p(f(w))

(

1 − dr(w)

f(w)
· ε−(f(w))

1 + ε−(f(w))

)

. (18)

Furthermore, ∂+dr(w)/∂wr > 0, and if wr > 0 then ∂−dr(w)/∂wr > 0.

Proof. Existence of the directional derivatives is obtained because dr(w) is a concave function
of wr (from Proposition 3). Fix a vector w of bids, such that

∑

r wr > 0. Since f is an increasing
concave function of wr, and the convex function p is directionally differentiable at f(w) ([23],
Theorem 23.1), we can apply the chain rule to compute the right directional derivative of (7) with
respect to wr:

1 =
∂+f(w)

∂wr

· p(f(w)) + f(w) · ∂+p(f(w))

∂f
· ∂+f(w)

∂wr

.

Thus, as long as
∑

r wr > 0, ∂+f(w)/∂wr exists, and is given by:

∂+f(w)

∂wr

=

(

p(f(w)) + f(w) · ∂+p(f(w))

∂f

)−1

,

We conclude from (11) that the right directional derivative of dr(w) with respect to wr is given by:

∂+dr(w)

∂wr

=
1

p(f(w))
− wr
(

p(f(w))
)2 · ∂+p(f(w))

∂f
· ∂+f(w)

∂wr

.
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Simplifying, this reduces to (17). Note that since dr(w) ≤ f(w) and ε+(f(w))/[1+ ε+(f(w))] <
1, we have ∂+dr(w)/∂wr > 0. A similar analysis follows for the left directional derivative. 2

For notational convenience, we make the following definitions for f > 0:

β+(f) ,
ε+(f)

1 + ε+(f)
, β−(f) ,

ε−(f)

1 + ε−(f)
. (19)

Under Assumption 2, we have 0 < β−(f) ≤ β+(f) < 1 for f > 0.
The next proposition is the central result of this section: it provides simple local conditions that

are necessary and sufficient for a vector w to be a Nash equilibrium.

Proposition 6 Suppose that Assumptions 1-3 hold. Then w is a Nash equilibrium of the game
defined by (Q1, . . . , QR), if and only if

∑

r wr > 0, and with d = d(w), f = f(w), the following
two conditions hold for all r:

U ′
r(dr)

(

1 − β+(f) · dr

f

)

≤ p(f); (20)

U ′
r(dr)

(

1 − β−(f) · dr

f

)

≥ p(f), if dr > 0. (21)

Conversely, if d ≥ 0 and f > 0 satisfy (20)-(21), and
∑

r dr = f , then the vector w = p(f)d is a
Nash equilibrium with d = d(w) and f = f(w).

Proof. We first show that if w is a Nash equilibrium, then we must have
∑

r wr > 0. Suppose
not; then wr = 0 for all r. Fix a user r; for wr > 0, we have dr(wr;w−r)/wr = f(wr;w−r)/wr =
1/p(f(wr;w−r)), which approaches infinity as wr → 0. Thus ∂+dr(w)/∂wr = ∞, and thus we
have:

∂+Qr(wr;w−r)

∂wr

= U ′
r(0) ·

∂+dr(w)

∂wr

− 1 = ∞.

In particular, an infinitesimal increase of wr strictly increases the payoff of user r, so w = 0 cannot
be a Nash equilibrium. Thus, if w is a Nash equilibrium, then

∑

r wr > 0.
Now let w be a Nash equilibrium. We established in Lemma 5 that dr is directionally differen-

tiable in wr for each r, as long as
∑

s ws > 0. Thus, from (13), if w is a Nash equilibrium, then
the following two conditions must hold:

∂+Qr(wr;w−r)

∂wr

= U ′
r(dr(w)) · ∂+dr(w)

∂wr

− 1 ≤ 0;

∂−Qr(wr;w−r)

∂wr

= U ′
r(dr(w)) · ∂−dr(w)

∂wr

− 1 ≥ 0, if wr > 0.

We may substitute using Lemma 5 to find that if w is a Nash equilibrium, then:

U ′
r(dr(w))

(

1 − β+(f(w)) · dr(w)

f(w)

)

≤ p(f(w));

U ′
r(dr(w))

(

1 − β−(f(w)) · dr(w)

f(w)

)

≥ p(f(w)), if wr > 0.

11



Since the condition wr > 0 is identical to the condition dr(w) > 0, this establishes the conditions
in the proposition. Conversely, if

∑

r wr > 0 and the preceding two conditions hold, then we may
reverse the argument: since the payoff function of user r is a concave function of wr for each r
(from Proposition 3), (20)-(21) are sufficient for w to be a Nash equilibrium.

Finally, suppose that d and f > 0 satisfy (20)-(21), with
∑

r dr = f . Then let wr = drp(f).
We then have

∑

r wr > 0 (since f > 0); and
∑

r wr = fp(f), so that f = f(w). Finally, since
f > 0, we have dr = wr/p(f) = wr/p(f(w)), so that dr = dr(w). Thus w is a Nash equilibrium,
as required. 2

Note that the preceding proposition identifies a Nash equilibrium entirely in terms of the al-
location made; and conversely, if we find a pair (d, f) which satisfies (20)-(21) with f > 0 and
∑

r dr = f , then there exists a Nash equilibrium which yields that allocation. In particular, the
set of allocations d which can arise at Nash equilibria coincides with those vectors d such that
f =

∑

r dr > 0, and (20)-(21) are satisfied.

2.2 Nondecreasing Elasticity Price Functions:
Uniqueness of Nash Equilibrium

In this section, we demonstrate that for a certain class of differentiable price functions, there exists
a unique Nash equilibrium of the game defined by (Q1, . . . , QR). We consider price functions p
which satisfy the following additional assumption.

Assumption 4 The price function p is differentiable, and exhibits nondecreasing elasticity: for
0 < f1 ≤ f2, there holds:

f1p
′(f1)

p(f1)
≤ f2p

′(f2)

p(f2)
.

To gain some intuition for the concept of nondecreasing elasticity, consider a price function p
satisfying Assumption 2. The quantity fp′(f)/p(f) is known as the elasticity of a price function
p [20]. Note that the elasticity of p(f) is the derivative of ln(p(f)) with respect to ln f . From this
viewpoint, we see that nondecreasing elasticity is equivalent to the requirement that ln(p(f)) is
a convex function in ln f . (Note that this is not equivalent to the requirement that p is a convex
function of f .)

Nondecreasing elasticity can also be interpreted by considering the price function as the inverse
of the supply function s(µ) = p−1(µ); the supply function gives the amount of rate the provider is
willing to supply at a given price µ [20]. In this case, nondecreasing elasticity of the price function
is equivalent to nonincreasing elasticity of the supply function.

Nondecreasing elasticity captures a wide range of price functions; we give two common exam-
ples below.

Example 1 (The M/M/1 Queue) Consider the cost function C(f) = af/(s − f), where a > 0
and s > 0 are constants; then the cost is proportional to the steady-state queue size in an M/M/1
queue with service rate s and arrival rate f . (Note that we must view p as an extended real-valued
function, with p(f) = ∞ for f > s; this does not affect any of the analysis of this paper.) It is
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straightforward to check that, as long as 0 < f < s, we have:

fp′(f)

p(f)
=

2f

s − f
,

which is a strictly increasing function of f . Thus p satisfies Assumption 4.

Example 2 (M/M/1 Overflow Probability) Consider the function p(f) = a(f/s)B, where a > 0,
s > 0, and B ≥ 1 is an integer. Then the price is set proportional to the probability that an M/M/1
queue exceeds a buffer level B, when the service rate is s and the arrival rate is f . In this case we
have fp′(f)/p(f) = B, so that p satisfies Assumption 4.

We now prove the key property of differentiable nondecreasing elasticity price functions in
the current development: for such functions, there exists a unique Nash equilibrium of the game
defined by (Q1, . . . , QR).

Proposition 7 Suppose Assumptions 1-3 hold. If in addition p is differentiable and exhibits nonde-
creasing elasticity (Assumption 4 holds), then there exists a unique Nash equilibrium for the game
defined by (Q1, . . . , QR).

Proof. We use the expressions (20)-(21) to show that the Nash equilibrium is unique under
Assumption 4. Observe that in this case, from (19), we may define β(f) = β+(f) = β−(f) for
f > 0, and conclude that w is a Nash equilibrium if and only if

∑

s ws > 0 and the following
optimality conditions hold:

U ′
r(dr(w))

(

1 − β(f(w)) · dr(w)

f(w)

)

= p(f(w)), if wr > 0; (22)

U ′
r(0) ≤ p(f(w)), if wr = 0. (23)

Suppose we have two Nash equilibria w1, w2, with 0 <
∑

s w1
s <

∑

s w2
s ; then p(f(w1)) <

p(f(w2)), and f(w1) < f(w2). Note that U ′
r(dr) is nonincreasing as dr increases; and β(f) is

nondecreasing as f increases (from Assumption 4), and therefore β(f(w1)) ≤ β(f(w2)). Further-
more, if w2

r > 0, then from (22) we have U ′
r(0) > p(f(w2)); thus U ′

r(0) > p(f(w1)), so w1
r > 0

as well (from (23)).
Now note that the right hand side of (22) is strictly larger at w1 than at w2; thus the left hand

side must be strictly larger at w1 than at w2 as well. This is only possible if dr(w
1)/f(w1) >

dr(w
2)/f(w2) for each user r, since we have shown in the preceding paragraph that f(w1) <

f(w2); U ′
r(dr) is nonincreasing as dr increases; and β(f(w1)) ≤ β(f(w2)). Since f(w) =

∑

r dr(w), we have:

1 =
∑

r:w2
r>0

dr(w
2)

f(w2)
<
∑

r:w2
r>0

dr(w
1)

f(w1)
= 1,

which is a contradiction. Thus at the two Nash equilibria, we must have
∑

s w1
s =

∑

s w2
s , so we

can let f0 = f(w1) = f(w2), p0 = p(f0), and β0 = β(f0). Then all Nash equilibria w satisfy:

U ′
r(dr(w))

(

1 − β0
dr(w)

f0

)

= p0, if wr > 0; (24)

U ′
r(0) ≤ p0, if wr = 0. (25)
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But now we observe that the left hand side of (24) is strictly decreasing in dr(w), so given p0, there
exists at most one solution dr(w) to (24). Since wr = dr(w)p0, this implies the Nash equilibrium
w must be unique. 2

We observe that uniqueness of the Nash equilibrium implies an additional desirable property in
the case of symmetric users. If two users share the same utility function, and the price function p
is differentiable, we conclude from Proposition 7 that at the unique Nash equilibrium, these users
submit exactly the same bid (and hence receive exactly the same rate allocation).

3 Efficiency Loss: The Single Link Case

We let dS denote an optimal solution to SYSTEM, defined in (1)-(2), and let w denote any Nash
equilibrium of the game defined by (Q1, . . . , QR). We now investigate the efficiency loss of this
system; that is, how much aggregate surplus is lost because the users attempt to “game” the system?
To answer this question, we must compare the aggregate surplus

∑

r Ur(dr(w)) − C(
∑

r dr(w))
obtained when the users fully evaluate the effect of their actions on the price, and the aggregate
surplus

∑

r Ur(d
S
r ) − C(

∑

r dS
r ) obtained by choosing an allocation which maximizes aggregate

surplus. The following theorem is the main result of this paper: it states that the efficiency loss is
no more than approximately 34%, and that this bound is essentially tight.

Theorem 8 Suppose that Assumptions 1-3 hold. Suppose also that Ur(0) ≥ 0 for all r. Let dS be
any solution to SYSTEM, and let w be any Nash equilibrium of the game defined by (Q1, . . . , QR).
Then we have the following bound:

surplus(d(w)) ≥
(

4
√

2 − 5
)

· surplus(dS), (26)

where surplus(·) is defined in (3). In other words, there is no more than approximately a 34%
efficiency loss when users are price anticipating.

Furthermore, this bound is tight: for every δ > 0, there exists a choice of R, a choice of
(linear) utility functions Ur, r = 1, . . . , R, and a (piecewise linear) price function p such that a
Nash equilibrium w and a solution dS to SYSTEM exist with:

surplus(d(w)) ≤
(

4
√

2 − 5 + δ
)

· surplus(dS). (27)

Proof. The proof of (26) consists of a sequence of steps:

1. We show that the worst case ratio occurs when the utility function of each user is linear.

2. We restrict attention to games where the total allocated Nash equilibrium rate is f = 1.

3. We compute the worst case choice of linear utility functions, for a fixed price function p(·)
and total Nash equilibrium rate f = 1.

4. We prove that it suffices to consider a special class of piecewise linear price functions.
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5. Combining Steps 1-3, we compute the worst case efficiency loss by minimizing the ratio of
Nash equilibrium aggregate surplus to maximal aggregate surplus, over the worst case choice
of games with linear utility functions (from Step 2) and our restricted class of piecewise
linear price functions (from Step 3).

Step 1: Show that we may assume without loss of generality that Ur is linear for each user r;
i.e., without loss of generality we may assume Ur(dr) = αrdr, where α1 = 1 and 0 < αr ≤ 1
for r > 1. The proof of this claim is similar to the proof of Lemma 4 in [12]. Let dS denote
any solution to SYSTEM, and let w denote a Nash equilibrium, for an arbitrary collection of util-
ity functions (U1, . . . , UR) satisfying the assumptions of the theorem. We let d = d(w) denote
the allocation vector at the Nash equilibrium. For each user r, we define a new utility function
U r(dr) = αrdr, where αr = U ′

r(dr); we know that αr > 0 by Assumption 1. Then observe that
if we replace the utility functions (U1, . . . , UR) with the linear utility functions (U 1, . . . , UR), the
vector w remains a Nash equilibrium; this follows from the necessary and sufficient conditions of
Proposition 6.

We first show that
∑

r αrdr − C(f) > 0. To see this, note from (21) that αr > p(f) for all
r such that dr > 0. Thus αrdr > drp(f) for such a user r, so

∑

r αrdr > fp(f) ≥ C(f), by
convexity (Assumption 2).

Next, we note that
∑

r Ur(d
S
r ) − C(

∑

r dS
r ) > 0. This follows since Ur is strictly increasing

and nonnegative, while C ′(0) = p(0) = 0; thus if dr is sufficiently small for all r, we will have
∑

r Ur(dr)−C(
∑

r dr) > 0, which implies
∑

r Ur(d
S
r )−C(

∑

r dS
r ) > 0 (since dS is a solution to

SYSTEM).
Using concavity, we have for each r:

Ur(d
S
r ) ≤ Ur(dr) + αr(d

S
r − dr).

Expanding the definition of surplus(·), we have:

surplus(d)

surplus(dS)
=

∑

r Ur(dr) − C(
∑

r dr)
∑

r Ur(dS
r ) − C(

∑

r dS
r )

≥
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdr − C(
∑

r dr)
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdS
r − C(

∑

r dS
r )

≥
∑

r

(

Ur(dr) − αrdr

)

+
∑

r αrdr − C(
∑

r dr)
∑

r

(

Ur(dr) − αrdr

)

+ max
d≥0

(
∑

r αrdr − C(
∑

r dr)
) .

(Note that all denominators are positive, since we have shown that
∑

r Ur(d
S
r ) − C(

∑

r dS
r ) > 0.)

Since we assumed Ur(0) ≥ 0, we have Ur(dr) − U ′
r(dr)dr ≥ 0 by concavity; and since 0 <

∑

r αrdr − C(f) ≤ max
d≥0(

∑

r αrdr − C(
∑

r dr)), we have the inequality:
∑

r Ur(dr) − C(
∑

r dr)
∑

r Ur(dS
r ) − C(

∑

r dS
r )

≥
∑

r αrdr − C(
∑

r dr)

max
d≥0

(
∑

r αrdr − C(
∑

r dr)
) .

Now observe that the right hand side of the previous expression is the ratio of the Nash equilibrium
aggregate surplus to the maximal aggregate surplus, when the utility functions are (U 1, . . . , UR);
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since this ratio is no larger than the same ratio for the original utility functions (U1, . . . , UR), we
can restrict attention to games where the utility function of each user is linear. Finally, by replacing
αr by αr/(maxs αs), and the cost function C(·) by C(·)/(maxs αs), we may assume without loss
of generality that maxr αr = 1. Thus, by relabeling the users if necessary, we assume for the
remainder of the proof that Ur(dr) = αrdr for all r, where α1 = 1 and 0 < αr ≤ 1 for r > 1.

Before continuing, we observe that under these conditions, we have the following relation:

max
d≥0

(

∑

r

αrdr − C

(

∑

r

dr

))

= max
f≥0

(

f − C(f)
)

.

To see this, note that at any fixed value of f =
∑

r dr, the left hand side is maximized by allocating
the entire rate f to user 1. Thus, the ratio of Nash equilibrium aggregate surplus to maximal
aggregate surplus becomes:

∑

r αrdr − C(
∑

r dr)

maxf≥0

(

f − C(f)
) . (28)

Note that the denominator is positive, since C ′(0) = p(0) = 0; and further, the optimal solution in
the denominator occurs at the unique value of f > 0 such that p(f) = 1.

Step 2: Show that we may restrict attention to games where the total allocated rate at the Nash
equilibrium is f = 1. Fix a cost function C satisfying Assumption 2. Let w be a Nash equilibrium,
and let d = d(w) be the resulting allocation. Let f =

∑

r dr be the total allocated rate at the Nash
equilibrium; note that f > 0 by Proposition 6. We now define a new price function p̂ according

to p̂(f̂) = p(f · f̂), and a new cost function Ĉ(f̂) =
∫ f̂

0
p̂(z) dz; note that Ĉ(f̂) = C(f · f̂)/f .

Then it is straightforward to check that p̂ satisfies Assumption 2. We will use hats to denote the
corresponding functions when the price function is p̂: β̂+(f̂), β̂−(f̂), d̂r(w), f̂(w), etc.

Define ŵr = wr/f . Then we claim that ŵ is a Nash equilibrium when the price function is p̂.
First observe that:

∑

r

ŵr =

∑

r wr

f
= p(f) = p̂(1).

Thus f̂(ŵ) = 1. Furthermore:

d̂r(ŵ) =
ŵr

p̂(f̂(ŵ))
=

ŵr

p̂(1)
=

wr

fp(f)
=

dr

f
.

Finally, note that:
∂+p̂(1)

∂f̂
= f

∂+p(f)

∂f
,

from which we conclude that β̂+(1) = β+(f), and similarly β̂−(1) = β−(f). Recall that w is
a Nash equilibrium for the price function p; thus, if we combine the preceding conclusions and
apply Proposition 6, we have that ŵ is a Nash equilibrium when the price function is p̂, with total
allocated rate f̂ = 1 and allocation d̂ = d/f .
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To complete the proof of this step, we note the following chain of inequalities:
∑

r αrdr − C(
∑

r dr)

maxf̂≥0

(

f̂ − C(f̂)
) =

∑

r αrd̂r − Ĉ(1)

maxf̂≥0

(

f̂/f − C(f̂)/f
) (29)

=

∑

r αrd̂r − Ĉ(1)

maxg≥0

(

g − Ĉ(g)
) , (30)

where we make the substitution g = f̂/f . But now note that the right hand side is the ratio of Nash
equilibrium aggregate surplus to maximal aggregate surplus for a game where the total allocated
rate at the Nash equilibrium is equal to 1. Consequently, in computing the worst case efficiency
loss, we may restrict our attention to games where the Nash equilibrium allocated rate is equal to 1.

Step 3: For a fixed price function p, determine the instance of linear utility functions that
minimizes Nash equilibrium aggregate surplus, for a fixed Nash equilibrium allocated rate f =
∑

r dr = 1. Note that fixing the price function p fixes the optimal aggregate surplus; thus minimiz-
ing the aggregate surplus at Nash equilibrium also yields the worst case efficiency loss.

We will optimize over the set of all games where users have linear utility functions (satisfying
the conditions of Step 1), and where the total Nash equilibrium rate is f = 1. We use the necessary
and sufficient conditions of Proposition 6. Note that by fixing the price function p and the total rate
f > 0, the Nash equilibrium price is fixed, p(1), and β+(1) and β−(1) are fixed as well (from the
definition (19)); for notational convenience, we abbreviate p = p(1), C = C(1), β+ = β+(1), and
β− = β−(1) for the duration of this step. Since α1 = 1, for a fixed value of R the game with linear
utility functions that minimizes aggregate surplus is given by solving the following optimization
problem (with unknowns d1, . . . , dR, α2, . . . , αR):

minimize d1 +
R
∑

r=2

αrdr − C (31)

subject to αr

(

1 − β+dr

)

≤ p, r = 1, . . . , R; (32)

αr

(

1 − β−dr

)

≥ p, if dr > 0, r = 1, . . . , R; (33)
R
∑

r=1

dr = 1; (34)

0 < αr ≤ 1, r = 2, . . . , R; (35)

dr ≥ 0, r = 1, . . . , R. (36)

(Note that we have applied Proposition 6: if we solve the preceding problem and find an allocation
d and coefficients α, then there exists a Nash equilibrium w with d = d(w).) The objective
function is the aggregate surplus given a Nash equilibrium allocation d. The conditions (32)-(33)
are equivalent to the Nash equilibrium conditions established in Proposition 6. The constraint (34)
ensures that the total allocation made is equal to 1, and the constraint (35) follows from Step 1.
The constraint (36) ensures the rate allocated to each user is nonnegative.

We solve this problem through a sequence of reductions. We first show we may assume without
loss of generality that the constraint (33) holds with equality for all users r = 2, . . . , R. The
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resulting problem is symmetric in the users r = 2, . . . , R; we next show that a feasible solution
exists if and only if 1−β+ ≤ p < 1 and R is sufficiently large, and we conclude using a convexity
argument that dr = (f − d1)/(R − 1) at an optimal solution. Finally, we show the worst case
occurs in the limit where R → ∞, and calculate the resulting Nash equilibrium aggregate surplus.

We first show that it suffices to optimize over all (α,d) such that (33) holds with equality for
r = 2, . . . , R. Note that if (α,d) is a feasible solution to (31)-(36), then from (33)-(36), and the
fact that 0 < β− < 1, we conclude that p < 1. Now if dr > 0 for some r = 2, . . . , R, but the
corresponding constraint in (33) does not hold with equality, we can reduce αr until the constraint
in (33) does hold with equality; by this process we obtain a smaller value for the objective function
(31). On the other hand, if dr = 0 for some r = 2, . . . , R, we can set αr = p; since p < 1,
this preserves feasibility, but does not impact the term αrdr in the objective function (31). We can
therefore restrict attention to feasible solutions for which:

αr =
p

1 − β−dr

, r = 2, . . . , R. (37)

Having done so, observe that the constraint (35) that αr ≤ 1 may be written as:

dr ≤
1 − p

β−
, r = 2, . . . , R.

Finally, the constraint (35) that αr > 0 becomes redundant, as it is guaranteed by the fact that
dr ≤ 1 (from (34)), β− < 1 (by definition), and (37).

We now use the preceding observations to simplify the optimization problem (31)-(36) as fol-
lows:

minimize d1 + p

R
∑

r=2

dr

1 − β−dr

− C (38)

subject to 1 − β+d1 ≤ p ≤ 1 − β−d1; (39)
R
∑

r=1

dr = 1; (40)

dr ≤
1 − p

β−
, r = 2, . . . , R; (41)

dr ≥ 0, r = 1, . . . , R. (42)

The objective function (38) equals (31) upon substitution for αr for r = 2, . . . , R, from (37). We
know that d1 > 0 when p(f) < 1 (from (32)-(33)); thus the constraint (39) is equivalent to the
constraints (32)-(33) for user 1 with d1 > 0. The constraint (32) for r > 1 is redundant and
eliminated, since (33) holds with equality for r > 1. The constraint (40) is equivalent to the
allocation constraint (34); and the constraint (41) ensures αr ≤ 1, as required in (35).

We first note that for a feasible solution to (38)-(42) to exist, we must have 1 − β+ ≤ p < 1.
We have already shown that we must have p < 1 if a feasible solution exists. Furthermore, from
(39) we observe that the smallest feasible value of d1 is d1 = (1− p)/β+. We require d1 ≤ 1 from
(40) and (42), so we must have (1 − p)/β+ ≤ 1, which yields the restriction that 1 − β+ ≤ p.
Thus, there only exist Nash equilibria with total rate 1 and price p if:

1 − β+ ≤ p < 1. (43)
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We will assume for the remainder of this step that (43) is satisfied.
We note that if d = (d1, . . . , dR) is a feasible solution to (38)-(42) with R users, then letting

dR+1 = 0, the vector (d1, . . . , dR+1) is a feasible solution to (38)-(42) with R + 1 users, and with
the same objective function value (38) as d. Thus, the minimal objective function value cannot
increase as R increases, so the worst case efficiency loss occurs in the limit where R → ∞.

We now solve (38)-(42) for a fixed feasible value of d1. From the constraints (40)-(41), we
observe that a feasible solution to (38)-(42) exists if and only if the following condition holds in
addition to (43):

d1 + (R − 1) · 1 − p

β−
≥ 1. (44)

In this case, the following symmetric solution is feasible:

dr =
1 − d1

R − 1
, r = 2, . . . , R. (45)

Furthermore, since the objective function is strictly convex and symmetric in the variables d2, . . . , dR,
and the feasible region is convex, the symmetric solution (45) must be optimal.

If we substitute the optimal solution (45) into the objective function (38) and take the limit
as R → ∞, then the constraint (44) is vacuously satisfied, and the objective function becomes
d1 + p(1− d1)−C. Since we have shown that p < 1, the worst case occurs at the smallest feasible
value of d1; from (39), this value is:

d1 =
1 − p

β+
. (46)

The resulting worst case Nash equilibrium aggregate surplus is:

p +
(1 − p)2

β+
− C.

To complete the proof of the theorem, we will consider the ratio of this Nash equilibrium
aggregate surplus to the maximal aggregate surplus; we denote this ratio by F (p) as a function of
the price function p(·):

F (p) =
p(1) + (1 − p(1))2/β+(1) − C(1)

maxf≥0 (f − C(f))
. (47)

Note that henceforth, the scalar p used throughout Step 3 will be denoted p(1), and we return to
denoting the price function by p. Thus F (p) as defined in (47) is a function of the entire price
function p(·).

For completeness, we summarize in the following lemma an intermediate tightness result which
will be necessary to prove the tightness of the bound in the theorem.

Lemma 9 Suppose that Assumptions 2 and 3 are satisfied. Then there exists R > 0 and a choice
of linear utility functions Ur(dr) = αrdr, where α1 = maxs αs = 1, with total Nash equilibrium
rate 1, if and only if (43) is satisfied, i.e.:

1 − β+(1) ≤ p(1) < 1. (48)
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In this case, given δ > 0, there exists R > 0 and a collection of R users where user r has utility
function Ur(dr) = αrdr, such that d is a Nash equilibrium allocation with

∑

r dr = 1, and:

∑

r αrdr − C(1)

maxd≥0 (
∑

r αrdr − C(
∑

r dr))
≤ F (p) + δ. (49)

Proof of Lemma. The proof follows from Step 3. We have shown that if there exists a Nash
equilibrium with total rate 1, then (48) must be satisfied. Conversely, if (48) is satisfied, we proceed
as follows: define d1 according to (46); choose R large enough that (44) is satisfied; define dr

according to (45); and then define αr according to (37) with p = p(1). Then it follows that
(d,α) is a feasible solution to (31)-(36), which (by Proposition 6) guarantees there exists a Nash
equilibrium whose total allocated rate equals 1.

The bound in (49) then follows by the proof of Step 3. 2

The remainder of the proof amounts to minimizing the worst case ratio of Nash equilibrium
aggregate surplus to maximal aggregate surplus, over all valid choices of p. A valid choice of p is
any price function p such that at least one choice of linear utility functions satisfying the conditions
of Step 1 leads to a Nash equilibrium with total allocated rate 1. By Lemma 9, all such functions p
are characterized by the constraint (48). We will minimize F (p), given by (47), over all choices of
p satisfying (48).

Step 4: Show that in minimizing F (p) over p satisfying (48), we may restrict attention to
functions p satisfying the following conditions:

p(f) =

{

af, 0 ≤ f ≤ 1;
a + b(f − 1), f ≥ 1;

(50)

0 < a ≤ b; (51)
1

a + b
≤ 1 <

1

a
. (52)

Observe that p as defined in (50)-(52) is a convex, strictly increasing, piecewise linear function
with two parts: an initial segment which increases at slope a > 0, and a second segment which
increases at slope b ≥ a. In particular, such a function satisfies Assumption 2. Furthermore, we
have ∂+p(1)/∂f = b, so that ε+(1) = b/a. This implies β+(1) = b/(a + b); thus, multiplying
through (52) by a yields (48).

To verify the claim of Step 4, we consider any function p such that (48) holds. We define a new
price function p as follows:

p(f) =















fp(1), 0 ≤ f ≤ 1;

p(1) +
∂+p(1)

∂f
(f − 1), f ≥ 1.

(53)

(See Figure 1 for an illustration.) Let a = p(1), and let b = ∂+p(1)/∂f . Then a > 0; and since
p(0) = 0, we have ∂+p(1)/∂f ≥ p(1) by convexity of p, so that b ≥ a. Furthermore, since
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Figure 1: Proof of Theorem 8, Step 4: Given a price function p (solid line) and Nash equilibrium
rate 1, a new price function p (dashed line) is defined according to (53).

p(1) < 1 from (48), we have 1/a > 1. Finally, we have:

1

a + b
=

1

p(1)
(1 − β+(1)) ≤ 1,

where the equality follows from the definition of β+(1) and the inequality follows from (48). Thus
p satisfies (50)-(52). Observe also that p(1) = p(1), and ∂+p(1)/∂f = ∂+p(1)/∂f , and thus
β

+
(1) = β+(1).
We now show that F (p) ≤ F (p). As an intermediate step, we define a new price function p̂(·)

as follows:

p̂(f) =

{

p(f), 0 ≤ f ≤ 1;
p(f), f ≥ 1.

Of course, p̂(1) = p(1) and ∂+p̂(1)/∂f = ∂+p(1)/∂f = ∂+p(1)/∂f , so that (48) is satisfied for p̂.
Let Ĉ(f) =

∫ f

0
p̂(z) dz denote the cost function associated with p̂(·). Observe that (by convexity

of p), we have for all f that p̂(f) ≤ p(f), so that Ĉ(f) ≤ C(f). Thus:

max
f≥0

(f − Ĉ(f)) ≥ max
f≥0

(f − C(f)).

Furthermore, Ĉ(1) = C(1) so that F (p̂) ≤ F (p).
Next, we let C(f) =

∫ f

0
p(z) dz denote the cost function associated with p(·). By convexity

of p, we know p(1) ≥ p(1) for 0 ≤ f ≤ 1; thus C(f) ≥ C(f) in that region. We let ∆ ,
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C(1) − C(1) ≥ 0. Then we have the following relationship:

F (p̂) =
p(1) + (1 − p(1))2/β+(1) − C(1)

maxf≥0

(

f − Ĉ(f)
) (54)

≥ p(1) + (1 − p(1))2/β+(1) − (C(1) + ∆)

maxf≥0

(

f − (Ĉ(f) + ∆)
) (55)

= F (p). (56)

The last equality follows by observing that since p̂(1) = p(1) < 1, the solution to maxf≥0(f −
Ĉ(f)) occurs at f̂S > 1 where p̂(f̂S) = 1; and at all points f ≥ 1, we have the relationship
Ĉ(f) + ∆ = C(f). Combining the preceding results, we have F (p) ≥ F (p), as required.

Step 5: The minimum value of F (p) over all p satisfying (50)-(52) is 4
√

2 − 5. We first show
that given p satisfying (50)-(52), F (p) is given by:

F (p) =
1
2
a +

(

1 + a
b

)

(1 − a)2

1 − 1
2
a + 1

2
(1−a)2

b

=
ab + 2(a + b)(1 − a)2

2b − ab + (1 − a)2
. (57)

The numerator results by simplifying the numerator of (47), when p takes the form described by
(50)-(52). To arrive at the denominator, we note that the solution to maxf≥0(f − C(f)) occurs at
fS satisfying p(fS) = 1. Since a < 1, we must have fS > 1 and:

a + b(fS − 1) = 1.

Simplifying, we find:

fS = 1 +
1 − a

b
. (58)

The expression fS − C(fS), upon simplification, becomes the denominator of (57), as required.
Fix a and b such that 0 < a ≤ b, and 1/(a + b) ≤ 1 < 1/a, and define p as in (50). We

note here that the constraints 0 < a ≤ b and 1/(a + b) ≤ 1 < 1/a may be equivalently rewritten
as 0 < a < 1, and max{a, 1 − a} ≤ b. Define H(a, b) , F (p); from (57), note that for
fixed a, H(a, b) is a ratio of two affine functions of b, and thus the minimal value of H(a, b) is
achieved either when b = max{a, 1 − a} or as b → ∞. Define H1(a) = H(a, b)|max{a,1−a}, and
H2(a) = limb→∞ H(a, b). Then:

H1(a) =











H(a, b)|b=1−a =
2 − a

3 − 2a
, if 0 < a ≤ 1/2;

H(a, b)|b=a = a2 + 4a(1 − a)2, if 1/2 ≤ a < 1;

(59)

H2(a) = lim
b→∞

H(a, b) =
a + 2(1 − a)2

2 − a
. (60)

We now minimize H1(a) and H2(a) over 0 < a < 1. Over 0 < a ≤ 1/2, the minimum value
of H1(a) is 2/3, achieved as a → 0. Over 1/2 ≤ a < 1, the minimum value of H1(a) is 20/27,
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achieved at a = 2/3. Finally, over 0 < a < 1, the minimum value of H2(a) is 4
√

2 − 5, achieved
at a = 2−

√
2. Since min{2/3, 20/27, 4

√
2− 5} = 4

√
2− 5, we conclude that the minimal value

of F (p) over all p satisfying (50)-(52) is equal to 4
√

2 − 5. This completes the proof of (26), the
lower bound in the theorem.

We now show that this lower bound is tight. Fix δ > 0. The preceding argument shows that
the worst case occurs for price functions satisfying (50)-(52), where a = 2 −

√
2 and b → ∞. For

fixed b ≥ a = 2 −
√

2, let pb be the associated price function defined according to (50). Then we
have established that:

lim
b→∞

F (pb) = 4
√

2 − 5.

From Lemma 9, we know there exists γb such that γb < F (pb) + δ/2, and where γb is the ratio
of Nash equilibrium aggregate surplus to maximal aggregate surplus for some game with price
function pb and total allocated rate 1 at the Nash equilibrium. We thus have:

lim
b→∞

γb = lim
b→∞

F (pb) + δ/2 = 4
√

2 − 5 + δ/2.

Thus for b sufficiently large, we will have γb < 4
√

2 − 5 + δ, establishing (27). 2

Theorem 8 shows that in the worst case, aggregate surplus falls by no more than approximately
34% when users are able to anticipate the effects of their actions on the price of the link. Further-
more, this bound is essentially tight. In fact, from the proof of the theorem we see that this ratio is
achieved via a sequence of games where:

1. The price function p has the form given by (50)-(52), with a = 2 −
√

2, b → ∞, and f = 1;

2. The number of users becomes large (R → ∞);and

3. User 1 has linear utility with U1(d1) = d1, and all users have linear utility with Ur(dr) =
αrdr, where αr ≈ p(1) = 2 −

√
2 (for r > 1).

The last item follows by substituting the solution (45) in (37), and taking the limit as R → ∞.
(Note that formally, we must take care that the limits of R → ∞ and b → ∞ are taken in the
correct order; in particular, in the proof we first have R → ∞, and then b → ∞.)

Note that the price function p used to achieve the worst case efficiency loss is not differentiable.
As discussed in Section 1, this is the main reason that we allow nondifferentiable price functions in
Assumption 2. Indeed, some of the results of Section 2.1 can be simplified if we restrict attention
only to differentiable price functions.

It is interesting to note that the worst case is obtained by considering instances where the price
function is becoming steeper and steeper at the Nash equilibrium rate 1, since b → ∞. This forces
the optimal rate fS at the solution to SYSTEM to approach the Nash equilibrium rate f = 1, as we
observe from (58); nevertheless, the shortfall between the Nash equilibrium aggregate surplus and
the maximal aggregate surplus approaches 34%.

4 Inelastic Supply vs. Elastic Supply

In this section we briefly compare the model of this paper (allocation of a resource in elastic supply)
with the model of [12] (allocation of a resource in inelastic supply). In [12], a model is considered

23



with a single link having exactly C units of rate available to allocate among the users. As in the
model of this paper, user r submits a bid wr. The link manager then sets a price µ =

∑

r wr/C;
and user r receives an allocation dr given by:

dr =











0, if wr = 0;

wr

µ
, if wr > 0.

As in this paper, the payoff to user r is Ur(dr) − wr. It is shown in [12] that when users are price
anticipating and the link supply is inelastic, the efficiency loss is at most 25% of the maximal
aggregate utility.

Intuitively, we would like to model a system with an inelastic supply C by a cost function
which is zero for 0 ≤ f < C, and infinite for f > C. Formally, we show in this section that if
the price function is given by p(f) = afB for a ≥ 0 and B ≥ 1, then as B → ∞ the worst case
efficiency loss approaches 25%—the same value obtained in [12]. While this does not formally
establish the result in [12], the limit is intuitively plausible, because as the exponent B increases,
the price function p and associated cost function begin to resemble an inelastic capacity constraint
with C = 1: for f < 1, fB → 0 as B → ∞; and for f > 1, fB → ∞ as B → ∞.

Theorem 10 Suppose that Assumptions 1-3 hold. Suppose also that Ur(0) ≥ 0 for all r, and that
p(f) = afB for a ≥ 0 and B ≥ 1. Define the function g(B) by:

g(B) ,

(

B + 1

2B + 1

)1/B (
(B + 1)(3B + 2)

(2B + 1)2

)

. (61)

If dS is any solution to SYSTEM, and w is any Nash equilibrium of the game defined by (Q1, . . . , QR),
then:

surplus(d(w)) ≥ g(B) · surplus(dS), (62)

where surplus(·) is defined in (3). Furthermore, g(B) is strictly increasing, with g(B) → 3/4 as
B → ∞; and the bound (62) is tight: for fixed B ≥ 1, for every δ > 0, there exists a choice of
R and a choice of (linear) utility functions Ur, r = 1, . . . , R, such that a Nash equilibrium w a
solution dS to SYSTEM exist with:

surplus(d(w)) ≤ (g(B) + δ) · surplus(dS). (63)

Proof. We follow the proof of Theorem 8. Steps 1-4 follow as in that proof, provided we can
show that two scalings of the function p(·) do not affect our result—in Step 1, where we replace p(·)
by p(·)/ maxr αr, and in Step 2, where we replace p(·) by p(f ·), where f is the Nash equilibrium
rate. Indeed, both these scalings remain valid, since the rescaled price function is still a monomial
with the same exponent as p, but a different constant coefficient. In particular, we may continue to
restrict attention to the special case where Ur(dr) = αrdr, with maxr αr = α1 = 1, and where the
total Nash equilibrium allocated rate is 1.

From Steps 1-4 of the proof of Theorem 8, we must minimize F (p), defined in (47), for all
choices of p such that (48) is satisfied, i.e., such that:

1 − β+(1) ≤ p(1) < 1.
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For p(f) = afB , we have β+(f) = B/(1 + B); and thus we require:

1

1 + B
≤ a < 1. (64)

Note that at the maximal aggregate surplus, p(f S) = a(fS)B = 1 implies that fS = a−1/B .
Furthermore, C(f) = afB+1/(B + 1) for f ≥ 0. Thus fS − C(fS) is given by:

fS − C(fS) =

(

B

B + 1

)

·
(

1

a

)1/B

.

From (47), we conclude that F (p) is given by:

F (p) =
a + (1 − a)2(1 + 1/B) − a/(B + 1)

(

B
B+1

) (

1
a

)1/B
.

We now minimize F (p) over the set of a satisfying (64). We begin by differentiating F (p) with
respect to a, and setting the derivative to zero; simplifying, this yields the following equation:

Ba +

(

1 +
1

B

)(

(2B + 1)a2 − 2(B + 1)a + 1

)

= 0.

This equation is quadratic in a, and has two solutions a1 and a2: a1 = 1/(B + 1), and a2 =
(B + 1)/(2B + 1). Both solutions satisfy (64). Let p1(f) = a1f

B, and p2(f) = a2f
B . We have:

F (p1) =

(

1

B + 1

)1/B (
B + 2

B + 1

)

; F (p2) =

(

B + 1

2B + 1

)1/B (
(B + 1)(3B + 2)

(2B + 1)2

)

.

To minimize F (p) over a satisfying (64), we need also to check the endpoint where a = 1. If
p = fB , we find F (p) = 1; since F (p1), F (p2) ≤ 1 from the definition of F (p), the minimum
value is achieved at either p1 or p2.

For B ≥ 1, we define g1(B) = F (p1), and g2(B) = F (p2). We need the following technical
lemma.

Lemma 11 The functions g1(B) and g2(B) are strictly increasing for B ≥ 1. Furthermore,
g1(B) ≥ 3/4 for B ≥ 1, while limB→∞ g2(B) = 3/4.

Proof. We begin by noting that g1(1) = 3/4. Let ĝ1(B) = ln(g1(B)); it suffices to show that
ĝ1(B) is strictly increasing for B ≥ 1. Differentiating ĝ1 yields:

ĝ′
1(B) =

(B + 2) ln(B + 1) − 2B

(B + 2)B2
.

It suffices to check that h1(B) > 0, where:

h1(B) = (B + 2) ln(B + 1) − 2B.

We have h1(1) = 3 ln 2 − 2 > 0; h′
1(1) = ln 2 − 1/2 > 0; and h′′

1(B) = B/(B + 1)2 > 0. This
implies h1(B) > 0 for all B ≥ 1, so g1 is strictly increasing for B ≥ 1.
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Next we consider g2(B). Note first that g2(1) = 20/27. Furthermore, as B → ∞, ((B +
1)/(2B + 1))1/B → 1, and (B + 1)(3B + 2)/(2B + 1)2 → 3/4. Thus g2(B) → 3/4 as B → ∞.

Finally, let ĝ2(B) = ln(g2(B)); it suffices to show ĝ2 is strictly increasing for B ≥ 1. Differ-
entiating ĝ2(B) yields:

ĝ′
2(B) =

(3B + 2) ln
(

2B+1
B+1

)

− 2B

(3B + 2)B2
.

As above, it suffices to check that h2(B) > 0, where:

h2(B) = (3B + 2) ln

(

2B + 1

B + 1

)

− 2B.

We have h2(1) = 5 ln(3/2)−2 > 0; h′
2(1) = 3 ln(3/2)−7/6 > 0; and h′′

2(1) = B/[(B+1)2(2B+
1)2] > 0. Thus h2(B) > 0 for all B ≥ 1, which implies g2 is strictly increasing for B ≥ 1. 2

From the previous lemma, we conclude that the minimum value of F (p) over p = af B satis-
fying (64) is given by g2(B); this establishes (62). As in Theorem 8, by construction this bound is
tight, so (63) holds as well. 2

The preceding theorem shows that for a particular sequence of price functions which approach
an inelastic supply constraint, the efficiency loss gradually decreases from 7/27 (at B = 1) to 1/4
(as B → ∞). In the limit as B → ∞, we recover the same efficiency loss as in the earlier work of
[12]. However, while we have demonstrated such a limit holds as long as the price functions are
monomials, there remains an open question: if the price functions “converge” (in an appropriate
sense) to a fixed capacity constraint, under what conditions does the efficiency loss also converge
to 1/4? It is straightforward to check that such a limit cannot always hold. For example, consider
price functions p of the form specified in (50)-(52). Using the expression for F (p) given in (57), it
is possible to show that by first taking b → ∞, and then taking a → 0, the worst case efficiency
loss approaches zero; see (60).

5 General Networks

In this section we consider an extension of the single link model to general networks, using meth-
ods similar to the network model presented in [12]. We consider a network consisting of J links,
or resources, numbered 1, . . . , J . As before, a set of users numbered 1, . . . , R, shares this network
of resources. We assume there exists a set of paths through the network, numbered 1, . . . , P . By
an abuse of notation, we use J , R, and P to also denote the sets of resources, users, and paths,
respectively. Each path q ∈ P uses a subset of the set of resources J ; if resource j is used by path
q, we denote this by writing j ∈ q. Each user r ∈ R has a collection of paths available through
the network; if path q serves user r, we denote this by writing q ∈ r. We assume without loss of
generality that paths are uniquely identified with users, so that for each path q there exists a unique
user r such that q ∈ r. (There is no loss of generality because if two users share the same path, that
is captured in our model by creating two paths which use exactly the same subset of resources.)
For notational convenience, we note that the resources required by individual paths are captured
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by the path-resource incidence matrix A, defined by:

Ajq =

{

1, if j ∈ q
0, if j 6∈ q.

Furthermore, we can capture the relationship between paths and users by the path-user incidence
matrix H, defined by:

Hrq =

{

1, if q ∈ r
0, if q 6∈ r.

Note that by our assumption on paths, for each path q we have Hrq = 1 for exactly one user r.
Let yq ≥ 0 denote the rate allocated to path q, and let dr =

∑

q∈r yq ≥ 0 denote the rate
allocated to user r; using the matrix H, we may write the relation between d = (dr, r ∈ R) and
y = (yq, q ∈ P ) as Hy = d. Furthermore, if we let fj denote the total rate on link j, we must
have:

∑

q:j∈q

yq = fj, j ∈ J.

Using the matrix A, we may write this constraint as Ay = f .
We continue to assume that user r receives a utility Ur(dr) from an allocated rate dr, and that

each link j incurs a cost Cj(fj) when the total allocated rate at link j is fj . We make the following
assumptions regarding the utility functions and cost functions.

Assumption 5 For each r, the utility function Ur(dr) is concave, nondecreasing, and continuous
over the domain dr ≥ 0.

Assumption 6 For each j, there exists a continuous, convex, strictly increasing function pj(fj)
over fj ≥ 0 with pj(0) = 0, such that for fj ≥ 0:

Cj(fj) =

∫ fj

0

pj(z)dz.

Thus Cj(fj) is strictly convex and increasing.

Assumption 5 is similar to Assumption 1, but we no longer require that Ur be strictly increasing or
differentiable. For this reason the results of this section are also generalizations of the correspond-
ing results of Sections 1 and 3 for a single link. Assumption 6 is identical to Assumption 2, for
each link j.

The natural generalization of the problem SYSTEM to a network context is given by the follow-
ing optimization problem:

SYSTEM:

maximize
∑

r

Ur(dr) −
∑

j

Cj(fj) (65)

subject to Ay = f ; (66)

Hy = d; (67)

yq ≥ 0, q ∈ P. (68)
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Since the objective function is continuous and Ur grows at most linearly while Cj grows super-
linearly, an optimal solution y exists. Since the feasible region is convex and the cost functions
Cj are each strictly convex, the optimal vector f = Ay is uniquely defined (though y need not
be unique). In addition, if the functions Ur are strictly concave, then the optimal vector d = Hy

is uniquely defined as well. We continue to refer to the objective function (65) as the aggregate
surplus, and modify our definition of surplus(·) accordingly, in terms of the allocation d made to
the users and the aggregate rate f allocated by the links:

surplus(d, f) ,
∑

r

Ur(dr) −
∑

j

Cj(fj). (69)

As in the previous development, we use the solution to SYSTEM as a benchmark for the outcome
of the network game.

We now define the resource allocation mechanism for this network setting. The natural exten-
sion of the single link model is defined as follows. Each user r submits a bid wjr for each resource
j; this defines a strategy for user r given by wr = (wjr, j ∈ J), and a composite strategy vector
given by w = (w1, . . . ,wR). We then assume that each link takes these bids as input, and uses the
pricing scheme developed in the Section 1. This is formalized in the following assumption, which
is a direct analogue of Assumption 3 for each link j.

Assumption 7 For all w ≥ 0, at each link j the aggregate rate fj(w) is the solution fj to:

∑

r

wjr = fjpj(fj). (70)

Furthermore, for each r, xjr(w) is given by:

xjr(w) =











0, if wjr = 0;

wjr

pj(fj(w))
, if wjr > 0.

(71)

We define the vector xr(w) by:

xr(w) = (xjr(w), j ∈ J).

Now given any vector xr = (xjr, j ∈ J), we define dr(xr) to be the optimal objective value of the
following optimization problem:

maximize
∑

q∈r

yq (72)

subject to
∑

q∈r:j∈p

yq ≤ xjr, j ∈ J ; (73)

yq ≥ 0, q ∈ r. (74)

Given the strategy vector w, we define the rate allocated to user r as dr(xr(w)). To gain some
intuition for this allocation mechanism, notice that when the vector of bids is w, user r is allocated
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a rate xjr(w) at each link j. Since the utility to user r is nondecreasing in the total amount of
rate allocated, user r’s utility is maximized if he solves the preceding optimization problem with
xr = xr(w), which is a max-flow problem constrained by the rate xjr(w) available at each link
j. In other words, user r is allocated the maximum possible rate dr(xr(w)), given that each link j
has granted him rate xjr(w).

As before we adopt the notation w−r = (w1, . . . ,wr−1,wr+1, . . . ,wR). Based on the defini-
tion of dr(xr(w)) above, the payoff to user r is given by:

Qr(wr;w−r) = Ur

(

dr(xr(w))
)

−
∑

j

wjr. (75)

A Nash equilibrium of the game defined by (Q1, . . . , QR) is a vector w ≥ 0 such that for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (76)

As in the development of Section 2.1, the following proposition plays a key role in demonstrat-
ing existence of a Nash equilibrium. The proof is identical to the proof of Proposition 3, and is
omitted.

Proposition 12 Suppose that Assumptions 5-7 hold. Then for each j and each r: (1) xjr(w) is a
continuous function of w; and (2) for any w−r ≥ 0, xjr(w) is strictly increasing and concave in
wjr ≥ 0, and xjr(w) → ∞ as wjr → ∞.

As in Proposition 4, the following proposition gives existence of a Nash equilibrium for the
game defined by (Q1, . . . , QR).

Proposition 13 Suppose that Assumptions 5-7 hold. Then there exists a Nash equilibrium w for
the game defined by (Q1, . . . , QR).

Proof. The proof follows the proof of Proposition 4. The only step which requires modification
is to show that the payoff Qr of user r is a concave function of wr and a continuous function of
w. To prove this, it suffices to show that Ur(dr(xr(wr;w−r))) is a concave function of wr and a
continuous function of w. We first observe that by Proposition 12, xjr(w) is a concave function
of wjr ≥ 0, and a continuous function of w. Since for each j the function xjr(w) does not depend
on wkr for k 6= j, we conclude that each component of xr(wr;w−r) is a concave function of wr.
Now since dr is defined as the optimal objective value of a linear program, dr(xr) is continuous
and concave as a function of xr [4]. In addition, dr(xr) is nondecreasing in xr; i.e., if xjr ≥ x̂jr for
all j, then dr(xr) ≥ dr(x̂r) (this follows from the problem (72)-(74)). These properties of xjr and
dr, combined with the fact that Ur is concave, continuous, and nondecreasing from Assumption 5,
imply that Ur(dr(xr(wr;w−r))) is a concave function of wr, and a continuous function of w. 2

The following theorem demonstrates that the utility lost at any Nash equilibrium is no worse
than 4

√
2−5 of the maximum possible aggregate surplus, matching the result derived for the single

link model. The proof follows the proof of Theorem 9 in [12]: we construct a single link game
at each link j, whose Nash equilibrium is the same as the fixed Nash equilibrium of the network
game. We then apply Theorem 8 at each link to complete the proof. However, we note that this
result does not require Ur to be strictly increasing or continuously differentiable, and is therefore a
stronger version of Theorem 8 for the single link case.
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Theorem 14 Suppose that Assumptions 5-7 hold. Assume also that Ur(0) ≥ 0 for all users r.
Let w be any Nash equilibrium for the game defined by (Q1, . . . , QR), and let (yS, fS,dS) be any
solution to SYSTEM. If we define dNE

r = dr(xr(w)) for each r, and fNE
j = fj(w) for each j,

then:
surplus(dNE, fNE) ≥ (4

√
2 − 5) · surplus(dS, fS),

where surplus(·, ·) is defined in (69).

Proof. The proof consists of three main steps. First, we describe the entire problem in terms of
the vector xr(w) = (xjr(w), j ∈ J) of the rate allocations to user r from the network. We show
in Lemma 15 that Nash equilibria can be characterized in terms of each user r optimally choosing
a rate allocation xr = (xjr, j ∈ J), given the vector of bids w−r of all other users.

In the second step, we observe that the utility to user r given a vector of rate allocations xr

is exactly Ur(dr(xr)); we call this a “composite” utility function. In Lemma 16, we linearize
this composite utility function; formally, we replace Ur(dr(xr)) with a linear function α>

r xr. The
difficulty in this phase of the analysis is that the composite utility function Ur(dr(·)) may not be
differentiable, because the max-flow function dr(·) is not differentiable everywhere; as a result,
convex analytic techniques are required.

Finally, we conclude the proof by observing that when the “composite” utility function for user
r is linear in the vector of rate allocations xr, the network structure is no longer relevant. In this
case the game defined by (Q1, . . . , QR) decouples into J games, one for each link. We then apply
Theorem 8 at each link to arrive at the bound in the theorem.

We start by describing the entire problem in terms of the vector xr(w) = (xjr(w), j ∈ J) of
the rate allocations to user r from the network. We begin by redefining the problem SYSTEM as
follows:

maximize
∑

r

Ur(dr(xr)) −
∑

j

Cj(fj) (77)

subject to
∑

r

xjr = fj, j ∈ J ; (78)

xjr ≥ 0, j ∈ J, r ∈ R. (79)

(The notation xr is used here to distinguish from the function xr(w).) In this problem, the network
only chooses how to allocate rate at each link to the users. The users then solve a max-flow problem
to determine the maximum rate at which they can send (this is captured by the function dr(·)). This
problem is equivalent to the problem SYSTEM as defined in (65)-(68), because of the definition of
dr(·) in (72)-(74). We label an optimal solution to this problem by (xS

r , r ∈ R; fS
j , j ∈ J).

Our next step is to show that a Nash equilibrium may be characterized in terms of users opti-
mally choosing rate allocations (xr, r ∈ R). We begin by “inverting” the function xjr(w), with
respect to wjr; that is, we determine the amount that user r must pay to link j to receive a prede-
termined rate allocation xjr, given that all other users have bid w−r. Formally, we observe from
Proposition 12 that xjr(w) is concave, strictly increasing, and continuous in wjr. Finally, since
xjr(w) = 0 if wjr = 0, and xjr(w) → ∞ as wjr → ∞, we can define a function ωjr(xjr;w−r) for
xjr ≥ 0, which satisfies:

xjr(w) = xjr if and only if wjr = ωjr(xjr;w−r).
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From the properties of xjr described above, we note that for a fixed vector w−r, the function
ωjr(·;w−r) is convex, strictly increasing, and continuous, with ωjr(0;w−r) = 0 and ωjr(xjr;w−r) →
∞ as xjr → ∞.

We now use the functions ωjr to write user r’s payoff in terms of the allocated rate vector
xr = (xjr, j ∈ J), rather than in terms of the bid wr. For xr ≥ 0, we define a function Fr(xr;w−r)
as follows:

Fr(xr;w−r) , Ur(dr(xr)) −
∑

j

ωjr(xjr;w−r). (80)

We now have the following lemma, which shows a Nash equilibrium may be characterized by an
optimal choice of xr for each r.

Lemma 15 A vector w is a Nash equilibrium if and only if the following condition holds for each
user r:

xr(w) ∈ arg max
xr≥0

Fr(xr;w−r). (81)

Proof of Lemma. Fix a bid vector w, and suppose that there exists a vector xr ≥ 0 such that:

Fr(xr;w−r) > Fr(xr(w);w−r). (82)

Since ωjr(xjr(w);w−r) = wjr, we have Fr(xr(w);w−r) = Qr(wr;w−r). Now consider the bid
vector wr defined by wjr = ωjr(xjr;w−r). Then xjr(wr;w−r) = xjr for each j, so:

Qr(wr;w−r) = Fr(xr;w−r).

Thus wr is a profitable deviation for user r, so w could not have been a Nash equilibrium.
Conversely, suppose that w is not a Nash equilibrium. As above, we have Fr(xr(w);w−r) =

Qr(wr;w−r). Fix a user r, and let wr be a profitable deviation for user r, so that Qr(wr;w−r) >
Qr(wr;w−r). For each j, let xjr = xjr(wr;w−r). Then ωjr(xjr;w−r) = wjr, so that Fr(xr;w−r) =
Qr(wr;w−r). Thus we have Fr(xr;w−r) > Fr(xr(w);w−r), so that (81) does not hold. 2

Now suppose that w is a Nash equilibrium. Our approach is to replace user r by J users (which
we call “virtual” users), one at each link j; this process has the effect of isolating each of the links,
and removes any dependence on network structure. We define the virtual users so that w remains
a Nash equilibrium at each single link game. Formally, for each user r, we construct a vector
αr = (αjr, j ∈ J), and consider a single link game at each link j where user r has linear utility
function Ujr(xjr) = αjrxjr. We choose the vectors αr so that the Nash equilibrium at each single
link game is also given by w; we then apply the result of Theorem 8 for the single link model to
complete the proof of the theorem.

We now proceed to construct this vector αr. Before continuing, we extend the notion of sub-
gradients developed earlier to functions over R

J . An extended real-valued function is a function
g : R

J → [−∞,∞]; such a function is called proper if g(x) > −∞ for all x, and g(x) < ∞ for
at least one x. We say that a vector γ ∈ R

J is a subgradient of an extended real-valued function g
at x if for all x ∈ R

J , we have g(x) ≥ g(x) + γ>(x − x). The subdifferential of g at x, denoted
∂g(x), is the set of all subgradients of g at x. For details on these concepts, we refer the reader to
[23].
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Lemma 15 allows us to characterize the Nash equilibrium w as a choice of optimal rate alloca-
tion xr by each user r, given the strategy vector w−r of all other users. We recall the definition of Fr

in (80); we will now view Fr as an extended real valued function, by defining Fr(xr;w−r) = −∞
if xjr < 0 for some j. We also define extended real-valued functions Gr and Kjr on R

J as follows:

Gr(xr) =

{

Ur(dr(xr)), if xr ≥ 0;
−∞, otherwise.

and

Kjr(xr;w−r) =

{

−ωjr(xjr;w−r), if xjr ≥ 0;
0, otherwise.

Then we have Fr = Gr +
∑

j Kjr on R
J (where we extend the definition of + to [−∞, 0) in the

obvious way). The following lemma establishes existence of the desired vector αr.

Lemma 16 Let w be a Nash equilibrium. Then for each user r, there exists a vector αr =
(αjr, j ∈ J) ≥ 0 such that −αr ∈ ∂[−Gr(xr(w))], and the following relation holds:

xr(w) ∈ arg max
xr≥0

[

α>
r xr −

∑

j

ωjr(xjr;w−r)

]

. (83)

Proof of Lemma. Fix a user r. We observe that Gr is a concave function of xr ∈ R
J . This

follows as in the proof of Proposition 13, because dr is a concave function of its argument (as
it is the optimal objective value of the linear program (72)-(74)), and Ur is nondecreasing and
concave. Furthermore, we note that Kjr(xr;w−r) is a concave function of xr ∈ R

J as well, since
ωjr(xjr,w−r) is convex and nonnegative for xjr ≥ 0. Consequently, Fr is a concave function of
xr ∈ R

J . In particular, −Fr, −Gr, and −Kjr are convex, proper extended real-valued functions.
It is straightforward to show, using Theorem 23.8 in [23], that at xr(w) we have:

∂[−Fr(xr(w);w−r)] = ∂[−Gr(xr(w))] +
∑

j

∂[−Kjr(xr(w);w−r)]. (84)

(The summation here of the subdifferentials on the right hand side is a summation of sets, where
A + B = {x + y : x ∈ A,y ∈ B}; if either A or B is empty, then A + B is empty as well.)

Since w is a Nash equilibrium, from Lemma 15, we have for all xr ≥ 0 that:

Fr(xr(w);w−r) ≥ Fr(xr;w−r).

Since Fr(xr;w−r) = −∞ if there exists j such that xjr < 0, we in fact have Fr(xr(w);w−r) ≥
Fr(xr;w−r) for all xr ∈ R

J so we conclude 0 is a subgradient of −Fr(·;w−r) at xr(w). As a
result, it follows from (84) that there exist vectors αr and βjr with −αr ∈ ∂[−Gr(xr(w))] and
−βjr ∈ ∂[−Kjr(xr(w);w−r)], such that αr = −∑j βjr.

We first note that Gr(xr) is a nondecreasing function of xr; that is, if xr ≥ x̂r, then Gr(xr) ≥
Gr(x̂r). From this fact it follows that αr must be nonnegative, i.e., αjr ≥ 0 for all j. It remains
to show that (83) holds. We observe that 0 ∈ −∂F̂r(xr(w);w−r) , where F̂r(·;w−r) is defined as
follows:

F̂r(xr;w−r) =







α>
r xr −

∑

j

ωjr(xjr;w−r), if xr ≥ 0;

−∞, otherwise.
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This observation follows by replacing Gr(xr) with the following function Ĝr on R
J :

Ĝr(xr) =

{

α>
r xr, if xr ≥ 0;

−∞, otherwise.

Then we have F̂r = Ĝr +
∑

j Kjr; and as before:

∂[−F̂r(xr(w);w−r))] = ∂[−Ĝr(xr(w))] +
∑

j

∂[−Kjr(xr(w);w−r)].

The vector −αr is a subgradient of −Ĝr for all xr ≥ 0; in particular, −αr ∈ ∂[−Ĝr(xr(w))]. We
have already shown αr = −∑j βjr ∈

∑

j ∂[−Kjr(xr(w);w−r)]. Thus 0 ∈ ∂[−F̂r(xr(w);w−r)].
This implies (83), as required. 2

Let w be a Nash equilibrium. For each user r, fix the vector αr such that (83) holds. We start
by observing that for each user r, since −αr is a subgradient of −Gr(xr(w)), we have:

Ur(dr(x
S
r )) ≤ Ur(dr(xr(w))) + α>

r (xS
r − xr(w)). (85)

We distinguish two cases: either αr = 0 for all r, or αr 6= 0 for at least one r. We first
consider the case where αr = 0 for all r. Since ωjr is strictly increasing, if αr = 0, then the
unique maximizer in (83) is xr = 0. Thus, if αr = 0 for all r, we must have xr(w) = 0 for all r.
But from (85), we have the following trivial inequality:

∑

r

Ur(dr(xr(w))) ≥
∑

r

Ur(dr(x
S
r )).

Since dr(xr(w)) = dr(0) = 0 for all r, this is only possible if Ur(dr(x
S
r )) = Ur(0) for all r as

well. It follows that the aggregate surplus is zero at both the Nash equilibrium and the optimal
solution to SYSTEM, so the theorem holds in this case.

We may assume without loss of generality, therefore, that αr 6= 0 for at least one user r. We
have the following simplification of (83):

xr(w) ∈ arg max
xr≥0

[

α>
r xr −

∑

j

ωjr(xjr;w−r)

]

= arg max
xr≥0

[

∑

j

(αjrxjr − ωjr(xjr;w−r))

]

.

The maximum on the right hand side of the preceding expression decomposes into separate maxi-
mizations for each link j. We conclude that for each link j, we have in fact:

xjr(w) ∈ arg max
xjr≥0

[αjrxjr − ωjr(xjr;w−r)] . (86)

Fix a link j. We view the users as playing a single link game at link j, with utility function for user
r given by Ujr(xjr) = αjrxjr. The preceding expression implies that (81) in Lemma 15 is satisfied,
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so we conclude that w is a Nash equilibrium for this single link game at link j. More precisely,
we have that (wj1, . . . , wjR) is a Nash equilibrium for the single link game at link j, when R users
with utility functions (Uj1, . . . , UjR) compete for link j. The maximum aggregate surplus for this
link is given by:

max
xj1,...,xjR≥0

[

∑

r

αjrxjr − Cj

(

∑

r

xjr

)]

= max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

.

Now if αjr = 0, then from (86), the optimal choice for user r is xjr(w) = 0. Thus there are two
possibilities: either αjr = 0 for all r, in which case both the Nash equilibrium aggregate surplus
and maximum aggregate surplus are zero; or αjr > 0 for at least one user r, in which case the
maximum aggregate surplus is strictly positive, and we can apply Theorem 8 to find:

∑

r

αjrxjr(w) − Cj(fj(w)) ≥
(

4
√

2 − 5
)

(

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

)

. (87)

In particular, note that the preceding inequality holds for all links j (since it holds trivially for those
links where αjr = 0 for all r).

We now complete the proof of the theorem, by following the proof of Step 1 of Theorem 8.
Note that we have:

∑

r

α>
r xS

r −
∑

j

Cj(f
S
j ) =

∑

j

(

∑

r

αjrx
S
jr − Cj(f

S
j )

)

≤
∑

j

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

. (88)

Expanding the definition of surplus(·, ·), we reason as follows, using (85) for the first inequality,
and (88) for the second:

surplus(dNE, fNE)

surplus(dS, fS)
=

∑

r Ur(dr(xr(w))) −
∑

j Cj(fj(w))
∑

r Ur(dr(xS
r )) −∑j Cj(fS

j )

≥
∑

r

(

Ur(dr(xr(w))) − α>
r xr(w)

)

+
∑

r α>
r xr(w) −∑j Cj(fj(w))

∑

r

(

Ur(dr(xr(w))) + α>
r (xS

r − xr(w))
)

−∑j Cj(fS
j )

=

∑

r

(

Ur(dr(xr(w))) − α>
r xr(w)

)

+
∑

r α>
r xr(w) −∑j Cj(fj(w))

∑

r

(

Ur(dr(xr(w))) − α>
r xr(w)

)

+
∑

r α>
r xS

r −∑j Cj(fS
j )

≥
∑

r

(

Ur(dr(xr(w))) − α>
r xr(w)

)

+
∑

j

(
∑

r αjrxjr(w) − Cj(fj(w))
)

∑

r

(

Ur(dr(xr(w))) − α>
r xr(w)

)

+
∑

j maxfj≥0

[

(maxr αjr)f j − Cj(f j)
] .

(89)
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Since Ur(dr(0)) = Ur(0) ≥ 0, by concavity of Ur and the fact that αr ∈ ∂[−Gr(xr(w))] we have:

Ur(dr(xr(w))) − α>
r xr(w) ≥ 0.

Furthermore, from (21), we have αjr > pj(fj(w)) if xjr(w) > 0; thus
∑

r αjrxjr(w) > fj(w)pj(fj(w)) ≥
Cj(fj(w)), where the second inequality follows by convexity (Assumption 6). This yields:

0 <
∑

j

(

∑

r

αjrxjr(w) − Cj(fj(w))

)

≤
∑

j

max
fj≥0

[

(max
r

αjr)f j − Cj(f j)
]

.

So we conclude from relations (87) and (89) that:
∑

r Ur(dr(xr(w))) −∑j Cj(fj(w))
∑

r Ur(dr(xS
r )) −∑j Cj(fS

j )
≥

∑

j (
∑

r αjrxjr(w) − Cj(fj(w)))
∑

j maxfj≥0

[

(maxr αjr)f j − Cj(f j)
] ≥ 4

√
2 − 5.

(Observe that both denominators in this chain of inequalities are nonzero.) Since w was assumed
to be a Nash equilibrium, this completes the proof of the theorem. 2

The preceding theorem uses the bound on efficiency loss for a single link to establish the
efficiency loss when users are price anticipating in general networks. Note that since we knew
from Theorem 8 that the bound of 4

√
2−5 was essentially tight for single link games, and a single

link is a special case of a general network, the bound 4
√

2 − 5 is also tight in this setting.
We observe that as in [12], the essential structure in the network game we consider here is

that the function Ur(dr(xr)) is a concave and continuous function of the vector xr ≥ 0, and also
nondecreasing; that is, if xjr ≥ xjr for all j ∈ J , then Ur(dr(xr)) ≥ Ur(dr(xr)). Thus, arguing
exactly as in Section 5 of [12], we can consider a more general resource allocation game where
the utility to user r is a concave, continuous, nondecreasing function of the vector of resources
allocated, Vr(xr); all the results of this section continue to hold for this more general game.

6 Conclusion

This paper considers a pricing mechanism where the available resources in a network are in elastic
supply. For a game where users’ strategies are the payments they are willing to make, we showed
that the efficiency loss is no more than 34% when users are price anticipating, for the setting of a
single link (Theorem 8) as well as for a network (Theorem 14).

Important questions remain regarding an extension of this work to a dynamic context. While
our results suggest that manipulation of the market in a static game setting cannot lead to arbitrarily
high efficiency loss, such a result does not necessarily imply users will not be able to manipulate
an algorithmic implementation of this mechanism (such as those proposed in [16]). Investigation
of this point is an open research topic.

Critical to any investigation of dynamics is the nature of the information available to the players
of the pricing game. In order to compute an optimal strategic decision users need to know not
only the current price level p(f(w)), but also the total allocated rate f(w) and the derivative of
the price p′(f(w)) (where we have assumed for simplicity that p is differentiable). We postulate
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that the overhead of actually collecting such detailed information in a large scale communication
network is quite high; in fact, in general users do not have knowledge of either the total allocated
rate or the derivative of the price at the resource. This raises an important question of information
availability when users respond to price signals: users may not react optimally, so what are the
users’ conjectures about how their strategies affect the price? Developing more detailed models
for the users’ response to available price information from the network is a research direction for
the future.
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