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JUMPING FLUID MODELS AND DELAY STABILITY OF
MAX-WEIGHT DYNAMICS UNDER HEAVY-TAILED TRAFFIC

ARSALAN SHARIFNASSAB∗ AND JOHN N. TSITSIKLIS†

Abstract. We say that a random variable is light-tailed if moments of order 2 + ε
are finite for some ε > 0; otherwise, we say that it is heavy-tailed. We study queueing
networks that operate under the Max-Weight scheduling policy, for the case where
some queues receive heavy-tailed and some receive light-tailed traffic. Queues with
light-tailed arrivals are often delay stable (that is, expected queue sizes are uniformly
bounded over time) but can also become delay unstable because of resource-sharing
with other queues that receive heavy-tailed arrivals.

Within this context, and for any given “tail exponents” of the input traffic, we
develop a necessary and sufficient condition under which a queue is robustly delay sta-
ble, in terms of jumping fluid models—an extension of traditional fluid models that
allows for jumps along coordinates associated with heavy-tailed flows. Our result
elucidates the precise mechanism that leads to delay instability, through a coordina-
tion of multiple abnormally large arrivals at possibly different times and queues and
settles an earlier open question on the sufficiency of a particular fluid-based criterion.
Finally, we explore the power of Lyapunov functions in the study of delay stability.

1. Introduction. We say that a random variable is light-tailed if moments of
order 2+ε are finite for some ε > 0; otherwise, we say that it is heavy-tailed. We study
queueing networks that operate under the Max-Weight scheduling policy, for the case
where some queues receive heavy-tailed traffic, while some other queues receive light-
tailed traffic. Queues that receive heavy-tailed traffic are naturally delay unstable, that
is, they incur infinite expected delay, as an immediate consequence of the Pollaczek—
Khintchine formula. However, it is also known that due to the relatively complex
Max-Weight dynamics, some of the queues that receive light-tailed traffic may also
end up delay unstable1. Our aim is to develop conditions that determine whether any
particular queue is delay stable or not.

This problem has been studied extensively [10, 11, 12, 13], and a necessary
condition for delay stability was given in [11, 12]. In particular, [12] considered
the associated fluid model, initialized at zero, except for a positive initial condition at
some queue that receives heavy-tailed arrivals. If another queue happens to eventually
become positive under that fluid model, one can then conclude that the latter queue
is delay unstable. This result led to the natural question whether this condition is also
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sufficient, i.e., whether delay stability is guaranteed when any such fluid trajectory
(with a positive initialization at any single one of the queues that receive heavy-
tailed traffic) keeps the queue of interest at zero level. Such a sufficiency result might
appear plausible because in models involving heavy-tailed random variables, large
fluctuations are usually the consequence of a single abnormally large value in the
underlying heavy-tailed random variables [15, 20, 1, 3, 6, 7].

1.1. Our Contributions. We start in Section 3 by showing that the above
mentioned possible sufficiency result does not hold. We accomplish this by providing
a fairly simple example in which a large arrival at any single heavy-tailed queue does
not cause a certain queue of interest to grow, but a combination of two large arrivals,
at two different heavy-tailed queues, can result in large backlogs at the queue of
interest. We also provide necessary and sufficient conditions for delay stability in
that particular example, which provide intuition for a possible more general result.
Interestingly, delay instability manifests itself only when the tail exponents (to be
defined precisely in Section 2.2) of the heavy-tailed arrival processes lie in a specific
range. As a consequence, we need to take these exponents explicitly into account,
something that traditional fluid models cannot do.

We then generalize, by developing general and tight (necessary and sufficient)
conditions for delay stability, in terms of deterministic fluid-like models in which
there can be multiple jumps (in different queues and possibly at different times) at
the heavy-tailed queues.

Our conditions are not easy to test computationally, but this seems unavoidable:
since the conditions are necessary and sufficient, the complexity of testing them reflects
the intrinsic complexity of testing delay stability. On the positive side, our conditions:

(a) provide a conceptual understanding of the mechanism that results in delay
instability;

(b) can be checked in special cases, e.g., for the example in Section 3; see Sec-
tion 5.3.

On the technical side, our general conditions involve a small, but technically cru-
cial, reformulation of the delay stability problem. To understand the underlying issue,
note that fluid models do not always lead to definite conclusions when the underlying
system is marginally stable, but are generally effective when used to analyze “robust”
properties. For this reason, we consider a network with given nominal arrival rates
and focus on robust stability. Namely, we ask whether a certain queue is delay stable
for all arrival processes with given tail exponents and for all (possibly time-varying)
arrival rates that lie in some open ball around the nominal ones. When the problem
is framed that way, definitive necessary and sufficient conditions for (robust) delay
stability become possible. Furthermore, with this formulation, it is only the nomi-
nal arrival rates and the tail exponents that matter, as opposed to the details of the
distribution of the input traffic.

Finally, earlier works [10] and [12] had shown that Lyapunov functions with cer-
tain structural properties can be used to certify delay stability. But it was not known
whether this methodology is “complete,” that is, whether delay stability can always
be established through a suitable Lyapunov function. Our results make progress in
this direction, for the case of “very heavy” tails, that is, when there exists some γ > 0
for which arriving traffic moments of order 1 + γ are finite, but γ can be arbitrarily
small. For this regime, we derive some necessary and some sufficient conditions for
delay stability: we show that a Lyapunov function of a special kind can be used to
certify delay stability, together with a partial converse.
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1.2. Outline. The rest of the paper is organized as follows. We start in the next
section with the details of our model and some definitions. In Section 3, we discuss
an example that provides insights on the ways that arrival rates and tail exponents
affect delay stability, and demonstrate that criteria based on traditional fluid models
are inadequate for the purpose of deciding delay stability. In Section 4, we introduce
a fluid-like model, which we call jumping fluid model and underlies our main result,
the necessary and sufficient conditions for (robust) delay stability that we present in
Section 5. In Section 6, we study the power of Lyapunov functions for our problem.
In Sections 7, 8, and 9, we provide the proofs of our results. As the proofs are quite
involved, they are presented as a sequence of lemmas, with the proofs of the lemmas
provided in Appendices B and C. We discuss the results and directions for future
research in Section 10. Finally, in Appendix A, we explore alternative definitions
of robust stability, and corresponding variants of our jumping fluid conditions, and
explain why they are unlikely to yield sharp necessary and sufficient conditions.

1.3. Notation. We collect here some notational conventions to be used through-
out the paper. We use boldface symbols to denote vectors, and ordinary font to denote
scalars. For any vector v, we use vi to denote its ith component, and |v| to denote
the sum |v1| + · · · + |vn|. We also use the notation [v]+ to denote the vector with
components max{0, vi}. Finally, we let ej stand for the jth unit vector.

We use R+ and Z+ to denote the sets of nonnegative reals and nonnegative
integers, respectively. Furthermore, for a vector v, we write v � 0 (respectively,
v � 0) to indicate that all components are nonnegative (respectively, positive). For
any set S, we denote its convex hull by conv(S).

Throughout, ‖ · ‖ will stand for the Euclidean norm. Sometimes, we use the
alternative notation d(x,y) in place of of ‖x−y‖. We also let d(x, S) be the distance
of a vector x from a set S, i.e., d(x, S) = infy∈S ‖x−y‖. We finally use 1(·) to denote
the indicator function, and log to denote the natural logarithm.

For any time function x(·) which is right-continuous with left limits,
(
dx/dt

)
(t)

or ẋ(t) stand for the right derivative of x(t), with the implicit assumption that it
exists, and x(t−) stands for limτ↑t x(τ).

2. The model.

2.1. Network model and the Max-Weight policy. We consider a switched
network that operates in discrete time. For simplicity and ease of presentation, we
restrict ourselves to single-hop networks. However, our results are easily generalized
to multi-hop networks of the type considered in [18].

The network consists of ` queues that buffer incoming packets (or jobs). For any
t ∈ Z+, we let Q(t) be a nonnegative vector whose jth component is the length of
the jth queue at time t. Packets arrive to the queues according to a nonnegative
stochastic vector arrival process, A(·). In particular, Aj(t) stands for the exogenous
arrival to the jth queue at time t. We assume that the random variables Aj(t), for
different j and t, are independent. We refer to E [A(t)] as the arrival rate vector at
time t.

At each time t, the amount of service received by the queues is a nonnegative
vector µ(t), which is chosen by a scheduler from a finite set M of possible service
vectors. The queue lengths then evolve according to

(2.1) Q(t+ 1) =
[
Q(t)− µ(t)

]+
+ A(t).

As in [18], we assume throughout the paper that for any µ ∈ M, the set M also
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contains all vectors that result from setting some entries of µ to zero. This assumption
is naturally valid in most contexts.

We focus exclusively on the popular Max-Weight (MW) scheduling policy,

(2.2) µ(t) ∈ argmax
ν∈M

νTQ(t),

which is known to have favorable stability properties [19]: whenever there exists a
policy under which the queues remain stable, MW will result in stable queues. More
specifically, let us consider the setM, defined as the convex hull, conv(M), of the set
of all possible service vectors, which is the so-called capacity region of the network.
For the case of i.i.d. arrivals, and under common stochastic assumptions, it is known
that if the arrival rate vector lies in the interior of the capacity region, then MW will
result in stable queues; conversely, if the arrival rate vector lies outside the capacity
region, the queues will be unstable under every scheduling policy [19].

2.2. Light-tailed and heavy-tailed arrivals. In this subsection, we present
some definitions related to the tails of the arrival process distributions.

To any nonnegative random variable X, we associate a tail exponent, defined as
the value of γ at which E

[
X1+γ

]
switches from finite to infinite:

(2.3) γ∗ = sup
{
γ : E

[
X1+γ

]
<∞

}
.

As an example, consider a continuous random variable whose probability density
function f(·) satisfies

(2.4) c · x−(2+γ) ≤ f(x) ≤ logk x · x−(2+γ), ∀ x ≥ x0,

where c, γ, k, and x0 are positive constants. Such a distribution has a tail exponent
equal to γ.

For an i.i.d. arrival process, a tail exponent is unambiguously defined as the
tail exponent of the marginal distribution at an arbitrary time. However, once we
bring robustness into the picture, we are led to consider arrival processes with non-
identically distributed A(t). To any arrival process Aj(·), we associate a tail exponent,
γj , defined as the largest value of γ such that Aj(t) is dominated by some nonnegative
random variable X with tail exponent γ, for all times t;

γj = sup
{
γ : there exists a r.v. X ≥ 0 s.t. X dominates Aj(t) for all t ≥ 0,

and E
[
X1+γ

]
<∞

}
.

(2.5)

Here, the term “dominates” refers to stochastic dominance: a random variables X
dominates a random variable Y if P(X > a) ≥ P(Y > a), for all a ∈ R. We say that
Aj(·) is heavy-tailed if γj ≤ 1, and light-tailed otherwise. The tail behavior of the
different arrival processes is summarized by the vector γ = (γ1, . . . , γ`).

We note that as long as E [Aj(t)] ≤ µ, for some constant µ and for all times t,
the tail exponent γj is well defined and lies in the range [0,∞]. Indeed, suppose that
λj(t) = E [Aj(t)] ≤ µ, for some finite constant µ and for all t. Consider a random
variable X with probability density function fX(x) = (µ/x2)1(x ≥ µ). The Markov
inequality implies that

P
(
Aj(t) > a

)
≤ min

{
1,E [Aj(t)] /a

}
≤ min

{
1, µ/a

}
= P

(
X > a

)
, ∀ a > 0.
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In particular, X dominates Aj(t), for all t. Furthermore, E
[
X1+γ

]
< ∞, for every

γ < 0. Thus, γj is at least as large as any negative number, which implies that γj ≥ 0.
Conversely, if γj > 0, then E [Aj(t)] is finite, and bounded as a function of t.

We finally note that γj may be infinite; this will be the case for bounded, or more
generally, exponential-type, distributions.

2.3. Robust delay stability. As already mentioned, we are interested in the
question of delay stability under the MW policy, in the presence of heavy-tailed ar-
rivals. Given a set of arrival processes, we say that queue m is delay stable if, starting
from Q(0) = 0, we have supt E [Qm(t)] <∞.

The arrival rates and the tail exponents do not provide enough information to
decide whether we have delay stability, or even stability. For example, there is some-
times indeterminacy on the boundary of the capacity region. Furthermore, a tail
exponent of γj = 1 is compatible with E

[
A2
j (t)

]
being either finite or infinite, and

this may be critical as far as delay stability is concerned (cf. the Pollaczek-–Khintchine
formula). These difficulties, all related to indeterminacy at certain boundaries, can
be circumvented by focusing on a robust version of delay stability that incorporates
two distinct elements.

(a) We require delay stability for all arrival process distributions with given tail
exponents. This allows us to focus on conditions that involve the tail expo-
nents, while ignoring other details of these distributions.

(b) We require delay stability for all arrival rates, possibly time-varying, in the
vicinity of a given nominal rate. This allows us to avoid issues of indeter-
minacy when the arrival rate lies at a threshold between delay stability and
delay instability.

Definition 2.1 (Robust Delay Stability). Let us fix a network with ` nodes,
and a set M of possible service vectors. We consider a tail exponent vector γ with
components in [0,∞], and a nominal arrival rate vector λ∗� 0.

(a) Given some δ ≥ 0, an arrival process A(·) belongs to the class Aδ(γ;λ∗) if:
(i) The random variables Aj(t), for different j and t, are independent and

have finite means.
(ii) For every j, the tail exponent of the process Aj(·) is γj.

(iii) For every t ≥ 0, we have
∥∥E [A(t)]− λ∗

∥∥ ≤ δ.
(b) For m ∈ {1, . . . , `}, we say that queue m is Robustly Delay Stable (RDS)

if there exists some δ > 0 such that queue m is delay stable for all arrival
processes in the class Aδ(γ;λ∗).

3. A counterexample and the insufficiency of fluid models. In this sec-
tion, we discuss a simple example with the following features:

(a) Similar to existing examples, heavy-tailed arrivals to some queues can cause
delay instability at a queue that receives light-tailed traffic.

(b) Tight criteria for delay instability need to take into account the values of
the tail exponents. In particular, criteria that are based on traditional fluid
models cannot be conclusive, because they do not involve the tail exponents.

(c) Delay instability may emerge from coordinated large arrivals at multiple
heavy-tailed queues.

Consider the three-queue network in Fig. 1. The set of possible service vectors
M is such that at any time slot, up to two queues can be served, each with rate 1,
but not all three queues can be served simultaneously. Thus, at each time step, the
MW policy chooses two queues with largest backlogs and serves each one of them
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Fig. 1. A single-hop network with three queues, two of which receive heavy-tailed traffic, while
the third one receives deterministic traffic. The dotted ellipses illustrate the different possible service
vectors. The third queue will be delay unstable for certain ranges of λ and γ.

with rate 1.
The third queue receives deterministic arrivals, with A3(t) = λ < 1, for all t ≥ 0,

so that γ3 = ∞. The other two queues receive heavy-tailed traffic, with a density
of the form (2.4) and tail exponent γ ∈ (0, 1), and with rate 0.5, i.e., E [A1(t)] =
E [A2(t)] = 0.5.

The total arrival rate is 1 + λ, which is less than 2, and the network is stable, in
the conventional sense. The first two queues are automatically delay unstable because
they receive heavy-tailed arrivals. However, the third queue can be either delay stable
or delay unstable, depending on the values of λ and γ. In what follows, we provide
an informal discussion of the different cases.

Case 1. (0.5 < λ < 1). In this case, queue 3 is delay unstable, through a scenario
similar to those considered in earlier works [11]. Intuitively, because of its heavy-tailed
arrivals, Q1 will occasionally receive large inputs. When that happens, with A1(t0)
being large at some time t0 > 0, Q1 becomes and stays largest for some time. During
that time, the MW policy keeps serving Q1, while the remaining service capacity is
split between Q2 and Q3. Since λ > 0.5, the sum of the arrival rates to Q2 and
Q3 will exceed the aggregate service rate to these two queues over a time interval of
duration Ω

(
A1(t0)

)
. Thus, Q2 and Q3 build up to size Ω

(
A1(t0)

)
. Since γ < 1, we

have E
[
A2

1(t)
]

= ∞, and using this property, it can be shown that E [Q3(t)] grows
unbounded.

The intuition behind the above argument is captured by an existing criterion
from [11] that examines certain trajectories q(·) of a corresponding fluid model (also
called fluid trajectories). In that fluid model, the arrival processes are replaced by
deterministic flows with the same rates. The initial conditions are qh(0) = 1 for some
heavy-tailed queue (in our example, h = 1 or h = 2), and qj(0) = 0 for j 6= h.
(Because of symmetry, we only need to consider the case where h = 1.) Let us say
that the “zero fluid” condition holds (ZF, for short) if the the solution to the fluid
model (known to be unique for the MW policy) keeps q3(·) at zero. According to the
criterion in [11], the failure of the ZF condition certifies the delay instability of queue
3. This is indeed the case here: starting with the initial conditions q(0) = (1, 0, 0), it
can be verified that for small positive times t, we have q3(t) = (λ− 0.5)t/2 > 0.

In summary, for this particular case, we have delay instability, and this is correctly
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predicted by the failure of the ZF condition and available results.

Case 2. (0 < λ < 0.5 and γ > 0.5). In this case, queue 3 turns out to be delay
stable (in fact, robustly delay stable). This is a consequence of our general result in
Section 5.

For this case, the fluid model initialized at q(0) = (1, 0, 0), satisfies q3(t) = 0
for all positive times, and the ZF condition holds. In particular, the ZF condition
is “aligned” with delay stability. Observations of this nature, led to the question
whether the ZF condition can be used as a certificate of delay stability [12]. However,
this is not the case, as we discuss next.

Case 3. (0 < λ < 0.5 and γ ≤ 0.5). In this case, the ZF condition holds, similar to
Case 2. However, queue 3 turns out to be delay unstable; this follows from the proof2

of our main result, Theorem 5.1.
We summarize here the underlying intuition. When γ ≤ 0.5, there is considerable

probability that both queues 1 and 2 receive large inputs within a certain time interval.
More concretely, for large values of M , there is probability Ω(1/M) that both of Q1

and Q2 receive aggregate arrivals of size at least 3M within the time interval [0,M ].
If this happens, both Q1 and Q2 become large enough so that Q3 receives no service
during the interval [M, 2M ]. As a result, Q3(2M) ≥ λM , with probability Ω(1/M).
One can then use this fact to show that as t increases, E [Q3(t)] grows unbounded,
and queue 3 is delay unstable.

In summary, the presence or absence of delay stability depends on the tail ex-
ponents in a nontrivial manner. Furthermore, the ZF condition cannot discriminate
between Cases 2 and 3, and thus cannot account for the different outcomes (delay
stability in Case 2, delay instability in Case 3). In fact, the same obstacle arises with
any other criterion that relies on traditional fluid models, because fluid models do not
take the tail exponents into account. In order to make progress, we need to consider
the probability that large inputs (or jumps) may arrive within a certain time interval,
as a function of the tail exponents (the probability is larger when the tail exponents
are smaller). Furthermore, as illustrated by Case 3, we may have to consider the effect
of “coordinated” large jumps at more than one queue, within the same time inter-
val. This is accomplished by the model in the next section: it is still in the spirit of
traditional fluid models, except that it allows for jumps along the heavy-tailed flows,
subject to a “budget” on allowed jumps, as determined by the tail exponents.

4. Jumping fluid models. In this section, we introduce a generalization of the
fluid model, which allows for jumps along certain coordinates. We proceed by first
defining a traditional fluid model, and then modifying it.

4.1. The fluid model. A fluid model is a deterministic continuous-time dy-
namical system that replaces the arrival process with a fluid stream of arrivals and
updates queue lengths along Max-Weight drifts. The literature provides a few, some-
what different but equivalent, definitions of the fluid model [16, 12], which typically
involve differential equations with boundary conditions. Here, we adopt an equivalent
but somewhat simpler definition,3 from [18].

2Strictly speaking, the results in Section 5 only establish the absence of robust delay stability,
not delay instability for the specific arrival process distributions of our example. However, a slight
modification of the proof in Section 8 shows that queue 3 is indeed delay unstable.

3Recall our assumption in Section 2 that for any µ ∈M, the setM also contains all vectors that
result from setting some entries of µ equal to zero. It was shown in Proposition 2 of [18] that under
this assumption, the fluid model of Definition 4.1, is equivalent to the more standard, albeit more
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Recall the definition of M as the set of all possible service vectors. For any
x ∈ R`+, we define

(4.1) M(x) =
{
µ ∈M | µTx ≥ νTx, ∀ ν ∈M

}
= argmax

ν∈M
νTx,

which is the set of all possible service vectors that, for the given x, attain the maximum
in the definition of the MW policy; see (2.2). We also let

(4.2) M(x) = conv
(
M(x)

)
.

Furthermore, given an arrival rate vector λ � 0, and any x ∈ R`+, we let

(4.3) Dλ(x) = λ−M(x) = conv

({
λ− µ | µ ∈ argmax

ν∈M
νTx

})
,

which is the set of candidate drifts when the queue length vector is x.
For the definitions that follow, recall our convention that q̇(t) denotes the right

derivative of q(·) with respect to time, at time t.

Definition 4.1 (Fluid Trajectories). Let us fix a network with ` nodes, a set
M of possible service vectors, and an arrival rate vector λ � 0. A fluid trajectory
corresponding to λ is a nonnegative, continuous, and right-differentiable `-dimensional
function q(·), that satisfies the differential inclusion

(4.4) q̇(t) ∈ Dλ
(
q(t)

)
, ∀ t ≥ 0.

Given some λ � 0 and q(0) � 0, there always exists a unique (and nonnegative)
fluid trajectory q(·) corresponding to λ and initialized at q(0) [12, 18].

4.2. Adding the jumps. We now introduce jumping fluid (JF, for short) trajec-
tories. Given a vector n = (n1, . . . , n`) of nonnegative integers, an ε-JF(n) trajectory
is a “fluid trajectory with jumps,” with nj positive jumps in its jth component, while
allowing for ε-changes in the arrival rate λ. More concretely:

Definition 4.2 (ε-Jumping Fluid Trajectories). Let us fix a network with `
nodes, and a set M of possible service vectors. We are given an arrival rate vector
λ∗ � 0, a nonnegative integer vector n, and some ε ≥ 0. An ε-JF(n) trajectory
corresponding to λ∗ is a nonnegative `-dimensional function q(·), which is right-
continuous with left limits, and right-differentiable, initialized with q(t) = 0 for all
t < 0, and with the following properties:

(i) Each component qj(·) has nj points of discontinuity.
(ii) If qj(·) has a discontinuity at some time t, then qj(t) > qj(t

−).
(ii) For every t ≥ 0,

(4.5) q̇(t) ∈ Dλ(t)

(
q(t)

)
,

for some nonnegative function λ(·) which is right-continuous, piecewise con-
stant, with finitely many points of discontinuity, and satisfies ‖λ(t)−λ∗‖ ≤ ε,
for all t.

Finally, an ε-JF(n) trajectory with4 γTn =
∑`
j=1 γjnj ≤ 1, is called an ε-JF(γ)

trajectory.

complicated, definitions of fluid models, based on differential equations with boundary conditions.
4If γj =∞ and nj = 0, we use the convention ∞ · 0 = 0.
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Note that we allow jumps at time zero, in which case q(0) 6= 0. Note also that
if ε = 0 and if jumps can only happen at time zero, then an ε-JF trajectory is just a
fluid trajectory, with the jumps of the JF trajectory determining the initial conditions
of the fluid trajectory.

More generally, an ε-JF trajectory consists of a concatenation of fluid trajectories,
over the intervals where λ(·) stays constant, together with a finite number of jumps.
For this reason, once the jump times, jump sizes, and the function λ(·) are specified,
the results for fluid models extend and establish existence and uniqueness of the ε-
JF(n) trajectory.

Our next definition formalizes the requirement that a certain queue must stay at
zero under all ε-jumping fluid trajectories.

Definition 4.3 (JF conditions). Let us fix a network with ` nodes, and a set
M of possible service vectors. We are given an arrival rate vector λ∗ � 0, and a
particular queue, m, of interest.

(a) Given a vector γ with components in [0,∞], and some ε ≥ 0, we say that the
ε-JF(γ) condition holds for queue m and λ∗ if for every ε-JF(γ) trajectory
corresponding to λ∗, and every t ≥ 0, we have qm(t) = 0.

(b) Given a vector γ with components in [0,∞], we say that the Robust Jumping
Fluid condition (RJF(γ), for short) holds for queue m and λ∗ if there exists
some ε > 0 such that the ε-JF(γ) condition holds for queue m and λ∗.

Note the restriction on the number of jumps in terms of the tail exponents: the
heavier the arrival processes (i.e., the smaller the tail exponents γj), the larger the
number nj of jumps that we allow. As an example, if γ1 ≤ 1 and queue 1 is the only
heavy-tailed queue, then we allow up to b1/γ1c jumps at queue 1, and no jumps at
the other queues.

5. Main result. Our main result provides a necessary and sufficient condition
for robust delay stability in terms of JF trajectories. The proof is given in Sections 7
and 8.

Theorem 5.1. Let us fix a network with ` nodes, a set M of possible service
vectors, an arrival rate vector λ∗ � 0, a particular queue, m, of interest, and a vector
γ of tail exponents with components in (0,∞]. The queue m is robustly delay stable
(RDS) if and only if the RJF(γ) condition holds for queue m and λ∗.

5.1. Some intuition. We provide here a high-level explanation of our result.
Some more refined intuition is provided by the proof outlines in Sections 7.1 and 8.1.

Let M be a large constant. We say that the stochastic process Aj(t) has a jump
whenever it is larger than (approximately) M . Let Nj be the number of jumps of
Aj(t) during the interval [0,M ], and let N = (N1, . . . , N`). It turns out that for
any nonnegative integer vector n the probability of the event N = n scales (approxi-

mately) like M−γ
Tn. The latter quantity is “significant” (in the sense that it makes

an unbounded contribution to certain expected values) if and only if γTn ≤ 1. Thus,
over an interval of length M , we can focus on sample paths for which the realized vec-
tor n of jump counts satisfies γTn ≤ 1, and examine whether such sample paths can
cause the queue of interest to become large. We then argue that these sample paths
are well-approximated by the ε-JF(n) trajectories involved in the ε-JF(γ) condition.

5.2. Remarks. We continue with some remarks on the scope of our result.
Heavy-tailed queues. If queue m is heavy-tailed, i.e., γm ≤ 1, then the condition

γTn ≤ 1 allows n to be the mth unit vector. With such a vector n, we can have an
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ε-JF(n) trajectory with a positive jump in the mth component, resulting in a positive
value of qm(t). Thus, the RJF(γ) condition does not hold, and queue m is not RDS.
This is just a variation of the well-known fact that a queue with heavy-tailed arrivals
is not delay stable.

Unstable systems. Theorem 5.1 makes no stability assumptions. For unstable (or
marginally stable) systems, some components of ε-JF trajectories can grow arbitrarily
large. On the other hand, these components do not necessarily have a substantial effect
on the queue, m, of interest. As long as the mth component of all ε-JF trajectories
stays at zero, queue m will be RDS.

Comparison with the ZF condition. If γj > 1/2 for all j, then an ε-JF trajectory
can have at most one jump. For stable systems, the RJF condition boils down to
a robust version of the ZF condition introduced in Section 3. In other words, for
this case, a robust version of the ZF condition is a necessary and sufficient condition
for robust delay stability. On the other hand, since the (robust version of) the ZF
condition is strictly weaker than the RJF condition, it does not provide necessary and
sufficient conditions, for general γ.

The light-tailed case. Suppose that γj > 1 for all j, so that all arrival processes
are light-tailed. In this case, no jumps are allowed, and the RJF condition boils down
to considering ordinary fluid trajectories, with slightly perturbed arrival rates. We
have the following possibilities:

(a) If λ∗ is in the interior of the capacity region M, then 0 is in the interior of
Dλ∗(0) = λ∗−M. It then turns out that 0 is an attracting fixed point of the
fluid dynamics, the RJF condition holds, and we have RDS for all queues.
This is in line with existing results (e.g., see Theorem 4.5 of [8]).

(b) If λ∗ is on the boundary or outside the capacity region, and similar to our
earlier discussion of unstable systems, queue m could be either RDS or non-
RDS, depending on whether (perturbed) fluid trajectories cause qm to become
positive or not.

The case of zero tail exponents. Our definitions in Sections 2 and 4 are formulated
for a nonnegative vector γ. However, our result is restricted to the case where this
vector is positive. We comment on the reasons for this.

When γj = 0, we are dealing with an arrival process for which E [Aj(t)] is finite,
while E

[
Aj(t)

1+γ
]

may be infinite for every γ > 0. Our proofs involve at certain
places a division by γj , and break down if γj = 0. It is not clear whether a similar
result is possible when some of the tail exponents are zero.

Computational issues. As already hinted in the Introduction, checking the RJF
condition algorithmically appears to be a hard computational problem, amenable only
to impractical Tarski-like elimination algorithms. In one possible simplification, we
might just consider ε-JF trajectories with ε = 0, so that λ(t) = λ∗, for all times
t. However, this would still leave the indeterminacy of the of the jump times and
the jump sizes to be reckoned with. Even worse, a restriction to this limited class
of trajectories does not seem to lead to necessary and sufficient conditions for any
suitably modified notion of stability. See Appendix A.2 for further discussion. A
related question is whether we could, without loss of generality, require all the jumps
to occur at the same time, e.g., at time zero, thus eliminating the need to consider
all possible values of the jump times. Unfortunately, this is not the case: there exist
examples in which ε-JF trajectories can drive a queue m to a positive value, but this
can happen only if we allow the jumps to occur at different times; see Appendix A.5
for an example.
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5.3. Our example, revisited. On the positive side, Theorem 5.1 elucidates the
precise mechanism that leads to delay instability, through a coordination of multiple
abnormally large arrival vectors, at possibly different times and queues. Furthermore,
it allows us analyze simple problems, such as the one discussed in Section 3, which
we do next.

Recall the network of three queues in Section 3, in which γ = (γ, γ,∞). For γ in
the range (0, 0.5], consider a jumping fluid trajectory q(·), with n = (1, 1, 0), in which
both q1 and q2 undergo unit jumps at time 0. With this trajectory, q3 immediately
starts to grow positive. Since, γTn = 2γ ≤ 1, it follows that the RJF(γ) condition
fails to hold. Theorem 5.1 then establishes that queue 3 is not robustly delay stable.

On the other hand, when γ is in the range (0.5, 1], the constraint γTn ≤ 1 allows
at most one jump, either in q1 or q2. Without loss of generality, we can assume that
this jump takes place at time zero. It turns out that the fluid trajectories that start
from either q(0) = (1, 0, 0) or q(0) = (0, 1, 0), keep q3(·) at zero if and only if λ ≤ 0.5.
Therefore, for γ in range (0.5, 1], and also taking also robustness into account, queue
3 is RDS if and only if λ < 0.5.

6. Robust delay stability via Lyapunov functions. Lyapunov functions
are a powerful tool for the stability analysis of queueing networks, [19, 4, 9] e.g.,
in throughput optimality proofs for the MW policy [19, 14]. The references [10, 12]
provided a sufficient condition for delay stability based on a class of piecewise linear
Lyapunov functions, and used it to derive a sharp characterization of delay stability
for a special class of networks, namely networks with disjoint schedules. Nevertheless,
the Lyapunov approach in [10, 12] has some drawbacks: (a) the condition provided
therein is, in general, only sufficient for delay stability; (b) it does not take into
account the tail exponents, even though they play an essential role in delay stability,
as already discussed in Sections 3 and 5.3; (c) the Lyapunov functions considered were
piecewise linear, which is perhaps inadequate for the purpose of tight delay stability
conditions.

In this section, we explore the power of Lyapunov functions, for the case where
the tail exponents of the heavy-tailed queues may be arbitrarily close to zero, so that
the RJF condition allows an arbitrarily large number of jumps.

For the remainder of this section, we assume that queues 1, . . . , h can be heavy-
tailed, where h < `, while the remaining queues are light-tailed. Formally, we consider
the set Γ of tail coefficients, defined by

Γ = {γ � 0 : γj > 1, for j = h+ 1, . . . , `}.

We also fix an arrival rate vector λ∗ � 0 and a light-tailed queue m > h of interest.

Definition 6.1 (Special Lyapunov function). For any ε > 0, we say that a
function V : R`+ → R+ is a special ε-Lyapunov function if:

1. V is Lipschitz continuous, with Lipschitz constant 1.
2. V̇

(
q(t)

)
≤ −ε whenever V

(
q(t)

)
> 0, for all fluid trajectories q(·) corre-

sponding to arrival rate λ∗.
3. We have V (0) = 0. Furthermore, if qm > 0, then V (qm) > 0.
4. V is nonincreasing along the coordinates associated with heavy-tailed queues;

that is, for j = 1, . . . , h, for any q ∈ Rn+, and any α > 0, we have V (q +
αej) ≤ V (q), where ej is the jth unit vector.

Special ε-Lyapunov functions, as defined above, are quite similar to the functions
considered in Theorem 2 of [12]. However, in contrast to [12], our special Lyapunov
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functions need not be piecewise linear. Our next result establishes a strong connection
between the ε-JF(γ) condition and the existence of special ε-Lyapunov functions. The
proof is given in Section 9.

Theorem 6.2. For any ε > 0, there exists a special ε-Lyapunov function if and
only if the ε-JF(γ) condition holds for every γ ∈ Γ.

The special ε-Lyapunov functions constructed in the proof of Theorem 6.2 are
not piecewise linear. We do not know whether Theorem 6.2 remains valid if we were
restrict to piecewise linear function

Combining Theorems 5.1 and 6.2, we can establish a strong connection between
robust delay stability and special ε-Lyapunov functions. In what follows, we say
that queue m is ε-RDS(γ) if it is delay stable under all arrival processes in the class
Aε(γ;λ∗) in Definition 2.1(a).

Corollary 6.3. Let us fix a network with ` nodes, a set M of possible service
vectors, an arrival vector λ∗ � 0, the number h of heavy-tailed queues, and a light-
tailed queue m > h.

(a) If there exists a special ε-Lyapunov function for some ε > 0, then queue m is
RDS for all tail exponents γ ∈ Γ.

(b) Suppose that there exists some ε > 0 such that for all γ ∈ Γ, queue m is
ε-RDS(γ). Then, there exists an ε-special Lyapunov function.

The proof is provided in Section 9.3. We conjecture that Corollary 6.3(b) can be
strengthened to provide a converse to part (a).

Conjecture 6.4. If queue m is RDS for all tail exponents γ ∈ Γ, then for some
ε > 0 there exists a special ε-Lyapunov function.

If Conjecture 6.4 is true, we will have a tight characterization: a queue will be
RDS for all tail exponents γ ∈ Γ if and only if there exists a special ε-Lyapunov
function that testifies to this. Establishing the conjecture appears to be difficult.
Technically it amounts to reversing the order of the quantifiers in the clause “there
exists ε > 0 such that for all γ ∈ Γ . . .” in Corollary 6.3(b), and showing equivalence
with the statement “for every γ ∈ Γ there exists some ε > 0...”.

Our Lyapunov-based results are relevant to the case where nothing is known
about the tail exponents of the heavy-tailed queues, other than the fact that they
are positive. On the other hand, Lyapunov functions are unlikely to provide useful
characterizations of robust delay stability for specific values of the tail exponents,
because there is no apparent way of accounting for the number of jumps through
Lyapunov functions.

7. Proof of the “if” direction of Theorem 5.1 (RJF =⇒ RDS). In this
section we provide the proof of the “if” direction of Theorem 5.1, i.e., that the RJF
condition implies RDS.

Throughout this section, we consider a network with ` nodes, and a set M of
possible service vectors. We fix an arrival rate vector λ∗ � 0, a particular queue, m,
of interest, a vector γ of tail exponents with components in (0,∞], and some ε > 0
for which the ε-JF(γ) condition holds for λ∗ and queue m. Our goal is to establish
robust delay stability for queue m.

The proof is organized in a sequence of lemmas whose proofs are collected in
Appendix B. However, before proceeding to the formal arguments, it is helpful to
provide an overview of the proof.
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7.1. Outline of the proof. Let us fix an arbitrary time T . We aim at upper
bounds for the probability P

(
Qm(T ) ≥M

)
, as M gets large. As long as these bounds

are a summable function of M , and independent of T , it will follow that E [Qm(T )]
is finite and a bounded function of T , which is our goal. Let us now fix some M , and
keep it fixed throughout, except for the end of the proof.

The proof relies on various probabilistic bounds, as well as on deterministic prop-
erties of the MW dynamics. Let us start with the probabilistic part, which is focused
on showing that the stochastic system mostly follows the deterministic fluid dynam-
ics, except for certain “jumps” caused by the heavy tails of the arrival processes. We
define a threshold for what constitutes a jump, and then develop a probabilistic bound
on the numbers of jumps. A difficulty here is that if we use a fixed threshold, and
because T is arbitrary, a bound on the number of jumps is not possible. We handle
this issue by using a threshold θt that increases almost linearly as we move further to
the past, of the form

(7.1) θt =
M + T − t

η log(M + T − t)
, t = 0, 1, . . . , T.

for some positive constant η to be defined later. At any time t ≤ T and for any
index j, we say that Aj(t) is a jump if Aj(t) > θt. Ignoring logarithmic factors, we

show that the jump probability P
(
Aj(t) > θt

)
is of order at most 1/(M + T − t)1+γ′j ,

where γ′j is slightly smaller than the tail exponent γj . By summing over t and after

some elementary calculations, we then obtain that P
(
Nj = nj

)
is of order at most

1/Mnjγ
′
j , where Nj is the number of “jumps” of the jth arrival process during the

interval [0, T ]. Then, a further calculation shows that, if N = (N1, . . . , N`), then
P(γTN > 1) is of order at most 1/Mβ , for some constant β ∈ (1, 2), and is therefore
a summable function of M ; see Lemma 7.4.

We then consider stochastic fluctuations in the arrival process, other than jumps.
We argue that they average out so that the cumulative arrival process follows its fluid
counterpart. We refer to this as the “small fluctuations event,” and show that it
occurs with probability at least 1− `/M2; see (7.11) and Lemma 7.6.

Having completed the probabilistic analysis, we then switch to deterministic (sam-
ple path) considerations. Let W (n) be the set of all points q that can be reached by
some ε-JF(n) trajectory (see Definition 7.7). As a first step, we exploit some special
properties of the MW dynamics and show that W (n) is ε-attracting; that is, any
fluid trajectory that starts outside W (n) moves towards that set with rate at least
ε (Lemma 7.9). We then consider a “nice” sample path, that is, a sample path for
which the small fluctuations event occurs, and for which the realized vector of jump
counts n satisfies γTn ≤ 1. (As discussed earlier, “nice” sample paths have proba-
bility 1 − O(M−β) , with β > 1.) Our deterministic analysis, outlined in the next
paragraph, shows that any such sample path stays within O(M) distance from the
set W (n). Since γTn ≤ 1, the ε-JF(γ) condition implies that any point in W (n)
satisfies qm = 0. Thus, for nice sample paths, we have Qm(T ) = O(M) and therefore,
P
(
Qm(T ) ≥ M

)
is of order at most 1/Mβ , for the constant β ∈ (1, 2) mentioned

earlier. This readily implies a uniform upper bound on E
[
Qm(T )

]
.

The analysis of the dynamics under nice sample paths has two parts. We first
study the dynamics between jumps: we rely on the small fluctuations event, and then
make use of a result from [18] (Theorem 7.2) to ensure that small fluctuations in the
arrivals result into comparably small changes in the resulting stochastic trajectory;
cf. Lemma 7.10. Second, to understand what happens at jump times, we recall that
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the jump vectors n associated to nice sample paths satisfy γTn ≤ 1. Such vectors n
are allowed in ε-JF(γ) trajectories, and therefore the jumps cannot take the ε-JF(n)
trajectory away from W (n). This implies that a “nice” sample path stays “close” to
an ε-JF(n) trajectory, and therefore has a “small” Qm.

7.2. Sensitivity of Max-Weight dynamics. The proof, for both directions of
the theorem, requires fairly precise bounding of the fluctuations of the stochastic tra-
jectories. To this effect, we rely heavily on a fluctuation bound for the MW dynamics,
established in [18]:

Theorem 7.1 (Theorem 2 from [18]). Fix a network (i.e., the number of nodes
and the setM of possible service vectors), operating under the MW policy, and let Q(·)
be the corresponding queue length stochastic process. There exists a (deterministic)
constant C ≥ 1 such that, for any arrival rate vector λ � 0, any q(0) � 0, any t ≥ 0,
and any sample path, if q(0) = Q(0), then

(7.2)
∥∥Q(t)− q(t)

∥∥ ≤ C

(
1 + ‖λ‖+ max

k<t

∥∥∥ k∑
τ=0

(
A(τ)− λ

)∥∥∥) ,
where q(·) is the fluid trajectory corresponding to λ, initialized at q(0).

We will actually use the following variant of Theorem 7.1, which allows for differ-
ent initial conditions. The proof is given in Section B.1.

Theorem 7.2. Under the same assumptions as in Theorem 7.1, except that we
allow for Q(0) and q(0) to be different, and for the same constant C, we have

∥∥Q(t)− q(t)
∥∥ ≤ ∥∥Q(0)− q(0)

∥∥+ C

(
1 + ‖λ‖+ max

k<t

∥∥∥ k∑
τ=0

(
A(τ)− λ

)∥∥∥) ,
7.3. Arrival process and jumps. We now return to the formal proof. Recall

that throughout this section, we fix the network, λ∗ � 0, and the tail exponents
γj ∈ (0,∞]. We assume that the ε-JF(γ) condition holds for λ∗, queue m, and some
ε > 0. We fix some positive integers M and T ; these will remain fixed throughout,
except for the end of the proof, and except for some additional assumptions that M
is “large enough.”

We consider an arrival process A(·) in the class Aδ(γ;λ∗) introduced in Defini-
tion 2.1, with δ = γε/20C, where C is the constant in Theorem 7.2 and

(7.3) γ = min
j=1,...,`

γj .

In particular,

(7.4)
∥∥E[A(t)]− λ∗

∥∥ ≤ γε

20C
, ∀ t ≥ 0.

Our goal is to derive an upper bound on P(Qm(T ) ≥ M) that holds uniformly for
every arrival process A(·) in Aδ(γ;λ∗), every T , and every large enough M . This will
then be used to conclude that the RDS property holds.

Since we have assumed that the tail exponents are nonzero, we have γ > 0.
Furthermore, in order to simplify the proof, it is convenient to assume that

(7.5) γ ≤ 1.
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Claim 7.3. The assumption γ ≤ 1 can be made without loss of generality.

Proof. Given a system, call it S, consider a new system S′ in which we add one
more queue, queue 0, with γ0 < 1, which “does not interact” with the others; for
example, for any allowed service vector µ in system S, we introduce a corresponding
service vector (1,µ) in system S′. This way the dynamics of queues 1, . . . , ` are the
same in the two systems S and S′. It follows that for m ≥ 1, queue m is RDS in
system S if and only if it is RDS in system S′. Furthermore, because of the lack of
interaction, the RJF condition for queue m holds in system S if and only if it holds
in system S′.

Once we prove the result for the case γ ≤ 1, we apply it to system S′ and obtain
the equivalence of RDS and RJF for the latter system. Based on the above discussion,
this also establishes the equivalence of RDS and RJF for the original system S.

We define some more constants:

(7.6) µ = 1 + max
µ∈M

‖µ‖+ ‖λ∗‖+ ε,

and

(7.7) η =
8000C2`2µ

(γε)2
.

Having fixed M , T , and η, we finally define θt as in (7.1).
For j = 1, . . . , ` and t = 0, . . . , T − 1, we say that t is a jump time for Aj(·),

if Aj(t) > θt. For any j and any τ ∈ [0, T ), we let Nj(τ) be the (random) number
of jumps in Aj(·) that occur during [0, τ ], and also define the corresponding vector
N(τ) =

(
N1(τ), . . . , N`(τ)

)
. To simplify notation, and as long as T is fixed, we use

N and Nj to refer to N(T − 1) and Nj(T − 1), respectively. Note that with this
definition, N = N(T − 1) includes all jumps that can affect Q(T ).

We consider the event

(7.8) E jump(T,M) =
{
γTN ≤ 1

}
.

We will argue that it occurs with high probability.
Let F be the set of all n � 0 such that 1 < γTn ≤ 2. If F is empty, then

whenever γTn > 1, we must have γTn > 2. If F is nonempty, it has finitely many
elements, which implies that the minimum minn∈F γ

Tn is attained and its value is
greater than 1. In either case, we obtain that there exists a constant β > 1 such that

(7.9) if γTn > 1, then γTn ≥ β3.

Without loss of generality, we can take β to satisfy 1 < β < 2. In the next lemma we
show that the probability that γTN > 1 decays at least as fast as 1/Mβ .

Lemma 7.4. There exists a constant M1 ≥ 0, independent of T , such that if
M ≥M1, then

P
(
E jump(T,M)

)
= P(γTN ≤ 1) ≥ 1−M−β .

The proof is given in Appendix B.2, and relies on the intuition that the probability
of a jump in the jth arrival process scales at most as M−γj (approximately), which

then implies that the probability of the event {N = n} scales at most as M−γ
Tn

(approximately).
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7.4. Fluctuations of the arrival process. We now study the remaining fluc-
tuations of the cumulative arrival processes, after we exclude the jumps. We begin
with a concentration inequality for the sum of independent random variables. The
proof of our next lemma is given in Appendix B.3 and is essentially a reformulation
of the Bernstein inequality; see, e.g., (1.21) in Appendix 1 of [2].

Lemma 7.5. Suppose that X1, . . . , Xn are independent random variables that sat-
isfy Xi ∈ [0, b] and E [Xi] ≤ λ, for some b, λ > 0. Let Y = X1 + · · ·+Xn. Then, for
any z ≥ 0,

(7.10) P
(∣∣Y − E [Y ]

∣∣ > z
)
≤ 2 exp

(
− z2

2b
(
λn+ z/3

)) .
We consider the truncated process A∗(t) = min

{
A(t), θt

}
, where the minimum

is taken componentwise. We define the “small fluctuations” event
(7.11)

Efluc(T,M) =
{∥∥∥ t∑

τ=t0

(
A∗(τ)− λ∗

)∥∥∥ ≤ γε

10C

(
M + T − t0

)
, for 0 ≤ t0 ≤ t < T

}
,

where C is the constant in Theorem 7.2.

Lemma 7.6. There exists a constant M2 ≥ 0 independent of T , such that if M ≥
M2, then P

(
Efluc(T,M)

)
≥ 1− `M−2.

The proof is somewhat long but straightforward. It relies on the concentration in-
equality in Lemma 7.5, and is given in Appendix B.4.

7.5. Deterministic analysis of the dynamics. We start with some defini-
tions. It is useful to recall here that ε-JF trajectories start at zero just before time
zero, but can become nonzero, at time zero or later, due to jumps or unstable drifts.

Definition 7.7. For any nonnegative integer vector n, we define W (n) as the
set of all points in R`+ that can be reached by some ε-JF(n) trajectory.

Because ε-JF trajectories are by definition nonnegative, W (n) is a subset of R`+.
Note that the set W (n) depends on ε, but since ε is held fixed, we suppress this
dependence from our notation.

Definition 7.8 (ε-attracting and ε-invariant sets).
(a) A subset W of R`+ is ε-attracting if every fluid trajectory q(·) corresponding

to λ∗ and initialized at some arbitrary q(0) � 0, satisfies

(7.12)
d

dt
d
(
q(t),W

)
≤ −ε,

whenever q(t) 6∈W .
(b) A subset W of R`+ is ε-invariant if for any λ � 0 that satisfies ‖λ − λ∗‖ ≤

ε, and any fluid trajectory q(·) corresponding to λ and initialized at some
arbitrary q(0) ∈W , we have q(τ) ∈W , for all τ ≥ 0.

We observe that if W is ε-attracting, and if 0 ≤ t0 < t1, then every fluid trajectory
satisfies

(7.13) d
(
q(t1), W

)
≤ max

{
0, d

(
q(t0), W

)
− (t1 − t0)ε

}
.
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It can be shown that an ε-attracting set is ε-invariant, but we do not need this fact.
We are interested instead in the converse statement, that every ε-invariant set is ε-
attracting, which we then apply to the set W (n); this is the subject of the next
lemma.

Lemma 7.9. (i) Every ε-invariant set is ε-attracting.
(ii) For any n ∈ Z`+, the set W (n) in Definition 7.7 is ε-invariant and, a fortiori,

ε-attracting.

The proof is given in Appendix B.5 and relies on the intuition that for an ε-invariant
set W , ε-perturbations of λ∗ cannot take the trajectories away from W . This means
that there must be a drift towards W that locally counteracts such perturbations.
The non-expansive property of the Max-Weight dynamics then enables us to extend
this local counteraction result into the desired global attraction property.

Let us fix a sample path of the arrival process. For any t ∈ [0, T ), let n(t) be the
realized value of N(t), i.e., n(t) is the vector with the realized number of jumps in the
process A(·) up to time t (see the paragraph preceding (7.8)). With a bit of abuse of
notation, we let

(7.14) W (t) = W
(
n(t− 1)

)
.

(The reason for the t−1 term on the right-hand side is that we want to compare W (·)
and Q(·), but Q(t) is only affected by jumps that happen before time t.)

7.6. Some more intuition. The general idea is to show that Q(·) stays close
to the set W (·) so that we can ultimately exploit the fact that qm = 0, for every
q ∈W (T ). There are two parts to the argument:

(i) If at a certain time, Qj(t) has a jump (i.e., a large increase), the set W (t)
expands along the jth coordinate and so the distance between Q(t) and W (t)
does not increase.

(ii) In between jumps, Q(t) follows the fluid trajectory, plus some fluctuations,
within the range allowed by Lemma 7.6. These fluctuations get “elimi-
nated” because the fluid trajectory is attracted to W (t) (Lemma 7.9). Note
that (7.11) allows for larger fluctuations in the far past (see the term M +
T − t0); however, for fluctuations in the far past, the motion in the direction
of W (t) happens for a longer time period, enough to eliminate them. This
explains the choice of the threshold θt in (7.1); the logarithmic term in the
denominator is included for technical reasons.

7.7. The distance from the invariant set. Given times that satisfy 0 ≤ t0 <
t1 ≤ T , we say that the interval (t0, t1) is jump-free if Aj(τ) ≤ θτ , for all j and all
τ ∈ (t0, t1). Note that the initial time t0 and the end time t1 are allowed to be jump
times. Let M3 ≥ 1 be a constant, independent of T , such that for any M ′ ≥M3,

(7.15)
γεM ′

10
+

`M ′

η logM ′
+ ε+ (‖λ∗‖+ 1)C + µ ≤ γεM ′

6
.

Lemma 7.10. Suppose that M ≥ M3 and fix times that satisfy 0 ≤ t0 < t1 ≤ T .
Consider a sample path under which the event Efluc(T,M) occurs, and the interval
(t0, t1) is jump-free. Then,

(7.16) d
(
Q(t1), W (t1)

)
≤ max

{
0, d

(
Q(t0), W (t0)

)
−(t1−t0)ε

}
+
εγ

6
(M+T−t0).
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Note that the lemma also applies when t1 = t0 + 1, so that the set of integers in
(t0, t1) is empty. The proof, which is given in Appendix B.6, relies on the sensitivity
bound in Theorem 7.2 and the fact that W (t0) is ε-attractive. The first term on the
right-hand side, reflects the fact that a fluid trajectory is attracted to W (·), during
the jump-free interval; the second term reflects the effect of the smaller fluctuations
during the interval (t0, t1).

We then apply Lemma 7.10 and use strong induction on t, for t ≤ T , to establish
the next lemma. Its proof is given in Appendix B.7.

Lemma 7.11. Suppose that M ≥ M3. Consider a sample path under which the
events E jump(T,M) and Efluc(T,M) occur. Then, d

(
Q(T ),W (T )

)
≤Mε/2.

7.8. Bounding E[Qm(t)]. Let M = max{M1,M2,M3}, where M1, M2, and M3

are the constants in Lemma 7.4, Lemma 7.6, and (7.15), respectively. Since these
constants are independent of T , the constant M is also independent of T .

Let us consider some M ≥ M , and a sample path under which the events
E jump(T,M) and Efluc(T,M) occur. In particular, we have γTn ≤ 1, where n is
the realized value of N, i.e., the vector with the number of jumps until time T − 1,
for that particular sample path. The ε-JF(γ) condition, which we have assumed to
hold, implies that every ε-JF(n) trajectory with γTn ≤ 1, keeps qm at zero, and
therefore, every vector q ∈ W (T ) has qm = 0. Consequently, for every sample path
in E jump(T,M) ∩ Efluc(T,M), we have

(7.17) Qm(T ) ≤ d
(
Q(T ),W (T )

)
≤ Mε

2
,

where the second inequality follows from Lemma 7.11. Therefore, for any M ≥ M ,
we have

P
(
Qm(T ) >

Mε

2

)
≤
(

1− P
(
E jump(T,M)

) )
+
(

1− P
(
Efluc(T,M)

) )
≤ M−β + `M−2,

(7.18)

where the first inequality follows from (7.17) and the union bound, and the second
inequality is due to Lemmas 7.4 and 7.6. Since β is by definition greater than 1,
the formula E [Qm(T )] =

∫∞
0

P
(
Qm(t) > M

)
dM implies that E [Qm(T )] is bounded

above by a constant that does not depend on T . Furthermore note that this bound
applies uniformly to all processes in the class Aδ(γ;λ∗), for δ = γε/20C (see (7.4)).
This shows that queue m is robustly delay stable and completes the proof of the first
direction of Theorem 5.1.

8. Proof of the reverse direction of Theorem 5.1 (RDS =⇒ RJF). In
this section we prove the reverse (“only if”) direction of Theorem 5.1, i.e., that RDS
implies that the ε-JF(γ) condition holds for some ε > 0. The proof is organized in a
sequence of lemmas whose proofs are collected in Appendix C.

We actually prove the contrapositive and start by assuming that for every ε > 0,
there exists an ε-JF(n) trajectory qε(·), with γTn ≤ 1, and such that qεm(t) > 0, at
some positive time t.

We keep λ∗, γ, and ε fixed throughout the proof, and show that there exists an
arrival processes in the class Aε(γ;λ∗) for which queue m is not delay stable. Since
ε can be arbitrarily small, this will imply that there exists no δ such that queue m
is delay stable for all arrival processes in the class Aδ(γ;λ∗), and, therefore, queue
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m is not RDS. However, before proceeding to the formal arguments, we overview
informally the key ideas in the proof.

8.1. Outline of the proof. The main idea is to construct a certain arrival
process A(·) in the class Aε(γ;λ∗), whose arrival rate is a time-scaled version of the
piecewise constant rate λ(·) associated with the ε-JF(n) trajectory. We then use the
bounded sensitivity property of the MW dynamics (Theorem 7.2) to show that the
resulting process Q(·) tracks a suitably scaled (by a factor of T ) version of the ε-
JF trajectory qε(·), with substantial probability. In particular, Q(T ) will be (with
substantial probability) comparable to Tqε(1), leading to a large value of E

[
Qm(T )

]
.

This part of the argument capitalizes on the fact that the number of jumps of the
ε-JF(n) trajectory is limited by the condition γTn ≤ 1.

On the technical side, the tracking result involves two separate arguments:
(a) Whenever the ε-JF(n) trajectory has a jump, at some time τ , there is sub-

stantial probability that the stochastic process also has a jump at some time
near the scaled counterpart, Tτ , of τ ; see Lemma 8.3.

(b) In between jump times of the ε-JF(n) trajectory, we use concentration in-
equalities to show that there is a fairly large probability that the stochastic
process stays close to its fluid counterpart.

8.2. Jumps of the ε-JF(n) trajectory. We fix a network with ` nodes, a set
M of possible service vectors, an arrival rate vector λ∗ � 0, a particular queue, m,
of interest, and a vector γ of tail exponents with components in (0,∞]. We also fix
some ε > 0 and assume that the ε-JF(γ) condition fails to hold.

We start with a few elementary observations, namely, that the ε-JF(n) trajectories
of interest can be taken, without loss of generality, through scaling and perturbations,
to have some convenient properties that allow us to simplify subsequent notation and
arguments. The proof is given in Appendix C.1.

Lemma 8.1. If the ε-JF(γ) condition fails to hold, then there exists some n � 0
with γTn ≤ 1, and an ε-JF(n) trajectory qε(·) with the following properties:

(a) qεm(1) > 0;
(b) The times at which qε(·) is discontinuous (the “jump times”) all belong to

the open interval (0, 1).
(c) At each jump time, exactly one of the components of qε(·) is discontinuous.
(d) The arrival rate associated to qε(·) satisfies inft λj(t) > 0, for all j.

For the rest of the proof, we fix an ε-JF(n) trajectory with the properties in
Lemma 8.1, together with the associated vector n and rate function λ(·). We define
n = n1 + · · ·+ n`, which is the total number of jumps.5

We define Θ0 = 0, Θn+1 = 1, and for k = 1, . . . , n, let Θk be the kth jump time.
In particular,

(8.1) 0 = Θ0 < Θ1 < · · · < Θn < Θn+1 = 1.

We will use jk to refer to the queue at which the kth jump occurs, and ak to refer to
the size of the kth jump. In particular, at time Θk, for k = 1, . . . , n, qj(·) is continuous
for every j 6= jk, and

qεjk(Θk) = qεjk(Θ−k ) + ak.

5We note that n may be equal to zero. For example, for a single unstable queue, an ε-JF
trajectory becomes positive, even in the absence of jumps. Such a system is not RDS, consistent
with our result.
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8.3. Defining certain constants. As in (7.6), we define

(8.2) µ = 1 + max
µ∈M

‖µ‖+ ‖λ∗‖+ ε.

Moreover, similar to (7.3), we let

(8.3) γ = min
j=1,...,`

γj > 0.

By arguing as in Claim 7.3, we can and will assume, without loss of generality, that
γ ≤ 1. We then define a positive constant

(8.4) c = qεm(1),

and also let

(8.5) d =
1

2
min

{
γc

4(1 + 4µ)
, min

k=0,...,n

{
Θk+1 −Θk

}
,

mink=1,...,n ak
1 + 2µ

}
.

(In case n = 0, the last term inside the brackets, is taken to be zero.)

8.4. Defining the stochastic arrivals. Let us fix some constants t0 ≥ 0 and
T > 0, and keep them fixed until the end of the proof, in Section 8.7. In this
subsection, we define a stochastic arrival process over an interval of the form [t0, t0+T ),
thus constructing what we call an episode of the overall process. Later, in Section 8.7,
we concatenate multiple episodes, to construct the stochastic process over the entire
timeline [0,∞).

Consider the arrival rate function λ(·) of the ε-JF(n) trajectory; in particular,
‖λ(t)−λ∗‖ ≤ ε. The arrival rate vector for the stochastic process during the episode
is a time-scaled (by a factor of T ) and shifted (by t0) version of λ(·). More concretely,
we let

(8.6) λ(t) = λ
( t− t0

T

)
, t ∈ [t0, t0 + T ).

Clearly,

(8.7)
∥∥λ(t)− λ∗

∥∥ ≤ ε, ∀ t ∈ [t0, t0 + T ).

Furthermore, because of Lemma 8.1(d), inft λj(t) > 0, for every j.
We now digress to introduce certain constants that will be used to specify the

exact form of the distribution of the arrival processes. For any α > 0, we let

(8.8) σ(α) =

∫ ∞
µ

x−(1+α) log(x+ 1) dx,

where µ was defined in (8.2). Then, for any α > 0, we have
(8.9)

σ(α)

σ(1 + α)
=

∫∞
µ
x · x−(2+α) log(x+ 1) dx∫∞

µ
x−(2+α) log(x+ 1) dx

≥
µ
∫∞
µ
x−(2+α) log(x+ 1) dx∫∞

µ
x−(2+α) log(x+ 1) dx

= µ.

Definition 8.2 (Arrivals during an episode). Given T > 0 and t0 ≥ 0, we
define the arrival process over the interval t ∈ [t0, t0 + T ) (which we call an episode)
as follows:
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(a) If γj =∞, then Aj(t) = λj(t) (deterministically).
(b) If γj <∞, then Aj(t) is a random variable with probability density function

(8.10)

fAj(t)(x) =
λj(t)

σ(γj)
·x−(2+γj) log(x+1)1 (x ≥ µ) +

(
1− λj(t)σ(1 + γj)

σ(γj)

)
δ(x),

where 1(·) denotes the indicator function, δ(·) is Dirac’s delta function, and
σ(·) is as defined in (8.8).

(c) The Aj(t), for different j and t, are independent.
We refer to

{
A(t) : t ∈ [t0, t0 + T )

}
as an episode-adjusted arrival process.

From (8.9), we obtain σ(γj)/σ(1+γj) ≥ µ ≥ λj(t), where the last inequality is due
to (8.2) and (8.7). Therefore, the coefficient of the delta function is nonnegative, and
we have a well-defined distribution. It is also easy to verify that

∫∞
0
fAj(t)(x) dx =

1. Furthermore, from (8.7), λj(t) is bounded above. It follows that each Aj(t) is
dominated by a random variable Aj with tail exponent γj , and consequently the
process also has tail exponent γj . Moreover, E [Aj(t)] =

∫∞
0
x fAj(t)(x) dx = λj(t).

Therefore, using again (8.7), we have
∥∥E [A(t)]− λ∗

∥∥ ≤ ε, for all t ∈ [t0, t0 + T ). In
particular, the process A(·) belongs to the class Aε(γ;λ∗), as desired.

8.5. Probabilistic analysis. We aim to show that during an episode, and with
significant probability, the queue vector process Q(·) stays close to a scaled version of
the ε-JF trajectory, i.e., that

Q(t) ≈ Tqε
( t− t0

T

)
, ∀ t ∈ [t0, t0 + T ).

To accomplish this we consider each interval of the form [t0 + ΘkT, t0 + Θk+1T ), for
k = 0, 1, . . . , n, and show that there is a substantial probability that the arrival process
we have defined has the following properties: (a) as long as k > 0, it has a jump in a
small segment in the beginning of the interval, and (b) it has small fluctuations in the
rest of the interval. Below, we define events that capture the above two properties.

For k = 1, . . . , n, let Bk be the cumulative arrival vector over the interval [t0 +
ΘkT, t0 + ΘkT + dT ), i.e.,6

(8.11) Bk =

t0+ΘkT+dT−1∑
t=t0+ΘkT

A(t).

We let E jump
k be the event that Bk emulates the jump in qε(·) at time Θk, scaled by

T , i.e.,

(8.12) E jump
k =

{∥∥Bk − Takejk
∥∥ ≤ dT (1 + 2µ)

}
,

where jk has been defined as the index of the queue at which the kth jump takes
place, and d is the constant defined in (8.5).

Lemma 8.3. There exist ψ ∈ (0, 1) and T 1 > 0, such that if T ≥ T1, then, for
k = 1, . . . , n, and for the episode-adjusted arrival process over an episode [t0, t0 + T ),
we have P(E jump

k ) ≥ ψT−γjk log T .

6To avoid notation clutter, we present the proof as if ΘkT or ΘkT + dT were integer, which is
not necessarily the case. Everything goes through, with occasional trivial modifications, if a sum of

the form
∑b

t=a ct is interpreted as
∑bbc

t=bac ct.
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The proof is given in Appendix C.2.
Recall now that the function λ(·) driving the trajectory qε(·) is piecewise constant,

with a finite number of pieces. We use r to denote the number of such pieces. We
then proceed to define certain “small fluctuations” events. For k = 0, 1, . . . , n, we
let Efluc

k be the event that the cumulative fluctuations of A(·) over the interval [t0 +
ΘkT + dT, t0 + Θk+1T ) are small, i.e.,
(8.13)

Efluc
k =

{∥∥∥ t∑
τ=t0+ΘkT+dT

(
A(τ)−λ(τ)

)∥∥∥ ≤ γcT

32Cr
, ∀ t ∈ [t0+ΘkT+dT, t0+Θk+1T )

}
.

Lemma 8.4. There exists a T 2 ≥ 0 such that if T ≥ T 2, then for k = 0, 1, . . . , n,
and for the episode-adjusted process over an episode [t0, t0 + T ), we have P(Efluc

k ) ≥
1/2.

The proof is given in Appendix C.3.
Note that each one of the events E jump

k , for k = 1, . . . , n, and Efluc
k , for k = 0, . . . , n,

is determined by the arrival process during a particular interval, and that all of these
intervals are disjoint. Thus, the independence assumption on the arrival process
implies that all of these events are independent. Therefore, if T ≥ max{T 1, T 2}, then

P
(
E jump

1 , . . . , E jump
n , Efluc

0 , . . . , Efluc
n

)
=

n∏
k=1

P(E jump
k ) ·

n∏
k=0

P(Efluc
k )

≥
n∏
k=1

ψT−γjk log T ·
n∏
k=0

1

2

=
1

2

(
ψ log T

2

)n
T−

∑n
k=1 γjk

=
1

2

(
ψ log T

2

)n
T−γ

Tn

≥ 1

2

(
ψ

2

)n
T−γ

Tn log T

≥ 1

2

(
ψ

2

)1/γ

T−γ
Tn log T

≥ 1

2

(
ψ

2

)1/γ

T−1 log T,

(8.14)

where the first inequality follows from Lemmas 8.3 and 8.4. The second inequality is
because n ≥ 1 and (without loss of generality) log T ≥ 1. The third inequality is due

to nγ =
∑`
j=1 njγ ≤

∑`
j=1 njγj ≤ 1, so that n ≤ 1/γ, together with the fact ψ ≤ 1

(see Lemma 8.3). The last inequality is again because γTn ≤ 1.

8.6. E[Qm] is large at the end of an episode. We are now ready to argue

that if the events E jump
1 , . . . , E jump

n and Efluc
0 , . . . , Efluc

n occur, then, over an episode
[t0, t0 + T ), the process Q(·) stays close to the suitably scaled ε-JF trajectory. As a
consequence, the value of Qm at the end of the episode becomes of order cT , where
c = qεm(1) > 0, as in (8.4). This argument is entirely deterministic. It is carried out
in the course of the proof of the next lemma (in Appendix C.4), and relies on the
sensitivity bound in Theorem 7.2.
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Lemma 8.5. There exists a T 3 ≥ 0 such that if T ≥ T 3, then the following
holds. If a sample path of the episode-adjusted process over the episode [t0, t0 + T )

satisfies the events E jump
1 , . . . , E jump

n and Efluc
0 , . . . , Efluc

n , and if
∥∥Q(t0)

∥∥ ≤ cT/5, then,
Qm(t0 + T ) ≥ cT/2.

Let ρ = (ψ/2)
1/γ /

4 and T = max{2, T 1, T 2, T 3}, where T 1, T 2, and T 3 are the
constants in Lemmas 8.3, 8.4, and 8.5, respectively. We note that all of these con-
stants, T 1, T 2, T 3, and therefore T as well, are defined in terms of general parameters
and properties of the particular ε-JF trajectory, and are deterministic. Lemma 8.5
and (8.14) imply that for an episode (t0, t0 + T ), with T ≥ T , and initialized so that
‖Q(t0)‖ ≤ cT/5, we have
(8.15)

P
(
Qm(t0 + T ) ≥ cT

2

)
≥ P

(
E jump

1 , . . . , E jump
n , Efluc

0 , . . . , Efluc
n

)
≥ 2ρ T−1 log T,

which implies that

(8.16) E[Qm(t0 +T )] ≥ cT

2
P
(
Qm(t0 + T ) ≥ cT

2

)
≥ cT

2
·2ρT−1 log T = ρc log T .

8.7. Concatenating episodes, over the entire timeline. So far, we have
defined and studied an arrival process over an episode [t0, t0+T ). We now concatenate
a sequence of such episodes, of increasing duration, which defines an arrival process
over an infinite timeline.

We define times T0, T1, T2, . . . , and arrival processes for the intervals [Ti, Ti+1),
recursively, as follows. We let T0 = 0 and T1 = T , where T was defined in the last
paragraph of Section 8.6. We also let A(·), for t ∈ [T0, T1) be the corresponding
episode-adjusted process, as in Definition 8.2. Suppose now that we have defined Ti,
for some i ≥ 1, as well as the arrival process for t ∈ [0, Ti). We then let

(8.17) Ti+1 = Ti + max

{
Ti,

10E
[
‖Q(Ti)‖

]
c

}
.

Finally, we define the arrival process over the episode [Ti, Ti+1) to be the corresponding
episode-adjusted process. With this recursion, the arrival process is now well-defined
for all times t ≥ 0.

Note that E
[
‖Q(Ti)‖

]
≤ E

[∑Ti−1
t=0 ‖A(t)‖

]
=
∑Ti−1
t=0 E

[
‖A(t)‖

]
≤ Ti`(‖λ∗‖ +

ε) < ∞. This guarantees that all Ti are finite, and that we have an infinite number
of episodes. Moreover, note that for i = 1, 2, . . ., we have Ti+1 ≥ 2Ti. As a result,
Ti ≥ 2i−1T and also,

(8.18) log(Ti+1 − Ti) ≥ log Ti ≥ (i− 1) log 2,

where the last inequality is because Ti ≥ T ≥ 2.
We define the event

Bi =
{
‖Q(Ti)‖ ≤

(Ti+1 − Ti)c
5

}
,

and use the Markov inequality, to obtain

(8.19) P(Bi) ≥ 1−
E
[
‖Q(Ti)‖

]
(Ti+1 − Ti)c/5

≥ 1−
E
[
‖Q(Ti)‖

](
10E

[
‖Q(Ti)‖

])
/5

=
1

2
,
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where the second inequality is due to (8.17).
Recall now that the inequality (8.16), which was about an episode of length

T , made use of the assumption ‖Q(t0)‖ ≤ cT/5, where t0 is the start time of the
episode. According to (8.19), this assumption is satisfied at the start time of the
episode [Ti, Ti−1), with probability at least 1/2. By interpreting (8.16) as a statement
about conditional expectations, and with t0 and t0 + T replaced by Ti and Ti+1,
respectively, we obtain

E
[
Qm(Ti+1)

]
≥ P(Bi) · E

[
Qm(Ti+1) | Bi

]
≥ 1

2
· ρc log(Ti+1 − Ti) ≥

ρc (i− 1) log 2

2
,

where the last inequality follows from (8.18). Therefore, E
[
Qm(Ti)

]
grows unbounded

as i increases. Consequently, under the arrival process that we constructed, queue m
is not delay stable. This conclusion is obtained for any positive choice of ε, no matter
how small, and establishes that queue m is not RDS. This completes the proof of the
second direction of Theorem 5.1.

9. Proof of Theorem 6.2.

9.1. Proof of the first direction. Let us fix some ε > 0. To establish one
direction of the result, we assume that the ε-JF(γ) condition holds for every γ ∈ Γ.
We will show that there exists a special ε-Lyapunov function.

Let N be the set of all nonnegative integer vectors n such that nj = 0 for j > h;
that is, we allow arbitrarily many jumps at the heavy-tailed queues and no jumps at
the light-tailed ones. As in Definition 7.7, for any nonnegative integer vector n, let
W (n) be the set of all points in R`+ that are reachable by ε-JF(n) trajectories. Let
W =

⋃
n∈N W (n), and consider a Lyapunov function V (·) equal to the distance from

W , i.e., V (x) = d
(
x,W

)
, for any x ∈ R`+. We will show that this Lyapunov function

has the desired properties.
The distance function is clearly Lipschitz continuous, with a Lipschitz constant

equal to 1, which implies the first property in the definition of special ε-Lyapunov
functions.

For the second property, Lemma 7.9(b) applies and shows that each set W (n) is
ε-invariant. It can be seen that the union, W , of the ε-invariant sets W (n) is also
ε-invariant. It then follows from Lemma 7.9(a) that W is ε-attracting. This proves
the second property in Definition 6.1.

Note that every n ∈ N satisfies the inequality γTn ≤ 1 for some γ ∈ Γ. Since
the ε-JF(γ) condition holds for every γ ∈ Γ, it follows that every ε-JF(n) trajectory,
with n ∈ N , satisfies qm(t) = 0, for all t. Hence qm = 0, for all q ∈W . Furthermore,
since 0 ∈W , we have V (0) = 0. This establishes the third property in Definition 6.1.

Finally, W is closed under jumps along coordinates associated with heavy-tailed
arrivals. Therefore, V (·) is nonincreasing along those directions, and the fourth prop-
erty in Definition 6.1 follows. Thus, V (·) has all the required properties of special
ε-Lyapunov functions. This completes the proof of one direction of the theorem.

9.2. Proof of the reverse direction. We continue with the proof of the reverse
direction. We fix some ε > 0 and assume that there exists a special ε-Lyapunov
function V (·), and let W =

{
x ∈ R`+ | V (x) = 0

}
. The argument rests on the ε-

invariance of W which, in turn, relies on some properties of the MW dynamics that
we discuss next.
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For any λ,x ∈ R`+, let

(9.1) ξλ(x) = q̇(0),

where q(·) is the fluid trajectory corresponding to arrival rate λ and initialized with
q(0) = x. In view of (4.4), we have ξλ(x) ∈ Dλ(x). Moreover, it is shown in
Lemma 2(a) of [17] that ξλ(x) has the minimum norm among all vectors in Dλ

(
x
)
,

i.e.,

(9.2) ξλ(x) = argmin
ν∈Dλ(x)

‖ν‖, ∀ x ∈ R`+.

with the minimizer being unique.
Given a closed and convex set A ⊂ R` and a point x ∈ R`, we denote by πA(x)

the projection of x on A, defined as the point in A which is closest to x. With this
terminology, ξλ(x) is the projection πDλ(x)(0) of the zero vector on the set Dλ(x).

In what follows, we also make use of an elementary property of projections: if A
is a closed convex set, b is some vector, and B = A+ b, then

(9.3) ‖πA(x)− πB(x)‖ ≤ ‖b‖.

As a consequence of the above, for any λ1, λ2, and x in R`+,∥∥ξλ1
(x)− ξλ2

(x)
∥∥ =

∥∥πDλ1
(x)(0)− πDλ2

(x)(0)
∥∥

=
∥∥πDλ1

(x)(0)− πDλ1
(x)+λ2−λ1

(0)
∥∥

≤
∥∥λ1 − λ2

∥∥,(9.4)

where the second equality is because

Dλ2(x) = λ2 −M(x) = λ1 −M(x) + λ2 − λ1 = Dλ1(x) + λ2 − λ1,

and the inequality follows from (9.3).

Lemma 9.1. The set W is ε-invariant.

Proof. Since V is a special ε-Lyapunov function, it is Lipschitz continuous with
Lipschitz constant 1. Let λ ∈ R`+ be such that ‖λ− λ∗‖ ≤ ε, and consider fluid tra-
jectories q(·) and p(·) corresponding to arrival rates λ and λ∗, respectively, initialized
with the same nonnegative vector q(0) = p(0) 6∈W . Then,

V̇
(
q(t)

)∣∣
t=0

= lim
δ↓0

V
(
q(δ)

)
− V

(
q(0)

)
δ

= lim
δ↓0

V
(
p(δ)

)
+ V

(
q(δ)

)
− V

(
p(δ)

)
− V

(
q(0)

)
δ

≤ lim
δ↓0

[
V
(
p(δ)

)
+ ‖q(δ)− p(δ)‖

]
− V

(
q(0)

)
δ

= lim
δ↓0

(
V
(
p(δ)

)
− V

(
p(0)

)
δ

+
‖q(δ)− p(δ)‖

δ

)

≤ lim
δ↓0

(
V
(
p(δ)

)
− V

(
p(0)

)
δ

+ ‖λ− λ∗‖

)
= V̇

(
p(t)

)∣∣
t=0

+ ‖λ− λ∗‖
≤ −ε+ ε

= 0,

(9.5)
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where the first inequality is because V has a Lipschitz constant equal to 1, the third
equality is due to q(0) = p(0), and the second inequality follows from (9.4). The
last inequality follows from the second property of special ε-Lyapunov functions in
Definition 6.1 and the assumption ‖λ− λ∗‖ ≤ ε.

The above argument shows that, for any λ ∈ R`+ with ‖λ − λ∗‖ ≤ ε, and for
any fluid trajectory q(·) corresponding to arrival rate λ, the distance from the set W
cannot increase. In particular, if q(·) is initialized with q(0) ∈W , it must stay in W .
Therefore, using the terminology in Definition 7.8, W is ε-invariant.

From the third property in the definition of special ε-Lyapunov functions, we
have V (0) = 0 and, therefore, 0 ∈ W . Thus, every ε-JF(n) trajectory starts in
W . From the fourth property in the definition of special ε-Lyapunov functions, W
is closed with respect to positive jumps along the coordinates associated with heavy-
tailed arrivals. Using also Lemma 9.1 for the times between jumps, we see that for
any n ∈ N , every ε-JF(n) trajectory stays in W . Equivalently, for any γ ∈ Γ, every
ε-JF(γ) trajectory stays in W . Finally, employing again the third property of special
ε-Lyapunov functions, we have qm = 0, for all q ∈ W . This implies that qm(t) = 0,
for all ε-JF(γ) trajectories q(·) with γ ∈ Γ, and all t ≥ 0. This establishes the ε-JF(γ)
condition for all γ ∈ Γ, and completes the proof of Theorem 6.2

9.3. Proof of Corollary 6.3. For part (a), fix some ε > 0, and suppose that
there exists a special ε-Lyapunov function. Theorem 6.2 implies that the ε-JF(γ)
condition holds for every γ ∈ Γ. It then follows from Theorem 5.1 that queue m is
RDS for every γ ∈ Γ.

For part (b), we fix some ε > 0, and assume that queue m is ε-RDS, for all γ ∈ Γ.
In particular, queue m is RDS and Theorem 5.1 implies that the ε′-JF(γ) condition
holds for some ε′ > 0. However, a close inspection of the proof of the reverse part of
Theorem 5.1 reveals that we can in fact choose ε′ to be the same as ε. Thus, the ε-
JF(γ) condition holds and Theorem 6.2 implies that there exists a special ε-Lyapunov
function.

10. Discussion. In this section, we summarize some key points and conclude
with a few open questions.

10.1. Framing and results. We have addressed the problem of delay stability
for a class of queueing networks that operate under the Max-Weight scheduling policy,
when some arrival processes are heavy-tailed and some are light-tailed. The overall
purpose was to develop conditions for delay stability in terms of fluid-like models.
However, as illustrated by the example in Section 3, delay instability can be the
result of multiple coordinated large jumps. The probabilities of such large jumps are,
in turn, affected by the tail exponents of the arrival processes. Given that traditional
fluid models are oblivious to the tail exponents, we had to introduce JF (jumping-
fluid) models, a generalization that allows for jumps along the coordinates associated
with heavy-tailed flows, subject to a budget on the number of jumps, with the budget
being determined by the tail exponents.

At the same time, it became clear that tight conditions for delay stability that do
not depend on the details of the arrival distributions are only possible under a suitable
“robust” formulation with respect to both the arrival rates and the arrival process
distributions. With a careful choice of definitions, we were finally able to establish
necessary and sufficient conditions for robust delay stability, in terms of ε-JF models.

In Section 3, we also discussed a related, so-called ZF condition. The ZF condition
essentially examines fluid trajectories that start at zero and involve a single jump, and
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leads to a necessary condition for delay stability [12], but the question whether it can
also form the basis for a sufficient condition was open. Our results show that in
order to obtain necessary and sufficient conditions, we need to examine a richer set
of trajectories, that involve multiple jumps.

Finally, earlier works [10, 12] had shown that Lyapunov functions with certain
structural properties could yield sufficient conditions for delay stability. But it was
not clear if and when delay stability is equivalent to the existence of such Lyapunov
functions. Our results make progress towards establishing the completeness of such a
Lyapunov-based methodology, for the regime where the heavy-tailed flows can have
arbitrarily small tail exponents.

Our RJF condition is difficult to test for general networks. In some sense, this re-
flects the intrinsic complexity of the (robust) delay stability problem. The Lyapunov-
based condition also appears to be hard to test, for general networks.

10.2. Alternative formulations. Given the complexity of the RJF condition,
it is natural to inquire about simpler alternatives. For example, is it possible to
obtain tight delay stability results (without robustness) if we consider JF models
with a constant rate λ(·)? In the same spirit, could we restrict to the case where all
jumps in ε-JF models take place at the same time? Might it be easier to consider
concrete arrival processes, instead of focusing on delay stability for all arrival proceses
with given exponents?

For all three of the above questions, the answer is negative. We discuss such
variations and related (counter)examples in Appendix A.

10.3. Open problems. We collect here a few open problems and possible future
research directions.

(a) Can the results be generalized to other scheduling policies, e.g., MW-α poli-
cies [14], an extension of the MW policy considered in this paper, or more
generally, to other stochastic networks whose stability has been studied using
fluid models? One obstacle here is that our main result relies heavily on a par-
ticular fluctuation bound, which has been established specifically for the MW
dynamics [18]. However, progress may be possible if we rely on alternative
stochastic bounding techniques.

(b) Can we identify some special classes of networks for which our criteria (ei-
ther the RJF condition or the Luyapunov-based condition) can be tested in
polynomial time?

(c) Is the RJF condition, which involves time-varying λ(t), with λ(t) ≈ λ∗,
equivalent to a similar condition in which we only consider ε-JF trajectories
with time-invariant λ(t) = λ, with λ ≈ λ∗? See Appendix A for further
discussion and some conjectures.
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Appendix A. Exploring alternative formulations. Our formulation in-
volves rate-robustness (robustness with respect to variations in the arrival rate), as
well as distributional robustness (by considering the worst-case over all distributions
with given tail exponents). It would have been preferable to develop conditions that
characterize delay stability for specific systems (with fixed arrival rates and arrival
distributions). However, this seems to be impossible, for reasons that will become
clearer in this appendix. In particular, the distributional robustness aspect appears
to be inevitable, as as long as we are aiming at conditions that are both necessary
and sufficient; see Section A.4. For this reason, most of this appendix is devoted to
exploring variants of rate robustness. In the interest of brevity, we keep the discussion
informal, without rigorous proofs.

A.1. Variations of our definitions. In this subsection, we present a number
of variations to our definitions of RDS and of the RJF condition. In later subsections,
we will elaborate on their relations. Throughout this appendix, we assume that the
tail exponent vector γ has been fixed, with every γj in (0,∞]. We also fix some
λ∗ > 0. The various definitions that we offer differ only with respect to the choice of
allowed functions λ(·).
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Fig. 2. Relation between the various conditions.

Let F be a class of discrete-time functions λ(·). We say that queue m is F-RDS if
it obeys Definition 2.1, except that the allowed arrival rates E [A(t)] are also required
to belong to F.

We consider the following choices for F, leading to three alternative definitions of
robust delay stability, namely G-RDS, C-RDS, and 0-RDS:

G: (General) Here we impose no additional restrictions on E [A(t)]. Thus, G-
RDS is identical to the RDS condition that we have studied.

C: (Constant) Here we require E [A(t)] to be constant. Effectively, we are con-
sidering small but constant perturbations of λ∗.

0: (Zero) Here, we require E [A(t)] to be equal to λ∗, for all times t.
We continue similarly, to define variants of the RJF condition. Let F be a class

of continuous-time functions λ(·). The F-RJF condition is defined exactly as in Defi-
nition 4.3, except that we only consider ε-JF trajectories for which the rate function
λ(·) is also required to belong to the class F. We consider four possible choices for
F, leading to four variants of the RJF condition, namely, UC-RJF, PC-RJF, C-RJF,
0-RJF:

UC: (Uniformly continuous) Here we remove the requirement in Definition 4.2 that
λ(·) be piecewise constant. Instead, we require λ(·) to be (i) piecewise con-
tinuous, with a finite number of discontinuities, and (ii) uniformly continuous
on any interval in which it is continuous.

PC: (Piecewise constant) Here, λ(·) is exactly as in Definition 4.2, and in particu-
lar, piecewise constant. Thus, the PC-RJF condition coincides with the RJF
condition we have been studying.

C: (Constant) Here we require λ(·) to be constant. Effectively, we are considering
small but constant perturbations of λ∗.

0: (Zero) Here, we require λ(·) to be equal to λ∗, for all times t.

A.2. Relations between alternative definitions. In this section, we explore
the relation between F-RDS and F-RJF conditions for different choices of F; see
Figure 2 for a visual summary.

It is clear that when we restrict to a smaller class, the RDS or RJF conditions
are easier to satisfy. Thus,

G-RDS =⇒ C-RDS =⇒ 0-RDS,
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and
UC-RJF =⇒ PC-RJF =⇒ C-RJF =⇒ 0-RJF.

Furthermore, Theorem 5.1 has established that G-RDS is equivalent to PC-RJF.

PC-RJF =⇒ UC-RJF. An arbitrary (continuous-time) function λ(·) in the class
UC can be approximated by a piecewise constant function with finitely many pieces,
uniformly over a compact set. Furthermore, it can be shown that if we perturb by ε
the vector λ(·) that drives a JF-trajectory, the resulting trajectory is perturbed by
at most ε over a time interval of length 1. It follows that if the UC-RJF condition
fails, we can construct piecewise-constant approximations of λ(·) that demonstrate
that the PC-RJF condition also fails. Therefore, PC-RJF =⇒ UC-RJF.

Taking Theorem 5.1 also into account, we see that all three conditions, G-RDS,
PC-RJF, and UC-RJF, are equivalent. An alternative path to the same conclusion
consists of modifying the proof in Section 8, and showing that G-RDS =⇒ UC-RJF.
This is possible, but quite tedious.

(C-RDS =⇒ C-RJF) and (0-RDS =⇒ 0-RJF). These two implications are
true because the proof in Section 8 applies verbatim. Indeed, if we assume that C-
RJF fails to hold, we start with a trajectory q(·) that is driven by a constant rate
λ and drives queue m to a positive value. The construction of the arrival process in
Section 8.4 yields a process with a constant rate λ. Thus, the same proof establishes
that failure of the C-RJF condition leads to failure of C-RDS; equivalently, C-RDS
implies C-RJF. The argument that 0-RDS =⇒ 0-RJF is the same.

0-RJF =⇒6 0-RDS. This fact exemplifies the difficulty of obtaining necessary and
sufficient conditions in the absence of robustness considerations with respect to the
arrival rates.

The argument is simple. Consider a single queue that is served at unit rate, and let
λ∗ = 1. Suppose that the tail exponent is larger than 1, so that no jumps are allowed.
In that case, there is only one possible JF trajectory, which obeys q̇ = 1 − 1 = 0.
When initialized at zero, the JF trajectory stays at zero. Thus, the 0-RJF condition
holds for the single queue of interest. On the other hand, as long as the arrivals are
not deterministic, the stochastic system is marginally unstable, the expected queue
length grows to infinity, and the 0-RDS condition does not hold.

The above example involves a system operating at the boundary of its capacity
region (marginally unstable). We can also construct simple examples (involving two
queues) in which the system operates in the interior of the stability region, is stable,
satisfies the 0-RJF condition, but is not 0-RDS. Such an example (which we omit)
involves a system that operates at the threshold between robust delay stability and
robust delay instability.

0-RJF =⇒6 C-RJF. This is again a simple observation. Consider the same single-
queue system as in the previous paragraph, with λ∗ = 1. As long as the rate is fixed at
1, the JF trajectory stays at zero, and the 0-RJF condition holds. On the other hand,
a small constant perturbation that results in λ > 1 yields a divergent JF trajectory,
and therefore the C-RJF condition does not hold.

A.3. Conjectures and open problems. We list here a number of questions
and conjectures.

0-RDS
?

=⇒ C-RDS We conjecture that when λ∗ � 0,7 0-RDS implies C-RDS.

7The reason for the condition λ∗ � 0 is that if λ∗ = 0, then a system is trivially 0-RDS, but a
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Ultimately, this amounts to showing that the set of positive arrival rate vectors λ∗

for which the system is delay stable (robustly, over all distributions with given tail
exponents) is open. The rationale behind this conjecture is that in more standard
settings (ordinary stability) the set of positive vectors λ∗ that lead to a stable system
is open.

C-RJF
?

=⇒ PC-RJF We conjecture that this implication is true, although we do
not see how to establish it. If it is true, it would follow from the diagram in Figure 2
that C-RJF and C-RDS are equivalent to G-RDS, UC-RJF, and PC-RJF.

An indirect approach to establishing the conjecture would be to show that (i) C-
RJF =⇒ C-RDS, and (ii) C-RDS =⇒ G-RDS. However, this appears to be difficult.
Our proof that PC-RJF implies G-RDS involves the set W of points reachable by ε-JF
trajectories; see Definition 7.7. However, when we restrict λ(·) to be constant, this
set is no longer ε-invariant, and Lemma 7.9(ii) fails to go through.

Generic considerations. A fundamental reason behind the mismatch between 0-
RJF and G-RDS is that, at least for simple examples, the set of nonnegative nominal
rates λ∗ for which 0-RJF holds is closed whereas the set of positive nominal rates λ∗

for which G-RDS holds is open. It is conceivable, however, that one set is the closure
of the other, and that the difference between the two sets is just a lower-dimensional
boundary. This leads us to the conjecture that 0-RJF and G-RDS are generically
equivalent.

Conjecture A.1. Let us fix a network and some γ. The set of nonnegative
nominal arrival vectors λ∗ for which the 0-RJF condition holds but G-RDS does not
hold has zero Lebesgue measure.

A.4. The details of the arrival distribution may matter. Our discussion
so far has been about distributionally robust results, dealing with delay stability for
all arrival distributions with the given tail exponents γ. The reason for this was that
JF models cannot take into account any further properties of these distributions.

Once we start inquiring about delay stability for a fixed, fully-specified system,
the situation is more complex: necessary and sufficient conditions for delay stability
appear to be impossible. We illustrate the situation by stating a positive result and
disciussing the obstacles in establishing a converse.

A.4.1. Delay stability implies the 0-RJF condition, under a regularity
assumption. Suppose that a particular system (with a constant arrival rate λ∗ and
given, i.i.d. arrival distributions) is delay stable. Suppose furthermore, that the dis-
tribution of each Aj(t) satisfies (2.3), with γ replaced by the appropriate γj . Then,
it can be shown that the 0-RJF condition holds. The argument involves similar ideas
as the proof in Section 8. That is, we can show that the stochastic system can track
an ε-JF trajectory with significant probability.

Note, however, that the 0-RJF condition does not imply delay stability, even
under such a regularity assumption. The argument is the same as in our earlier
example that showed that the 0-RJF condition does not imply the 0-RDS condition.

A.4.2. Without a regularity assumption, delay stability need not imply
the 0-RJF condition. In contrast to the above mentioned result, we have strong
reasons to conjecture that there exist systems that are delay stable and yet, the 0-RJF
condition fails to hold. The intuition behind this conjectur is as follows.

small perturbation that leads to positiuve arrival rates can result in a delay unstable system.
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Consider a system with two heavy-tailed arrival streams, together with some light-
tailed ones. Suppose that the tail exponents of the heavy-tailed arrivals are larger
than 1/3. We can arrange the system so that a JF trajectory drives the light-tailed
queue of interest to a positive value if and only if we have one jump at each heavy-
tailed queue, the two jump times are approximately equal, and the jump sizes are
comparable (within a constant factor of each other). Such a system will not satisfy
the 0-RJF condition.

As in the proof in Section 8, we might expect that the stochastic system can
track this JF trajectory. However, we can arrange the arrival process distributions
for the two heavy-tailed queues to be such that their supports are wide apart. For
example, one distribution may be supported on integers of the form 102i and the
other on integers of the form 102i+1. In that case, equal-size jumps are essentially
impossible. As a consequence, the stochastic system should be unable to emulate the
JF trajectory, the instability mechanism suggested by the JF trajectory need not be
present, and the queue of interest may turn out to be delay stable.

A.5. The timing of the jumps. The definition of ε-JF trajectories allows for
jumps at different times. On the other hand, our examples so far rely on jumps
that happen simultaneously. This raises the question whether the RJF condition
is equivalent to an analogous condition in which we only consider trajectories with
simultaneous jumps. It turns out that this is not possible. We give an example with
four queues in which an ε-JF trajectory drives a certain queue to a positive value, but
this is only possible if we allow jumps to occur at different times.

Consider the system in Fig. 3. The first queue receives heavy-tailed arrivals,
with γ1 = 1/2, while the three other queues receive light-tailed arrivals. There are
three possible service vectors as shown in the figure, and the arrival rate vector is
λ∗ = (1, 2, 1, 1). Note that the condition γTn ≤ 1 allows up to two jumps at queue
1. If we restrict to simultaneous jumps, this essentially limits us to a single jump at
queue 1.

Suppose that q1 has a jump of size 27 at time 0. Then, the 0-JF trajectory
is piecewise linear, with breakpoints q(0) = (27, 0, 0, 0), q(3) = (6, 6, 0, 0), q(5) =
(0, 2, 2, 0), and q(9) = 0. This can be easily verified by noticing that the MW policy
chooses service vector µ1 for t ∈ [0, 3), service vector µ2 for t ∈ (3, 5); and the service
capacity is split between µ2 and µ3 with ratios 5/8 and 3/8, for t ∈ (5, 9). It then
follows from the form of the above piecewise linear fluid trajectory that given a single
jump at time 0, q4 will stay at zero for all subsequent times. We now argue that this
will not be the case if q1 undergoes two jumps at different times.

Suppose that q1 has a jump of size 27 at time 0 and a jump of size 2 at time
5. Let p(·) be the associated jumping fluid trajectory. Then, right before time 5
we have p(5−) = q(5−) = (0, 2, 2, 0). Therefore, after the second jump we have
p(5) = (2, 2, 2, 0). In this case, µ3 will be the dominant service vector for some
positive time interval starting from time 5. Since q4 receives no service under µ3, it
will start to build up and become positive.

In this example, the 0-RJF condition fails to hold and the system is not 0-RDS.
On the other hand, if we were to restrict to simultaneous jumps, we would not be
able to tell that this is the case. Finally, using the same example, we see that we
should also consider non-simultaneous jumps when examining the C-RJF or PC-RJF
conditions.

Appendix B. Proofs of lemmas for the first direction of Theorem 5.1
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Fig. 3. A network with three light-tailed queues and one heavy-tailed queue, which demonstrates
the importance of the timing of multiple jumps. In this example, if q1 undergoes a single jump at
time 0, q4 stays at 0 . However, two jumps in q1 at suitably arranged times can result in a positive
q4.

(ε-JF =⇒ RDS).

B.1. Proof of Theorem 7.2. We compare the fluid trajectory q(·), which is
initialized with q(0) 6= Q(0), with another fluid trajectory q̃(·), initialized with q̃(0) =
Q(0). From the triangle inequality,∥∥Q(t)− q(t)

∥∥ ≤ ∥∥Q(t)− q̃(t)
∥∥+

∥∥q̃(t)− q(t)
∥∥.

We apply Theorem 7.1 to bound the first term on the right-hand side. Because of the
nonexpansive property of the MW dynamics, we also have∥∥q̃(t)− q(t)

∣∣ ≤ ∥∥q̃(0)− q(0)
∥∥ =

∥∥Q(0)− q(0)
∥∥,

and the result follows.

B.2. Proof of Lemma 7.4. Let us fix T throughout this proof. Recall the
constant β ∈ (1, 2) introduced in the context of (7.9). For j = 1, . . . , `, we define

γ′j =

{
γj/β if γj < β3,

β2 if γj ≥ β3.
.

We then let γ′ = (γ′1, . . . , γ
′
`). and γ′ = minj γ

′
j . Note that in all cases, we have

γ′j ≤ γj/β, so that γ′ ≤ γ/β. As argued in Claim 7.3, we can and will (without loss
of generality) assume that γ = minj γj ≤ 1 and thus γ′ < 1. Finally, in view of (7.9),
it can be seen that for any nonnegative integer vector n,

(B.1) if γTn > 1, then (γ′)Tn ≥ β2 > 1.

For every j, and according to our definition (2.5) of the tail exponent of an arrival
process, there is a random variable Aj that dominates Aj(t), for all t ≥ 0, and for
which all moments of order less than 1 + γj are finite; see (2.3). We define

(B.2) Γj = E
[
Aj

1+γ′j
]
, j = 1, . . . , `,

which is finite because γ′j < γj .
For t = 0, . . . , T − 1, and j = 1, . . . , `, let

pj,t = P
(
Aj(t) > θt

)
.
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For any j and t ≤ T − 1, the Markov inequality yields

pj,t = P (Aj(t) > θt)

≤ P
(
Aj > θt

)
= P

(
Aj

1+γ′j > θ
1+γ′j
t

)
≤

E
[
Aj

1+γ′j
]

θ
1+γ′j
t

=
Γj η

1+γ′j log1+γ′j (M + T − t)
(M + T − t)1+γ′j

,

(B.3)

where the last equality is due to the definitions of θt and Γj in (7.1) and (B.2),
respectively.

Let φ = 1−2−1/`, and note that 0 < φ < 1. Since 0 < (1−1/β)γ′ < γ′j , for every
j, there exists some M1 ≥ 1 such that if M ≥M1, then

(B.4) Γj η
1+γ′j log1+γ′j M ≤ φ ·

(
γ′j − (1− 1/β)γ′

)
· M (1−1/β)γ′ , j = 1, . . . , `.

We fix such an M1. Then, for M ≥M1, we have

T−1∑
t=0

pj,t ≤ Γj η
1+γ′j

T−1∑
t=0

log1+γ′j (M + T − t)
(M + T − t)1+γ′j

≤ Γj η
1+γ′j

∞∑
τ=1

log1+γ′j (M + τ)

(M + τ)1+γ′j

≤ φ
(
γ′j − (1− 1/β)γ′

) ∞∑
τ=1

(M + τ)(1−1/β)γ′

(M + τ)1+γ′j

≤ φ
(
γ′j − (1− 1/β)γ′

) ∫ ∞
M

x(1−1/β)γ′

x1+γ′j
dx

= φM (1−1/β)γ′−γ′j ,

(B.5)

where the first inequality is due to (B.3) and the third inequality follows from (B.4).
Let Xj,t be the event

{
Aj(t) > θt

}
. Recall that Nj stands for the number of

jumps at queue j during the interval [0, T ). For any j and any nonnegative integer n,
we have

P(Nj = n) ≤
∑

0≤τ1<···<τn≤T−1

P
(
Xj,τ1 ∩ · · · ∩Xj,τn

)
=

∑
0≤τ1<···<τn≤T−1

pj,τ1 · · · pj,τn

≤

(
T−1∑
t=0

pj,t

)n
≤ φnM (1−1/β)γ′n−γ′jn.

(B.6)

where the first inequality follows from the union bound, the equality is from the
independence of the events Xj,τ1 , . . . , Xj,τn , and the last inequality is due to (B.5).
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Therefore, for any n ∈ Z`+,

P(N = n) =
∏̀
j=1

P(Nj = nj)

≤
∏̀
j=1

φnj M (1−1/β)γ′nj M−γ
′
jnj

= φ|n|M (1−1/β)γ′|n|−nTγ′ ,

(B.7)

where |n| = n1 + · · ·+n`. If γTn > 1, then (B.1) asserts that nTγ′ ≥ β2. As a result,
and since γ′ is the smallest component of γ′,

(B.8)

(
1− 1

β

)
γ′|n| − nTγ′ ≤

(
1− 1

β

)
nTγ′ − nTγ′ = −nTγ′

β
≤ −β.

Hence,

P
(
γTN > 1

)
=

∑
n:γTn>1

P (N = n)

≤
∑

n:γTn>1

φ|n|M (1−1/β)γ′|n|−nTγ′

≤ M−β
∑

n:γTn>1

φ|n|

≤ M−β

 ∑
n1,...,n`≥0

φ|n|

− 1


= M−β

∏̀
j=1

∞∑
nj=0

φnj

− 1


= M−β

(
1

(1− φ)
`
− 1

)
= M−β ,

(B.9)

where the first inequality is from (B.7) and the second inequality follows from (B.8).
The last equality is because 1− φ = 2−1/`. This completes the proof of Lemma 7.4.

B.3. Proof of Lemma 7.5. The Bernstein inequality (see, e.g., (1.21) in Ap-
pendix 1 of [2]) asserts that for any z ≥ 0, we have

(B.10) P
(
|Y − E [Y ] | > z

)
≤ 2 exp

(
− z2/2∑n

i=1 E [(Xi − E [Xi])2] + bz/3

)
.

We note that E
[
(Xi − E [Xi])

2
]
≤ E

[
X2
i

]
≤ E [Xib] ≤ bλ. Plugging this into (B.10),

we obtain

(B.11) P
(
|Y − E [Y ] | > z

)
≤ 2 exp

(
− z2/2

nbλ+ bz/3

)
.

This implies (7.10) and completes the proof of Lemma 7.5.

35



B.4. Proof of Lemma 7.6. For every j, and according to our definition (2.5) of
the tail exponent of an arrival process, there is a random variable Aj that dominates
Aj(t), for all t ≥ 0, and for which all moments of order less than 1 + γj are finite; see
(2.3). Since γj > 0, we have

∫∞
0

P
(
Aj > x

)
dx = E

[
Aj
]
<∞. Therefore, there exists

a constant M2 > 0 such that for any M > M2 and every j,

(B.12)

∫ ∞
M/η logM

P
(
Aj > x

)
dx ≤ γε

60C
√
`
.

Note that the choice of M2 is independent of T . For the rest of the proof, we fix M2

and assume that M > M2.
Recall that A∗(τ) = min

{
A(τ), θτ

}
, so that

(B.13) Aj(τ)−A∗j (τ) = max
{

0, Aj(τ)− θτ
}
.

Therefore,

E [Aj(τ)]− E
[
A∗j (τ)

]
= E

[
max

{
0, Aj(τ)− θτ

}]
=

∫ ∞
0

P
(

max
{

0, Aj(τ)− θτ
}
> x

)
dx

=

∫ ∞
0

P
(
Aj(τ)− θτ > x

)
dx

=

∫ ∞
θτ

P
(
Aj(τ) > x

)
dx

≤
∫ ∞
M/η logM

P
(
Aj(τ) > x

)
dx

≤
∫ ∞
M/η logM

P
(
Aj > x

)
dx

≤ γε

60C
√
`
,

(B.14)

where the fourth equality uses a change of variables from x+θτ to x, the first inequality
uses the fact θτ ≤M/η logM for all τ ≥ 0 (see the definition (7.1) of θt), the second
inequality is because Aj dominates Aj(τ), and the last inequality follows from (B.12).
Therefore, for any τ ≥ 0,

(B.15)
∥∥E [A(τ)]− E [A∗(τ)]

∥∥ ≤ √` max
j=1,...,`

{
E [Aj(τ)]− E

[
A∗j (τ)

] }
≤ γε

60C
.

We now introduce some “simpler” events whose occurrence will be shown to imply
the event Efluc(T,M) that was introduced in (7.11):
(B.16)

E∗ =
{∥∥∥ t∑

τ=t0

(
A∗(τ)− E [A∗(τ)]

)∥∥∥ ≤ γε

30C

(
M + T − t0

)
, for 0 ≤ t0 ≤ t < T

}
,

and for every j,
(B.17)

E∗j =
{∣∣∣ t∑

τ=t0

(
A∗j (τ)− E

[
A∗j (τ)

] )∣∣∣ ≤ γε

30C`

(
M + T − t0

)
, for 0 ≤ t0 ≤ t < T

}
,
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We observe that the events E∗1 , . . . , E∗` imply the event E∗. Then, the union bound,
applied to the complements of these events, implies that

(B.18) P
(
E∗
)
≥ 1−

∑̀
j=1

(
1− P(E∗j )

)
.

We now argue that the event E∗ implies the event Efluc(T,M), defined in (7.11).
Indeed, suppose that event E∗ occurs. Then, as long as 0 ≤ t0 ≤ t < T , we obtain

∥∥∥ t∑
τ=t0

(
A∗(τ)− λ∗

)∥∥∥
=
∥∥∥ t∑
τ=t0

(
A∗(τ)− E [A∗(τ)]

)
+

t∑
τ=t0

(
E [A∗(τ)]− E [A(τ)]

)
+

t∑
τ=t0

(
E [A(τ)]− λ∗

)∥∥∥
≤
∥∥∥ t∑
τ=t0

(
A∗(τ)− E [A∗(τ)]

)∥∥∥ +

t∑
τ=t0

∥∥E [A∗(τ)]− E [A(τ)]
∥∥ +

t∑
τ=t0

∥∥E [A(τ)]− λ∗
∥∥

≤ γε

30C

(
M + T − t0

)
+

γε

60C
(t− t0) +

γε

20C
(t− t0)

≤ γε

10C

(
M + T − t0

)
,

(B.19)

where in the second inequality, we used the definition of the event E∗ to bound the
first term, (B.15) to bound the second term, and (7.4) to bound the third term. The
last inequality is because t < T . Thus, the event E∗ implies the event Efluc(T,M),
and

(B.20) P
(
Efluc(T,M)

)
≥ P (E∗) ≥ 1−

∑̀
j=1

(
1− P(E∗j )

)
,

where the second inequality follows from (B.18).
To complete the proof, we derive an upper bound for 1−P(E∗j ). As a first step we

obtain a relation between various constants, which reflects the fact that η has been
chosen “large enough”. We have

γ2ε2η

2(30C`)2µ+ 20γεC`
≥ γ2ε2η

1800C2`2µ+ 20µC`

≥ γ2ε2

1820C2`2µ
· η

=
γ2ε2

1820C2`2µ
· 8000C2`2µ

γ2ε2

> 4,

(B.21)

where the first inequality is due to the assumptions γ ≤ 1 and the fact ε < µ, which
is evident from the definition (7.6) of µ; the second inequality is because C ≥ 1, and
the equality follows from the definition of η in (7.7).

Finally, we note that for any τ ≥ 0 and every j,

(B.22) E
[
A∗j (τ)

]
≤ E [Aj(τ)] ≤

∥∥E [A(τ)]
∥∥ ≤ ‖λ∗‖+ ε ≤ µ.
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For any t0 and t with 0 ≤ t0 ≤ t < T , using the fact that A∗j (τ) is bounded above
by θτ , we have

P

(∣∣∣ t∑
τ=t0

(
A∗j (τ)− E

[
A∗j (τ)

] )∣∣∣ > γε

30C`

(
M + T − t0

))

≤ 2 exp

(
−

(
γε

30C` (M + T − t0)
)2

2 M+T−t0
η log(M+T−t0) ·

(
µ(t− t0 + 1) + γε

90C` (M + T − t0)
))

≤ 2 exp

(
−γ

2ε2η log(M + T − t0)

2(30C`)2µ+ 20γεC`

)
≤ 2 exp

(
− 4 log(M + t− t0)

)
=

2

(M + T − t0)4
,

(B.23)

where the first inequality follows from Lemma 7.5 with z = (γε/30C`)(M + T − t0),
b = (M +T − t0)/η log(M +T − t0) = θt0 ≥ θτ , λ = µ (see (B.22)), and n = t− t0 +1;
the second inequality is because t− t0 + 1 < M + T − t0, and the third inequality is
due to (B.21). Therefore, for every j,

1− P(E∗j ) ≤
T−1∑
t0=0

T−1∑
t=t0

P

(∣∣∣ t∑
τ=t0

(
A∗j (τ)− E

[
A∗j (τ)

] )∣∣∣ > γε

30C`

(
M + T − t0

))

≤
T−1∑
t0=0

T−1∑
t=t0

2

(M + T − t0)4

=

T−1∑
t0=0

2(T − t0)

(M + T − t0)4

≤
T−1∑
t0=0

2

(M + T − t0)3

≤
∞∑
τ=1

2

(M + τ)3

≤
∫ ∞

0

2

(M + x)3
dx

= M−2,

(B.24)

where the first inequality is from the union bound and the second inequality is due
to (B.23). Plugging (B.24) into (B.20), we obtain P

(
Efluc(T,M)

)
≥ 1− `M−2. This

completes the proof of Lemma 7.6.

B.5. Proof of Lemma 7.9. We start with the proof of the first part, and assume
that W is ε-invariant. We will prove the result under the additional assumption that
the set W is closed. This is without loss of generality, for the following reason. Given
an ε-invariant set W , let W be its closure. Because fluid trajectories under the MW
policy are continuous functions of their initial conditions, it is not hard to see that W
is also ε-invariant. Once we show the result for closed sets, we will have established
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that W is ε-attracting. Finally, since d(x,W ) = d(x,W ), for all x, we can conclude
that W is also ε attracting.

Having assumed that W is closed, we now consider a fluid trajectory q(·) initial-
ized with q(0) = q0 � 0, with q0 6∈ W . Then, there exists some x0 ∈ W which is
closest to q0. Let x(·) be a fluid trajectory initialized at x(0) = x0 and corresponding
to the rate vector

(B.25) λ = λ∗ + ε
q0 − x0

‖q0 − x0‖
.

Since W is ε-invariant, and since ‖λ − λ∗‖ = ε, we have x(t) ∈ W for all t ≥ 0. In
particular, d

(
q(t),W

)
≤
∥∥q(t) − x(t)

∥∥, for all t ≥ 0. Furthermore, equality holds at
time t = 0. This implies that

(B.26)
d

dt
d
(
q(t), W

)∣∣∣
t=0
≤ d

dt

∥∥q(t)− x(t)
∥∥∣∣∣
t=0

.

From the fluid equations (see Definition 4.1), we have ẋ(0) ∈ Dλ(x0) = λ −
M(x0). Equivalently, there exist coefficients αµ ≥ 0, for µ ∈ M(x0), such that∑
µ∈M(x0) αµ = 1 and

(B.27) ẋ(0) = λ−
∑

µ∈M(x0)

αµµ.

Similarly, let βν ≥ 0 for ν ∈M(q0) be a set of coefficients, such that
∑
ν∈M(q0) βν = 1

and

(B.28) q̇(0) = λ∗ −
∑

ν∈M(q0)

βνν.

For any µ ∈ M(x0) and any ν ∈ M(q0), since by definition µ is a maximizer of
uTx0 over all u ∈M, we have (µ−ν)Tx0 ≥ 0. Similarly, (ν−µ)Tq0 ≥ 0. Combining
these two inequalities, we obtain
(B.29)
(µ−ν)T

(
x0−q0

)
= (µ−ν)Tx0 + (ν−µ)Tq0 ≥ 0, ∀ µ ∈M(x0), ν ∈M(q0).

Since
∑
µ∈M(x0) αµ =

∑
ν∈M(q0) βν = 1, it follows that

(B.30)( ∑
µ∈M(x0)

αµµ−
∑

ν∈M(q0)

βνν
)T (

x0−q0

)
=

∑
µ∈M(x0)

∑
ν∈M(q0)

αµβν(µ−ν)T (x0−q0) ≥ 0.
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Using (B.26), we have

d

dt
d
(
q(t), W

)∣∣∣
t=0
≤ d

dt

∥∥q(t)− x(t)
∥∥∣∣∣
t=0

=

(
ẋ(0)− q̇(0)

)T (
x0 − q0

)∥∥x0 − q0

∥∥
=

1∥∥x0 − q0

∥∥(λ− ∑
µ∈M(x0)

αµµ − λ∗ +
∑

ν∈M(q0)

βνν
)T (

x0 − q0

)
=

(λ− λ∗)T
(
x0 − q0

)∥∥x0 − q0

∥∥ −
( ∑
µ∈M(x0)

αµµ −
∑

ν∈M(q0)

βνν
)T x0 − q0∥∥x0 − q0

∥∥
≤

(λ− λ∗)T
(
x0 − q0

)∥∥x0 − q0

∥∥
=

(
ε
(
q0 − x0

)∥∥x0 − q0

∥∥
)T (

x0 − q0

)∥∥x0 − q0

∥∥
= −ε.

(B.31)

where the second equality follows from (B.27) and (B.28), the second inequality is
due to (B.30), and the fourth equality uses the definition of λ in (B.25). Thus, W is
ε-attracting.

For the proof of the second part, we fix some n and consider the set W (n), as in
Definition 7.7. Let x be an element of W (n). Then, there exists an ε-JF(n) trajectory
x(·) that reaches x. Consider now a fluid trajectory q(·), corresponding to λ, for some
λ with ‖λ− λ∗‖ ≤ ε, and initialized at x. The concatenation of the trajectories x(·)
and q(·) is an ε-JF(n) trajectory, and therefore any point that it can reach also belongs
to W (n). Thus, W (n) is ε-invariant, as claimed.

B.6. Proof of Lemma 7.10. As in the statement of the lemma, we fix some
M ≥ M3, and times that satisfy 0 ≤ t0 < t1 ≤ T . We also fix a sample path under
which the event Efluc(T,M) occurs, and the interval (t0, t1) is jump-free.

Let q(·) be a fluid trajectory corresponding to the arrival rate λ∗ and initialized
with q(t0 + 1) = Q(t0 + 1). Then,

∥∥Q(t1)− q(t1)
∥∥ ≤ C

(
1 + ‖λ∗‖+ max

t∈(t0,t1)

∥∥ t∑
τ=t0+1

(
A(τ)− λ∗

)∥∥)

= C

(
1 + ‖λ∗‖+ max

t∈(t0,t1)

∥∥ t∑
τ=t0+1

(
A∗(τ)− λ∗

)∥∥)
≤ C

(
1 + ‖λ∗‖+

γε

10C

(
M + T − t0

))
=

γε

10

(
M + T − t0

)
+ (‖λ∗‖+ 1)C,

(B.32)

where the first inequality follows from Theorem 7.2, the first equality is because (t0, t1)
is jump-free and as a result A∗(τ) = A(τ) for all τ ∈ (t0, t1), and the second inequality
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is because of the occurrence of the event Efluc(T,M).8

Moreover, from Lemma 7.9, W (t0 + 1) is ε-attracting. Furthermore, because
(t0, t1) is a jump-free interval, we have W (t1) = W (t0 + 1). Therefore,

d
(
q(t1), W (t1)

)
= d

(
q(t1), W (t0 + 1)

)
≤ max

{
0, d

(
q(t0 + 1), W (t0 + 1)

)
− (t1 − t0 − 1)ε

}
,

(B.33)

where the inequality rests on (7.13).
We now consider the effect of possible jumps at time t0. Let k ≥ 0 be the number

of jumps that occur at time t0, in different entries of A(t0). Without loss of generality,
suppose that A1, . . . , Ak undergo a jump at time t0. Let J be an `-dimensional vector
with the first k entries equal to A1(t0), . . . , Ak(t0) and all other entries equal to zero.
Then, A(t0) − J is an `-dimensional vector whose first k entries are zero; all other
entries are jump-free and are therefore bounded by θt0 = (M + T − t0)/

(
η log(M +

T − t0)
)
. Thus,

(B.34)
∥∥A(t0)− J

∥∥ ≤ (M + T − t0)`

η log(M + T − t0)
.

A key consequence of our definition of the sets W (t) is that if t0 is a jump time,
then some components of the vector N(t0) are larger than those of N(t0− 1), so that
the set W (t0 + 1) is larger than the set W (t0). In particular, if x ∈ W (t0), then
x + J ∈ W (t0 + 1). Now, let x be a point in the closure of W (t0) which is closest to
Q(t0), i.e.,

x ∈ argmin
y∈closure(W (t0))

‖y −Q(t0)‖.

Since x ∈ closure
(
W (t0)

)
, it follows that x + J ∈ closure

(
W (t0 + 1)

)
. Therefore,

d
(
q(t0 + 1), W (t0 + 1)

)
≤ d

(
q(t0 + 1), x + J

)
= d

([
Q(t0)− µ(t0)

]+
+ A(t0), x + J

)
≤ d

([
Q(t0)− µ(t0)

]+
+ A(t0), Q(t0) + A(t0)

)
+ d

(
Q(t0) + A(t0), Q(t0) + J

)
+ d

(
Q(t0) + J, x + J

)
= d

([
Q(t0)− µ(t0)

]+
, Q(t0)

)
+ d

(
A(t0), J

)
+ d

(
Q(t0), x

)
≤ ‖µ(t0)‖ + d

(
A(t0), J

)
+ d

(
Q(t0), x

)
≤ µ +

(M + T − t0)`

η log(M + T − t0)
+ d

(
Q(t0), x

)
= µ +

(M + T − t0)`

η log(M + T − t0)
+ d

(
Q(t0), W (t0)

)
,

(B.35)

where the first inequality is because x + J ∈ closure
(
W (t0 + 1)

)
, the first equality

is from the evolution formula for the MW dynamics in (2.1) and the initialization

8In case t1 = t0 + 1, the interval (t0, t1) is empty, and the term involving a maximum over
t ∈ (t0, t1) is interpreted as zero.
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q(t0 + 1) = Q(t0 + 1) for q(·), the last inequality follows from (B.34), and the last
equality is from the definition of x.

Combining (B.32), (B.33), and (B.35), we obtain for M ≥M3,

d
(
Q(t1), W (t1)

)
≤ d

(
Q(t1), q(t1)

)
+ d

(
q(t1), W (t1)

)
≤ γε (M + T − t0)

10
+ (‖λ∗‖+ 1)C + d

(
q(t1), W (t1)

)
≤ γε (M + T − t0)

10
+ (‖λ∗‖+ 1)C + max

{
0, d

(
q(t0 + 1), W (t0 + 1)

)
− (t1 − t0 − 1)ε

}
≤ γε (M + T − t0)

10
+ (‖λ∗‖+ 1)C

+ max

{
0,

[
d
(
Q(t0), W (t0)

)
+ µ+

(M + T − t0)`

η log(M + T − t0)

]
− (t1 − t0 − 1)ε

}
≤ max

{
0, d

(
Q(t0), W (t0)

)
− (t1 − t0 − 1)ε

}
+ µ+

(M + T − t0)`

η log(M + T − t0)
+
γε (M + T − t0)

10
+ (‖λ∗‖+ 1)C

≤ max
{

0, d
(
Q(t0), W (t0)

)
− (t1 − t0)ε

}
+ ε

+
(M + T − t0)`

η log(M + T − t0)
+
γε (M + T − t0)

10
+ (‖λ∗‖+ 1)C + µ

≤ max
{

0, d
(
Q(t0), W (t0)

)
− (t1 − t0)ε

}
+
γε (M + T − t0)

6

(B.36)

where the second inequality is from (B.32), the third inequality is due to (B.33), the
fourth inequality follows from (B.35), and the last inequality is because M has been
chosen large enough, as in (7.15). This completes the proof of Lemma 7.10.

B.7. Proof of Lemma 7.11. Let N(t) be the cardinality of N(t), that is, the
number of jumps up to time t. We also use the convention N(−1) = 0. When the
sample path is such that the event E jump(T,M) occurs, then N(t) ≤ 1/γ, for all t < T .
Thus, for any t ∈ [0, T ),

(B.37)

(
N(t) + 2

)
γε

3
≤
(
1/γ + 2

)
γε

3
=

(1 + 2γ)ε

3
≤ ε,

where we have used our assumption that γ ≤ 1.
We fix a sample path of the arrival process A(·) under which both events E jump(T,M)

and Efluc(T,M) occur. We will use strong induction to prove that for any t ∈ [0, T ],

(B.38) d
(
Q(t),W (t)

)
≤
(
N(t− 1) + 2

)
γε

6
(M + T − t).

To establish the base case of the induction, we use the assumption Q(0) = 0 and
the fact that 0 ∈W (0) (because ε-JF trajectories are zero for negative times). Thus,
d
(
Q(0),W (0)

)
= 0, and therefore (B.38) holds for t = 0.

For the induction step, we consider a time t1 ∈ (0, T ] and assume that (B.38)
holds for all t < t1. We will show that (B.38) also holds for time t1. Let

(B.39) t0 = max
{

0, T − (2(T − t1) +M)
}

= max
{

0, 2t1 − T −M
}
.
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Note that either t0 = 0 < t1 or t0 = 2t1 − T −M ≤ t1 −M < t1, so that we always
have t0 < t1. We consider two cases:

Case 1. For the first case, we assume that the interval (t0, t1) is jump-free.9 We
consider two subcases. If t0 = 0, then

d
(
Q(t1), W (t1)

)
≤ max

{
0, d

(
Q(t0), W (t0)

)
− (t1 − t0)ε

}
+
εγ

6
(M + T − t0)

=
εγ

6
(M + T − t0)

≤ εγ

6

(
M + T − (2t1 − T −M)

)
=

2εγ

6
(M + T − t1),

(B.40)

where the first inequality is due to Lemma 7.10, the first equality is because of the
assumptions t0 = 0 and Q(0) = 0, together with the observation that 0 ∈W (0). The
second inequality follows from (B.39), which implies that 0 = t0 ≥ 2t1 − T −M . In
particular, (B.38) holds for t = t1.

For the second subcase, we assume that t0 > 0, in which case, t0 = 2t1 − T −M .
Then,

d
(
Q(t1), W (t1)

)
≤ max

{
0, d

(
Q(t0), W (t0)

)
− (t1 − t0)ε

}
+
εγ

6
(M + T − t0)

≤ max

{
0,

(
N(t0 − 1) + 2

)
γε

6
(M + T − t0)− (t1 − t0)ε

}
+
εγ

6
(M + T − t0)

= max

{
0,

(
N(t0 − 1) + 2

)
γε

6

(
2M + 2T − 2t1

)
− (M + T − t1)ε

}
+
εγ

6
(2M + 2T − 2t1)

= max

{
0,

((
N(t0 − 1) + 2

)
γε

3
− ε

)
(M + T − t1)

}
+

2εγ

6
(M + T − t1)

=
2εγ

6
(M + T − t1),

(B.41)

where the first inequality follows from Lemma 7.10, the second inequality is due to the
induction hypothesis (B.38), the first equality uses the substitution t0 = 2t1−T −M ,
and the last equality is due to (B.37). Thus, (B.38) again holds for t = t1. This
completes the induction step for Case 1.

Case 2. For the second case, we assume that there is a jump in the interval (t0, t1).
Let t̂0 be the last jump time in the interval (t0, t1), so that (t̂0, t1) is jump free. Since
t̂0 is the last jump time, we have

(B.42) N(t1 − 1) = N(t̂0) ≥ N(t̂0 − 1) + 1,

where the inequality is because there is at least one jump at t̂0 (we say “at least” be-

9This includes the case where t1 = t0 + 1, so that the interval (t0, t1) is empty.
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cause at time t̂0, we could have jumps at multiple components of A(·). Consequently,

d
(
Q(t1), W (t1)

)
≤ max

{
0, d

(
Q(t̂0), W (t̂0)

)
− (t1 − t̂0)ε

}
+
εγ

6
(M + T − t̂0)

≤ max

{
0,

(
N(t̂0 − 1) + 2

)
γε

6
(M + T − t̂0)− (t1 − t̂0)ε

}
+
εγ

6
(M + T − t̂0)

= max

{
εγ

6
(M + T − t̂0),

(
N(t̂0 − 1) + 3

)
γε

6
(M + T − t̂0)− (t1 − t̂0)ε

}

≤ max

(
εγ

6
(M + T − t̂0),

(
N(t1 − 1) + 2

)
γε

6
(M + T − t̂0)− (t1 − t̂0)ε

)

≤ max

{
εγ

6
(2M + 2T − 2t1),

(
N(t1 − 1) + 2

)
γε

6
(M + T − t1)

+

((
N(t1 − 1) + 2

)
γε

6
− ε

)
(t1 − t̂0)

}

≤ max

{
2εγ

6
(M + T − t1),

(
N(t1 − 1) + 2

)
γε

6
(M + T − t1)

}

=

(
N(t1 − 1) + 2

)
γε

6
(M + T − t1),

(B.43)

where the first inequality follows from Lemma 7.10 and the assumption that (t̂0, t1) is
jump-free, the second inequality is due to the induction hypothesis (B.38), the third
inequality is from (B.42), the fourth inequality is because t̂0 ≥ t0 ≥ 2t1−T −M , and
the last inequality is due to (B.37). Therefore, the induction step goes through for
Case 2 as well. This completes the proof of the induction, and implies (B.38), for all
t ∈ [0, T ].

Finally, letting t = T , (B.38) becomes

(B.44) d
(
Q(T ),W (T )

)
≤
(
N(T − 1) + 2

)
γε

6
M ≤ Mε

2
,

where the last inequality is due to (B.37). This completes the proof of Lemma 7.11.

Appendix C. Proof of lemmas for the second direction of Theorem 5.1:
RDS =⇒ ε-JF condition.

C.1. Proof of Lemma 8.1. Suppose that the ε-JF(γ) condition fails to hold.
Then, there exists a nonnegative integer vector n′, with γTn′ ≤ 1, an ε-JF(n′) tra-
jectory q′(·), and some time T such that q′m(T ) > 0. If T = 0, we can use right-
continuity of trajectories to see that, without loss of generality, we can take T to be
positive. We then define a new trajectory q(·) by letting q(t) = q′(tT )/T , for all
t ≥ 0. It is not hard to verify that q(·) is also an ε-JF(n′) trajectory, and satisfies
qm(1) = q′m(T )/T > 0, so that the first property is satisfied.

Suppose now that some of the jumps of q(·) happen after time 1. Let n be
the vector that counts the number of jumps that take place until time 1. Starting
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with q(·), we eliminate the jumps that happen after time 1, to obtain an ε-JF(n)
trajectory, with γTn ≤ γn′ ≤ 1, all jumps in [0, 1], and qm(1) > 0. By slightly
perturbing the jump times, and using a continuity argument, we can ensure that no
two components have simultaneous jumps, and also that all jump times belong to
(0, 1), so that properties (b) and (c) in Lemma 8.1 are satisfied.

Finally, we can replace the arrival rates λj(t) that drive the ε-JF trajectory by
max{λj(t), ε′}, where ε′ < ε is a small positive constant. This ensures that inft λj(t) >
0. Furthermore, using a continuity argument, and as long as ε′ is small enough,
the property qm(1) > 0 is preserved. This proves condition (d) in Lemma 8.1, and
concludes the proof of the lemma.

C.2. Proof of Lemma 8.3. For simplicity, and without loss of generality, we
present the proof for the case where t0 = 0. We let T 1 be a large enough constant
such that for all T ≥ T 1 and all k, we have

(C.1) (ak − d)T ≥ max{µ,
√
T}.

This is possible because according to the definition of d in (8.5), we have mink ak > d.
We fix some T ≥ T 1, as well as some k ∈ {1, . . . , n}. We aim to show that the

process has a substantial probability of a jump of size approximately akT during the
interval

[
ΘkT, (Θk + d)T

)
. Within the proof of this lemma, we use the symbol j

(instead of jk) to denote the index of the queue at which the kth jump took place.
From (C.1), we have log

(
(ak − d)T

)
≥ (1/2) log T . We then obtain, for any t,

any j, and any x ∈
[
(ak − d)T, akT

]
,

fAj(t)(x) =
λj(t)

σ(γj)
· x−(2+γj) log(x+ 1)1 (x ≥ µ)

=
λj(t)

σ(γj)
· x−(2+γj) log(x+ 1)

≥ λj(t)

σ(γj)
· (akT )−(2+γj) log

(
(ak − d)T

)
≥ ζT−(2+γj) log T,

(C.2)

where the second equality is due to (C.1), and where ζ is a positive constant chosen so

that ζ ≤ λi(t)/2σ(γi)a
(2+γj)
k , for every i, k, and t. Note that ζ can be taken positive

because, according to Lemma 8.1, we can assume that inft λj(t) > 0.
We define φ = ζd. Then,

P
(
Aj(t) ∈

[
(ak − d)T, akT

])
=

∫ akT

(ak−d)T

fAj(t)(x) dx

≥ (dT ) · ζT−(2+γj) log T

= φT−(1+γj) log T.

(C.3)

As in (8.11), but with t0 = 0, we define

(C.4) Bk =

ΘkT+dT−1∑
t=ΘkT

A(t),
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and, for t ∈
[
ΘkT, (Θk + d)T

)
,

(C.5) Ut = Bk −Aj(t)ej ,

and note that ‖Ut‖ ≤ ‖Bk‖, for every k and t. We have

P
(∥∥Ut

∥∥ ≥ 2dTµ
)
≤

E
[
‖Ut‖

]
2dTµ

≤
∑(Θk+d)T−1
τ=ΘkT

E [‖A(τ)‖]
2dTµ

≤
dT
(
‖λ∗‖+ ε

)
2dTµ

≤ 1

2
.

(C.6)

where the first step made use of the Markov inequality, and the last step used the
fact ‖λ∗‖+ ε ≤ µ.

For t ∈
[
ΘkT, (Θk + d)T

)
, let Et be the event that Aj(t) ∈

[
(ak − d)T, akT

]
and

‖Ut‖ ≤ 2dTµ. Note that the term Aj(t) is omitted from Ut and, therefore, Aj(t)
and Ut are independent. Thus, using (C.3) and (C.6), we obtain

(C.7) P
(
Et
)
≥ φ

2
T−(1+γj) log T, ∀ t ∈

[
ΘkT, (Θk + d)T

)
.

In light of the definition of d in (8.5), we have d(1 + 2µ) < ak. Therefore,

(C.8) 2dTµ < (ak − d)T.

Thus, for any t, τ ∈
[
ΘkT, (Θk + d)T

)
with τ 6= t, if ‖Ut‖ ≤ 2dTµ, then

(C.9) Aj(τ) ≤ ‖Ut‖ ≤ 2dTµ < (ak − d)T.

In the above, the first inequality follows because if τ 6= t, then Aj(τ) is one of the
summands in the definition (C.5) of Ut, and the last inequality is due to (C.8).
Consequently, if ‖Ut‖ ≤ 2dTµ, then Eτ holds for no τ ∈

[
ΘkT, (Θk + d)T

)
with

τ 6= t, i.e., for t 6= τ , the events Et and Eτ are disjoint.
We now claim that for any t ∈

[
ΘkT,ΘkT + dT

)
, the event Et implies the event

E jump
k , defined in (8.12). Indeed, when event Et occurs, we obtain

∥∥Bk − akTej
∥∥ =

∥∥Ut +Aj(t)ej − akTej
∥∥

≤ ‖Ut‖+
∥∥Aj(t)ej − akTej∥∥

= ‖Ut‖+ |Aj(t)− akT
∣∣

≤ 2dTµ+ dT,

(C.10)

where the last inequality follows from the definition of Et. This shows that the event
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E jump
k occurs, as claimed. Let ψ = min{1, dφ/2}. We then have

P
(
E jump
k

)
≥ P

 ⋃
t∈[ΘkT,ΘkT+dT )

Et


=

(Θk+d)T−1∑
t=ΘkT

P(Et)

≥ dT · φT
−(1+γj) log T

2
≥ ψT−γj log T,

(C.11)

where the first equality is because, for t 6= τ , the events Et and Eτ are disjoint, the
second inequality is due to (C.7), and the last one uses the definition of ψ. This
completes the proof of Lemma 8.3.

C.3. Proof of Lemma 8.4. This proof is similar to the proof of Lemma 7.6 in
Appendix B.4, although some of the details are different.

Recall that r is the number of piecewise constant pieces in the trajectory qε(·).
We fix some k ∈ {0, 1, . . . , n} and let

(C.12) α =
γc

32Cr
,

and

(C.13) η =
8`
(
6`µ+ α

)
3α2

.

Claim C.1. There exists a T 2 ≥ 8` such that for any T ≥ T 2, any j, and any
t ∈
[
ΘkT + dT,Θk+1T

)
, we have

(C.14)

∫ ∞
T/η log T

P
(
Aj(t) ≥ x

)
dx ≤ α

2
√
`
,

and

(C.15) P
(
Aj(t) >

T

η log T

)
≤ 1

4`T
.

Proof. Since all γj are positive, we can fix some δ such that 0 < δ < γj , for every
j. Then, the density fAj(t)(·) in Definition 8.2 decays at least as fast as x−(2+δ). More
concretely, there exists a constant χ such that for all j and t, we have

fAj(t)(x) ≤ χx−(2+δ), ∀ x ≥ µ.

We then have, for any time t ∈
[
ΘkT + dT,Θk+1T

)
, any y ≥ 1, and any j,

(C.16) P
(
Aj(t) ≥ y

)
≤ χ

∫ ∞
y

x−(2+δ) dx =
χ

1 + δ
· x−(1+δ).

It then follows that as T goes to infinity, both T ·P (Aj(τ) > T/η log T ) and
∫∞
T/η log T

P
(
Aj(τ) ≥

x
)
dx go to zero, uniformly over all j and τ . Therefore, there exists a T 2 such that

for any T ≥ T 2, (C.15) and (C.14) hold, and the claim follows.
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For the rest of the proof, we fix such a T 2 and assume that T ≥ T 2. For any
τ ∈ [ΘkT + dT,Θk+1T ) and every j, let

(C.17) A∗j (τ) = min

{
Aj(τ),

T

η log T

}
.

We define the “no jumps” event E= as follows:

(C.18) E= =
{

A(τ) = A∗(τ), for all τ ∈
[
ΘkT + dT,Θk+1T

)}
.

Then,

1− P(E=) ≤
∑̀
j=1

Θk+1T∑
τ=ΘkT+dT

P
(
Aj(τ) >

T

η log T

)

≤
∑̀
j=1

Θk+1T∑
τ=ΘkT+dT

1

4`T

≤ 1

4
,

(C.19)

where the first inequality uses the union bound, the second inequality follows from
(C.15), and the last inequality uses the fact that d, as defined in (8.5) is no larger
than 1. Moreover, for any j and any τ ∈ [ΘkT + dT,Θk+1T ), and using the same
steps as in (B.14),

E [Aj(τ)]− E
[
A∗j (τ)

]
≤
∫ ∞
T/η log T

P
(
Aj(τ) > x

)
dx ≤ α

2
√
`
,

where the last inequality follows from (C.14). Therefore, for any τ ≥ 0,

(C.20)
∥∥E [A(τ)]− E [A∗(τ)]

∥∥ ≤ √` max
j

(
E [Aj(τ)]− E

[
A∗j (τ)

] )
≤ α

2
.

Consider now the following events:
(C.21)

E∗ =
{ ∥∥∥ t∑

τ=ΘkT+dT

(
A∗(τ)− E [A∗(τ)]

)∥∥∥ ≤ αT

2
, ∀ t ∈

[
ΘkT + dT,Θk+1T

)}
,

and for j = 1, . . . , `,

(C.22) E∗j =
{ ∣∣∣ t∑

τ=ΘkT+dT

(
A∗j (τ)−E

[
A∗j (τ)

] )∣∣∣ ≤ αT

2`
, ∀ t ∈

[
ΘkT+dT,Θk+1T

)}
.

Note that if all of the events E∗1 , . . . , E∗` occur, then E∗ also occurs. By applying the
union bound to the complement of these events, we have

(C.23) 1− P
(
E∗
)
≤
∑̀
j=1

(
1− P(E∗j )

)
.
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Consider a sample path under which the events E= and E∗ occur. Then, for any
t ∈
[
ΘkT + dT,Θk+1T

)
,

∥∥∥ t∑
τ=ΘkT+dT

(
A(τ)− E [A(τ)]

)∥∥∥ =
∥∥∥ t∑
τ=ΘkT+dT

(
A∗(τ)− E [A(τ)]

)∥∥∥
=
∥∥∥ t∑
τ=ΘkT+dT

(
A∗(τ)− E [A∗(τ)]

)
+

t∑
τ=ΘkT+dT

(
E [A∗(τ)]− E [A(τ)]

)∥∥∥
≤
∥∥∥ t∑
τ=ΘkT+dT

(
A∗(τ)− E [A∗(τ)]

)∥∥∥ +

t∑
τ=ΘkT+dT

∥∥E [A∗(τ)]− E [A(τ)]
∥∥

≤
∥∥∥ t∑
τ=ΘkT+dT

(
A∗(τ)− E [A∗(τ)]

)∥∥∥ +
αT

2

≤ αT

2
+
αT

2

=
γcT

32Cr
,

(C.24)

where the first equality is due to E=, the second inequality is due to (C.20), the third
inequality follows from E∗, and the last equality is from the definition of α in (C.12).
Therefore, the events E= and E∗ imply the event Efluc

k . Using the union bound on the
complements of these events,

(C.25) 1− P
(
Efluc
k

)
≤
(
1− P (E=)

)
+
(
1− P (E∗)

)
≤ 1

4
+
∑̀
j=1

(
1− P(E∗j )

)
,

where the last inequality follows from (C.19) and (C.23). To complete the proof, we
develop an upper bound on 1− P(E∗j ).

For any τ ≥ 0 and every j, and as in (B.22), we have

(C.26) E
[
A∗j (τ)

]
≤ E [Aj(τ)] ≤

∥∥E [A(τ)]
∥∥ ≤ µ.

For any t ∈
[
ΘkT + dT,Θk+1T

)
, we have

P

(∣∣∣ t∑
τ=ΘkT+dT

(
A∗j (τ)− E

[
A∗j (τ)

] )∣∣∣ > αT

2`

)

≤ 2 exp

(
− (αT/2`)

2

2 T
η log T ·

(
µ(t−ΘkT − dT + 1) + αT/6`

))

≤ 2 exp

(
− 3α2η log T

4`
(
6`µ+ α

))
= 2 exp

(
− 2 log T

)
= 2T−2,

(C.27)

where the first inequality follows from Lemma 7.5 with the identifications z = αT/2`,
b = T/η log T , λ = µ (see (C.26)), and n = t − ΘkT − dT + 1; the second inequality
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is because n ≤ T ; the equality follows from the definition of η in (C.13). Therefore,
for every j,

1− P(E∗j ) ≤
T∑

t=ΘkT+dT

P

(∣∣∣ t∑
τ=ΘkT+dT

(
A∗j (τ)− E

[
A∗j (τ)

] )∣∣∣ > αT

2`

)

≤
T∑
t=1

2

T 2

= 2T−1

≤ 1

4`
,

(C.28)

where the first inequality is from the union bound, the second inequality is due to
(C.27), and the last inequality is from the condition T ≥ T 2 ≥ 8` in Claim C.1.
Plugging (C.28) into (C.25), we obtain P

(
Efluc
k

)
≤ 1/2. This completes the proof of

Lemma 8.4.

C.4. Proof of Lemma 8.5. The proof of this lemma is essentially a continuity
argument, together with an induction that pieces together different time segments.

For simplicity, and without loss of generality, we assume that the constant t0 in
the statement of the lemma is equal to zero. Note, however, that with this convention
Q(0) will in generally be nonzero.

For any λ,x ∈ R`+, let

(C.29) ξλ(x) = q̇(0),

where q(·) is the fluid trajectory corresponding to arrival rate λ and initialized with
q(0) = x. In view of (4.4), we have ξλ(x) ∈ Dλ(x). From the definition (4.3) of the
set Dλ(x) of possible drifts, and the standing assumption

∥∥λ(τ)− λ∗
∥∥ ≤ ε, for all τ ,

we have

(C.30)
∥∥ξλ(τ)

(
qε(τ)

)∥∥ ≤ µ, ∀ τ ≥ 0,

where µ, was defined in (8.2). By taking into account the jump akejk at time Θk and
then integrating the drift ξλ(τ), over the jump-free interval [Θk,Θk + d], we have∥∥qε(Θk + d)− qε(Θk)

∥∥ ≤ dµ.

Noting also that qε(Θk) = qε(Θ−k ) + akejk , we obtain

(C.31)
∥∥qε(Θk + d)− qε(Θ−k )− akejk

∥∥ ≤ dµ.

For τ ≥ 0, let µa(τ) = min
{
µ(τ),Q(τ)

}
, where the minimum is taken compo-

nentwise; thus, µa(τ) is the actual service received at time τ . It then follows from
(2.1) that

(C.32) Q(τ + 1) = Q(τ)− µa(τ) + A(τ).

We start by considering the intervals [ΘkT, (Θk +d)T ] associated with jumps, for

k = 1, . . . , n. We are working with a sample path for which the event E jump
k occurs,
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Therefore,∥∥Q((Θk + d)T
)
−
(
Q(ΘkT ) + Takejk

)∥∥
=
∥∥∥(Q(ΘkT ) +

ΘkT+dT−1∑
τ=ΘkT

(
A(τ)− µa(τ)

))
−
(
Q(ΘkT ) + Takejk

)∥∥∥
≤
∥∥∥(ΘkT+dT−1∑

τ=ΘkT

A(τ)
)
− Takejk

∥∥∥ +
∥∥∥ΘkT+dT−1∑

τ=ΘkT

µa(τ)
∥∥∥

≤ dT (1 + 2µ) + dTµ

= dT (1 + 3µ),

(C.33)

where the first equality is due to (C.32). The second inequality follows from the

definition (8.12) of E jump
k and the fact ‖µa(τ)‖ ≤ ‖µ(τ)‖ ≤ µ, for all τ ≥ 0.

Combining (C.33) with (C.31), it follows that for k = 1, . . . , n,∥∥Q((Θk + d)T
)
− Tqε(Θk + d)

∥∥
≤
∥∥Q((Θk + d)T

)
−
(
Q(ΘkT ) + Takejk

)∥∥ +
∥∥(Q(ΘkT ) + Takejk

)
− T

(
qε(Θ−k ) + akejk

)∥∥
+
∥∥T (qε(Θ−k ) + akejk

)
− Tqε(Θk + d)

∥∥
≤
∥∥Q((Θk + d)T

)
−
(
Q(ΘkT ) + Takejk

)∥∥ +
∥∥Q(ΘkT

)
− Tqε(Θ−k )

∥∥ + dTµ

≤ dT (1 + 3µ) +
∥∥Q(ΘkT

)
− Tqε(Θ−k )

∥∥ + dTµ

=
∥∥Q(ΘkT

)
− Tqε(Θ−k )

∥∥ + dT (1 + 4µ),

where the second and third inequalities are due to (C.31) and (C.33), respectively.
Using the definition (8.5) of d, we conclude that

(C.34)
∥∥Q((Θk + d)T

)
− Tqε(Θk + d)

∥∥ ≤ ∥∥Q(ΘkT
)
− Tqε(Θ−k )

∥∥ +
γcT

8
.

We have so far established that if the two trajectories Q(·) and qε(·) are close at
the beginning of an interval [ΘkT, (Θk + d)T ], they are also close at the end. We now
need to establish a similar conclusion over intervals of the form [(Θk + d)T,Θk+1T ].
We wish to capitalize on Theorem 7.2. That result however refers to fluid models with
constant arrival rates. In contrast, our stochastic process has a piecewise constant
arrival rate and the same holds for the associated JF trajectory. We deal with this
issue by applying Theorem 7.2 repeatedly, for each one of the piecewise constant
segments.

Let us fix some k ∈ {1, . . . , n} and recall that r is an upper bound on the number
of subintervals in [Θk + d,Θk+1) during which λ(·) stays constant. Let us then fix
some times θi, for i = 1, . . . , r + 1, such that

Θk + d = θ1 < · · · < θr < θr+1 = Θk+1,

and such that λ(·) is constant during each one of the intervals (θi, θi+1), for i =
1, . . . , r.

Under our assumption that the sample path satisfies the event Efluc
k , we see that
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during each one of the intervals [θiT, θi+1T ], and for i = 1 . . . , r, we have

max
t∈[θiT,θi+1T )

∥∥∥ t∑
τ=θiT

(
A(τ)− λ(τ)

)∥∥∥ ≤ 2 max
t∈[ΘkT+dT,Θk+1T )

∥∥∥ t∑
τ=ΘkT+dT

(
A(τ)− λ(τ)

)∥∥∥
≤ γcT

16Cr
.

(C.35)

We now note that the function q̃ε(·) defined by q̃ε(t) = Tqε(t/T ) is also an ε-JF
trajectory and, in particular, is a fluid trajectory during each interval [θiT, θi+1T ).
We apply Theorem 7.2 over this interval. Using also the fact that 1 +

∥∥λ(τ)
∥∥ ≤ µ, we

obtain

(C.36)
∥∥Q(θi+1T )− Tqε(θ−i+1)‖ ≤

∥∥Q(θiT )− Tqε(θ−i )
∥∥+ Cµ+ C · γcT

16Cr
.

By summing such inequalities, for i = 1, . . . , r, and using the facts θ1 = Θk + d,
θr+1 = Θk+1, and qε

(
(Θk + d)−

)
= qε(Θk + d), we obtain

(C.37)
∥∥Q(Θk+1T )− Tqε(Θ−k+1)

∥∥ ≤ ∥∥Q((Θk + d)T )− Tqε(Θk + d)
∥∥+ rCµ+

γcT

16
.

We now add (C.34) and (C.37) to obtain∥∥Q(Θk+1T )− Tqε(Θ−k+1)
∥∥ ≤ ∥∥Q(ΘkT )− Tqε(Θ−k )

∥∥+ rCµ+
3γcT

16
.

We finally sum these bounds, for k = 1, . . . , n, and use the fact qε(Θ−n+1) = qε(1−),
to conclude that∥∥Q(T )− Tqε(1−)

∥∥ ≤ ∥∥Q(Θ1T )− Tqε(Θ−1 )
∥∥+ nrCµ+

3nγcT

16

≤
∥∥Q(Θ1T )− Tqε(Θ−1 )

∥∥+ nrCµ+
3cT

16
,

(C.38)

where we also made use of the property nγ ≤ γTn ≤ 1.
The interval [0,Θ1) is to be treated a little different, as Θ0 = 0 is not a jump

time. Even so, the argument leading to (C.37) applies verbatim and shows that∥∥Q(Θ1T )− Tqε(Θ−1 )
∥∥ ≤ ∥∥Q(0)− Tqε(0)

∥∥+ rCµ+
γcT

16
≤
∥∥Q(0)

∥∥+ rCµ+
cT

16
,

where we made use of the fact that the fluid trajectory is intialized at zero, and the
inequality γ ≤ 1. Combining with (C.38), we finally conclude that∥∥Q(T )− Tqε(1)

∥∥ ≤ ∥∥Q(0)
∥∥+ (n+ 1)rCµ+

cT

4
.

We now let T 3 be large enough so that, for any T ≥ T 3, we have (n+1)rCµ+(cT/4)+
(cT/5) ≤ cT/2. As long as T ≥ T 3, and using the assumption ‖Q(0)‖ ≤ cT/5, we
obtain ∥∥Q(T )− Tqε(1)

∥∥ ≤ cT

5
+ (n+ 1)rCµ+

cT

4
≤ cT

2
.
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Finally, using c = qεm(1), we have

Qm(T ) = Tqεm(1) −
(
Tqεm(1)−Qm(T )

)
≥ Tqεm(1) −

∥∥Tqε(1)−Q(T )
∥∥

≥ Tqεm(1) − cT

2

= cT − cT

2

=
cT

2
,

(C.39)

This completes the proof of Lemma 8.5.
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