
OPERATIONS RESEARCH

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Methods

Private Sequential Learning
John N. Tsitsiklis,a Kuang Xu,b Zhi Xua

aLaboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
bGraduate School of Business, Stanford University, Stanford, California 94305
Contact: jnt@mit.edu, https://orcid.org/0000-0003-2658-8239 (JNT); kuangxu@stanford.edu, https://orcid.org/0000-0002-2221-1648 (KX);
zhixu@mit.edu, https://orcid.org/0000-0002-1421-2309 (ZX)

Received: May 13, 2018
Revised: July 29, 2019; January 6, 2020
Accepted: February 13, 2020
Published Online in Articles in Advance:
January 14, 2021

Subject Classification: decision analysis:
sequential; statistics: estimation; probability:
stochastic model applications
Area of Review: Stochastic Models

https://doi.org/10.1287/opre.2020.2021

Copyright: © 2021 INFORMS

Abstract. We formulate a private learning model to study an intrinsic tradeoff between
privacy and query complexity in sequential learning. Our model involves a learner who
aims to determine a scalar value v∗ by sequentially querying an external database and
receiving binary responses. In the meantime, an adversary observes the learner’s queries,
although not the responses, and tries to infer from them the value of v∗. The objective of the
learner is to obtain an accurate estimate of v∗ using only a small number of queries while
simultaneously protecting his or her privacy bymaking v∗ provably difficult to learn for the
adversary. Our main results provide tight upper and lower bounds on the learner’s query
complexity as a function of desired levels of privacy and estimation accuracy. We also
construct explicit query strategies whose complexity is optimal up to an additive constant.
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1. Introduction
Organizations and individuals often rely on relevant
data to solve decision problems. Sometimes such data
are beyond the immediate reach of a decision maker
and must be acquired by interacting with an external
entity or environment. However, these interactions
may be monitored by a third-party adversary and
subject the decision maker to potential privacy breaches,
a possibility that has become increasingly prominent
as information technologies and tools for data ana-
lytics advance.

This paper studies a decision maker, henceforth
referred to as the learner, who acquires data from an
external entity in an interactive fashion by submit-
ting sequential queries. The interactivity benefits the
learner by enabling him or her to tailor future queries
based on past responses and thus reduce the num-
ber of queries needed and, at the same time, exposes
the learner to substantial privacy risk: the more the
learner’s queries depend on past responses, the easier
it might be for an adversary to use the observed
queries to infer those past responses. Our main ob-
jective is to articulate and understand an intrinsic
privacy versus query complexity tradeoff in the context of
such a private sequential learning model.

We begin with an informal description of the model.
A learnerwould like to determine the value of a scalar
v∗ referred to as the true value that lies in a bounded
subset of R, for example, the interval [0,1). To search

for v∗, the learner must interact with an external
database through sequentially submitted queries: at
step k, the learner submits a query qk ∈ R and receives a
binary response rk, where rk # 1 if v∗ ≥ qk and rk # 0
otherwise. The interaction is sequential in the sense
that the learner may choose a query depending on the
responses to all previous queries. Meanwhile there is
an adversarywho eavesdrops on the learner’s actions:
the adversary observes all the learner’s queries qk, but
not the responses, and tries to use these queries to
estimate the true value v∗. The learner’s goal is to
submit queries in such a way that he or she can learn
v∗ within a prescribed error tolerance while v∗ cannot
be accurately estimated by the adversary with high
confidence. The learner’s goal is easily attained by
submitting an unlimited number of queries, in which
case the queries need not depend on the past responses
and hence reveal no information to the adversary. Our
quest is, however, to understand the least number of
queries that the learner needs to submit in order to
successfully retain privacy. Is the query complexity
significantly different from the case where privacy
constraints are absent? How does it vary as a function
of the levels of accuracy and privacy? Is there a simple
and yet efficient query strategy that the learner can
adopt? Our main results address these questions.

1.1. Motivating Examples
We discuss three examples that provide some context
for our model. Although the examples are stylized,
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they are intended to motivate and provide insights
on the general concept of privacy preservation in
sequential learning.

Example 1 (Learning an Optimal Price). A firm is to
release a new product and would like to identify a
revenue-maximizing price p∗ before the product
launch. The firm believes that there is an underlying
unknown demand function g(p) and that the revenue
function f (p) # g(p)× p is a strictly concave and dif-
ferentiable function of the price p. A sequential learning
process is used to identify p∗ over a series of epochs: in
epoch k, the firm assesses how the market responds to a
test price pk and receives a binary feedback as towhether
f ′(pk) ≥ 0 or f ′(pk) < 0. This may be achieved, for in-
stance, by contracting a consulting firm to conduct
market surveys on the price sensitivity around pk. The
survey could ask for a customer’s willingness to pur-
chase the product at price levels p and p + ξ, for some
small ξ, from which the demand g(p) and its gradient
can be estimated. Using the chain rule, this information
can then be converted to an estimate of the sign of f ′(p).
The firm would like to be able to estimate p∗ with
reasonable accuracy after a small number of epochs but
is wary that a competitor might be able to observe the
surveys, either by purposely participating in them or by
interviewing survey participants, and then deduce the
value of p∗ ahead of the product launch. In the context of
private sequential learning, the firm is the learner, the
competitor is the adversary, the revenue-maximizing
price is the true value, and the test prices are the queries.
The binary response on the revenue’s price sensitivity
indicates whether the revenue-maximizing price is less
than the current test price.

Example 2 (Learning Consumer Preferences). e-Commence
firms such as Amazon are often incentivized to learn
consumer preferences that could later be used for
devising personalized promotions. Consider a con-
sumer who is looking for an item with an ideal scalar
product feature (e.g., size) on an online merchant’s
platform. Although the consumer does not initially
know the optimal feature value, when presented with
a specific product, he or she will be able to assess
whether the ideal value is greater than the current
option (e.g., if the current option is too large or too
small). The consumer browses different products in a
sequential manner and hopes to eventually narrow in
on the ideal feature value. Meanwhile, the platform
sees all the products browsed by the consumer but
does not directly observe his or her internal assess-
ments. Our model can be used to investigate how a
privacy-aware consumer can browse products in such
a manner that will eventually allow him or her to iden-
tify the ideal product feature value while preventing

the platform from confidently inferring that value
from his or her browsing history.

Example 3 (Online Optimization with Private Weights). In
Examples 1 and 2, the adversary is a third-party that
does not observe the responses to the queries. We now
provide a different example inwhich the adversary is the
database to which queries are submitted and thus has
partial knowledge of the responses. Consider a learner
who wishes to identify the maximizer x∗ of a function
f (x) # ∑m

i#1 αifi(x) over some bounded interval X ⊂ R,
where { fi(·)}1≤i≤m is a collection of strictly concave
differentiable constituent functions, and {αi}1≤i≤m are
positive (private) weights representing the importance
that the learner associates with each constituent func-
tion. The learner knows the weights but does not have
information about the constituent functions; such
knowledge is to be acquired by querying an external
database. During epoch k, the learner submits a test
value xk and receives from the database the deriva-
tives of all constituent functions at xk, { f ′i (xk)}1≤i≤m.
Using the weights, the learner can then compute the
derivative f ′(xk), whose sign serves as a binary in-
dicator of the position of the maximizer x∗ relative to
the current test value. The database, which possesses
complete information about the constituent functions
but does not know the weights, would like to infer
from the learner’s querying pattern the maximizing
value x∗ or possibly the weights themselves. Al-
though the previously mentioned model appears to
differ from the previous two examples, it turns out
that the modeling methodology and query strategies
that we develop can also be applied to this setting.
The connection between the two settings is made
precise in chapter 2 of Xu (2017).

1.2. Preview of the Main Result
We now preview our main result. Let us begin by
introducing some additional notation. Recall that
both the learner and the adversary aim to obtain
estimates that are close to a true value v∗ ∈ [0, 1). We
denote by ε/2 and δ/2 the estimation error that the
learner and the adversary are willing to tolerate, re-
spectively. We will use a privacy parameter L ∈ N to
quantify the learner’s level of privacy at the end of
the learning process: the learner’s privacy level is L if
the adversary can successfully approximate the true
value within an error of δ/2 with probability at most
1/L, so higher values of L correspond to enhanced
privacy. (A precise, formal definition of privacy level,
in terms of L, will be provided in Section 3.2.) A
private query strategy for the learner, then, must be
able to produce an estimate of the true valuewithin an
error of at most ε/2 while simultaneously guaran-
teeing that the desired privacy level L holds against
the adversary.
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Our main objective is to quantify the query com-
plexity of private sequential learning N∗(ε, δ,L), de-
fined as the minimum number of queries needed for a
private learner strategy, under a given set of parameters
ε, δ, and L. Specifically, we will focus on the regime
where 2ε < δ ≤ 1/L. The reason for this choice will
become clear after a formal introduction of the model,
and we will revisit it at the beginning of Section 4. In
this regime, we have the following upper and lower
bounds on query complexity:

1. We establish an upper bound1 of log(1/Lε) + 2L
by explicitly constructing a private learner strategy,
which applies for any δ in the range (2ε, 1/L].

2. We establish a lower bound of log(δ/ε) + 2L − 4
by characterizing the amount of information available
to the adversary.

We note that our bounds are tight in the sense that
when the adversary’s accuracy requirement is as
loose as possible (i.e., δ # 1/L), the upper bound
matches the lower bound up to an additive constant
equal to four. Furthermore, comparing with the ele-
mentary lower bound of log(1/ε) for the case where
privacy is not a concern, we see that the extra effort
necessary to guarantee a privacy level L is at most an
additive factor of 2L.

To put our results in context,we examine in Section 5
two simple strategies situated at two extreme points
of the privacy–efficiency tradeoff curve. On the one
hand, the classical bisection search algorithm ach-
ieves an optimal query complexity of log(1/ε), but it
completely reveals the responses of past queries and
is hence almost never private. On the other hand, the
learner could use a nonadaptive ε-dense strategy that
places 1/ε equally spaced queries throughout the unit
interval. The nonadaptive nature of this strategy al-
lows the learner to always be private, but its query
complexity is significantly worse. Our results and
policies essentially aim to understand the optimal
tradeoff between these two extremes for any given
privacy level L.

1.3. Related Work
In the absence of a privacy constraint, the problem of
identifying a value within a compact interval through
(possibly noisy) binary feedback is a classical problem
arising in domains such as coding theory (Horstein
1963) and root finding (Waeber et al. 2013). It is well
known that the bisection algorithm achieves the op-
timal query complexity of log(1/ε) (Waeber et al.
2013), where ε > 0 is the error tolerance. In contrast,
to the best of our knowledge, the question of how to
preserve a learner’s privacy when his or her actions
are fully observed by an adversary and what the
resulting query complexity would be has received
relatively little attention in the literature.

Related to our work, in spirit, is the body of liter-
ature on differential privacy (Dwork et al. 2006,
Dwork and Roth 2014), a concept that has been
applied in statistics (Wasserman and Zhou 2010,
Smith 2011, Duchi et al. 2016) and learning theory
(Raskhodnikova et al. 2008, Chaudhuri andHsu 2011,
Blum et al. 2013, Feldman and Xiao 2014). Differential
privacy mandates that the output distribution of an
algorithm be insensitive under certain perturbations
of the input data. For instance, Jain et al. (2012) study
regret minimization in an online optimization prob-
lem while ensuring differential privacy, in the sense
that the distribution of the sequence of solutions re-
mains nearly identical when any one of the functions
being optimized is perturbed. In Dwork et al. (2012),
the authors study differential privacy in data analysis
when multiple analysts query the same database.
More recently, adaptive versions of differentially
private data analysis have been studied (Dwork et al.
2015a,b,c; Cummings et al. 2016). Notably, our work
departs from this literature by using a goal-oriented
privacy framework: our definition of privacy mea-
sures the adversary’s ability to perform a specific in-
ferential goal. In contrast, differential privacy aims to
prevent an adversary from performing any mean-
ingful inference. As such, the goal-oriented privacy
framework leads to substantially more efficient de-
cision policies, whereas differential privacy offers
stronger privacy protection for settings where the
privacy goal is not clear a priori, at the cost of an
increased efficiency loss. In this regard, our approach
echoes a number of recent papers that also employ a
goal-oriented privacy framework (Fanti et al. 2015,
Liao et al. 2018, Tsitsiklis and Xu 2018).
In a different model, Tsitsiklis and Xu (2018) study

the issue of privacy in a sequential decision problem,
where an agent attempts to reach a particular node
in a graph, traversing it in a way that obfuscates the
agent’s intended destination, against an adversary
who observes the agent’s past trajectory. The authors
show that the probability of a correct prediction by
the adversary is inversely proportional to the time it
takes for the agent to reach his or her destination.
Similar to the setting of Tsitsiklis and Xu (2018), the
learner in our model also plays against a powerful
adversary who observes all past actions. However, a
major new element is that the learner in our model
strives to learn a piece of information of which the
learner himself or herself has no prior knowledge, in
contrast to the agent in Tsitsiklis and Xu (2018), who
tries to conceal private information already in his or
her possession. In a way, the central conflict of trying
to learn something while preventing others from
learning the same information sets the present work
apart from the extant literature.
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Finally, our model is close in spirit to private in-
formation retrieval problems in the field of cryptog-
raphy (Kushilevitz and Ostrovsky 1997, Chor et al.
1998, Gasarch 2004). In these problems, a learner
wishes to retrieve an item from some location i in a
database in such a manner that the database obtains
no information on the value of i, where the latter
requirement can be either information theoretic or
based on computational hardness assumptions. Com-
pared with this line of literature, our privacy re-
quirement is substantially weaker: the adversary
may still obtain some information on the true value.
This relaxation of the privacy requirement allows the
learner to deploy richer and more sample-efficient
query strategies.

1.4. Organization
The remainder of this paper is organized as follows.
We formally introduce the private sequential learn-
ing model in Section 2. In Section 3, we motivate
and discuss private learner strategies. Our main re-
sults are stated in Section 4. Before delving into the
proofs, we examine in Section 5 three examples of
learner strategies that provide further insight into
the structure of the problem. Sections 6 and 7 are
devoted to the proof of the upper and lower bounds
in our main theorem, respectively. We conclude in
Section 8, where we also describe some interesting
variations of our model, which are further elaborated
on in Appendices A and B.

2. The Private Sequential Learning Model
Here we formally introduce our private sequential
learning model. The model involves a learner who
aims to determine a particular true value v∗. The true
value is a scalar in some bounded subset ofR.Without
loss of generality, we assume that v∗ belongs to the
interval2 [0, 1) and that the learner knows that this is
the case. The true value is stored in an external da-
tabase. In order to learn the true value, the learner
interacts with the database by submitting queries as
follows: at each step k, the learner submits a query qk ∈
[0, 1) and receives from the database a response rk
indicating whether v∗ is greater than or equal to the
query value; that is,

rk # I v∗ ≥ qk
( )

,

where I(·) stands for the indicator function. Fur-
thermore, each query is allowed to depend on the re-
sponses to previous queries through a learner strategy to
be defined shortly.

Denote by N the total number of learner queries
and by ε > 0 the learner’s desired accuracy. After

receiving the responses to N queries, the learner aims
to produce an estimate x̂ for v∗ that satisfies

|x̂ − v∗| ≤ ε
2
.

In the meantime, there is an adversary who is also
interested in learning the true value v∗. The adversary
has no access to the database and hence seeks to es-
timate v∗ by free-riding on observations of the learner
queries. Let δ > 0 be an accuracy parameter for the
adversary.We assume that the adversary can observe
the values of the queries but not the responses and
knows the learner’s query strategy. Based on this in-
formation, and after observing all the queries sub-
mitted by the learner, the adversary aims to generate
an estimate x̂a for v∗ that satisfies

|x̂a − v∗| ≤ δ
2
.

2.1. Learner Strategy
The queries that the learner submits to the database
are generated by a (possibly randomized) learner
strategy in a sequential manner: the query at step k
depends on the queries and their responses up to
step k − 1, as well as on a discrete random variable Y.
In particular, the randomvariableY allows the learner
to randomize, if needed, and we refer to Y as the
random seed. Without loss of generality, we assume
that Y is uniformly distributed over {1, 2, . . . ,Y},
where Y is a large integer. Formally, fixing N ∈ N,
a learner strategy φ of length N is comprised of
two parts:
1. Afinite sequence ofN query functions (φ1, . . . ,φN),

where each φk is a mapping that takes as input the
values of the first k − 1 queries submitted, the corre-
sponding responses, and the realized value of Y and
outputs the kth query qk.
2. An estimation function φE, which takes as in-

put the N queries submitted, the corresponding re-
sponses, and the realized value of Y and outputs the
final estimate x̂ for the true value v∗.
More precisely, we have
1. If k # 1, then φ1 : {1, 2, . . . ,Y} → [0, 1) and q1 #

φ1(Y); if k # 2, 3, . . . ,N, then φk : [0, 1)k−1 × {0, 1}k−1 ×
{1, 2, . . . ,Y} → [0, 1) and

qk # φk q1, q2, . . . , qk−1, r1, r2, . . . , rk−1,Y
( )

;

2. Finally, φE : [0,1)N × {0,1}N × {1,2, . . . ,Y}→ [0,1)
and x̂ # φE(q1, q2, . . . , qN , r1, r2, . . . , rN ,Y).
Observe that the preceding definition can be sim-

plified: knowing the value of the random seed Y and
the responses to the queries is sufficient for recon-
structing the values of the queries. As an example, we
have q2 # φ2(q1, r1,Y) # φ2(φ1(Y), r1,Y) # φ′

2(r1,Y) for
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some new function φ′
2. Through induction, it then

suffices to let the input to φk be just r1, . . . , rk−1 and Y.
This leads to an alternative, simpler definition of
learner strategies:

1. If k # 1, then φ1 : {1,2, . . . ,Y}→ [0,1) and q1 #
φ1(Y); if k # 2, 3, . . . ,N, then φk : {0, 1}k−1 × {1, 2, . . . ,
Y} → [0, 1) and qk # φk(r1, r2, . . . , rk−1,Y);

2. Finally, φE :{0,1}N×{1,2,. . .,Y}→ [0,1) and x̂ #
φE(r1, r2, . . . , rN ,Y).

In what follows, we adopt the latter, simpler def-
inition. In addition, we will consider learner strate-
gies that submit distinct queries because repeated
queries do not provide additional information to the
learner. We will denote by ΦN the set of all learner
strategies of length N, defined previously.

Fix a learner strategy φ ∈ ΦN . To clarify the de-
pendence on the random seed, for any x ∈ [0, 1) and
y ∈ {1, 2, . . . ,Y}, we will use q(x, y) to denote the re-
alization of the sequence of queries (q1, q2, . . . , qN)
when the true value v∗ is x and the learner’s ran-
dom seed Y is y. Similarly, we will denote by x̂(x, y)
the learner’s estimate of the true value when v∗ # x
and Y # y.

2.2. Information Available to the Adversary
We summarize in this section the information avail-
able to the adversary. First, the adversary is aware
that the true value v∗ belongs to [0, 1). Second, we
assume that the adversary can observe the values of
the queries but not the corresponding responses and
that the learner strategy φ, including the distribution
of the random seed Y, is known to the adversary. In
particular, the adversary observes the value of each
query qk, for k # 1, . . . ,N, and knows the N mappings
φ1,φ2, . . . ,φN . This means that if the adversary had
access to the values r1, r2, . . . , rk−1 and the realized
value of Y, he or she would know exactly what qk
is for step k. These assumptions stem from a worst-
case consideration: the privacy guarantees hold even
when the adversary knows the learner’s strategy and
can automatically extend to more practical scenarios
where such knowledge may not be exact. Although it
may seem that an adversary who sees both the learner
strategy and the learner’s actions is too powerful to
defend against, we will see in the ensuing analysis
that the learner is still be able to implement effective
and efficient obfuscation by exploiting the random-
ness in Y.

3. Private Learner Strategies
In this section, we introduce and formally define
private learning strategies, the central concept of this
paper. Although we will briefly discuss the under-
lying intuition, further interpretation is provided in
Appendix A. As was mentioned in the Introduction, a

private learner strategy must always make sure that
its estimate is close to the true value v∗ while keeping
the adversary’s probability of accurately estimating
v∗ sufficiently small. Our goal in this section is to
formalize these ideas. To this end, we first introduce
in Section 3.1 ways of quantifying the amount of
information acquired by the adversary as a function
of the learner’s queries. This then leads to a precise
privacy constraint, presented in Section 3.2.

3.1. Information Set
Recall from Section 2.2 that the adversary knows the
values of the queries and the learner strategy.We now
convert this knowledge into a succinct representa-
tion: the information set of the adversary. Fix a learner
strategy φ. Denote byQ(x) the set of query sequences
that have a positive probability of appearing under φ
when the true value v∗ is equal to x:

Q x( ) # q ∈ 0, 1[ )N : Pφ Qx # q
( )

> 0
{ }

, (1)

where Qx is a vector-valued random variable repre-
senting the sequence of learner queries when the true
value is equal to x and where q ranges over possible
realized values; the probability is measured with
respect to the randomness in the learner’s random
seed Y.

Definition 1. Fix φ ∈ ΦN . The information set for the
adversary I(q) is defined by

I q
( ) # x ∈ 0, 1[ ) : q ∈ Q x( )

{ }
, q ∈ 0, 1[ )N . (2)

From the viewpoint of the adversary, the infor-
mation set represents all possible true values that are
consistent with the queries observed. As such, it
captures the amount of information that the learner
reveals to the adversary.

3.2. The (ε, δ, L)-Private Strategies
A private learner strategy should achieve two aims:
accuracy and privacy. Accuracy can be captured in a
relatively straightforward manner by measuring the
absolute distance between the learner’s estimate and
the true value. An effective measure of the learner’s
privacy, by contrast, ismore subtle because it depends
on what the adversary is able to infer. To this end,
we develop in this subsection a privacy metric by
quantifying the effective size of the information set I(q)
described in Definition 1. Intuitively, because the
information set contains all possible realizations of
the true value v∗, the larger the information set, the
more difficult it is for the adversary to pin down the
true value.
The choice of such a metric requires care. As a

first attempt, the diameter of the information set
supy1,y2∈I(q) |y1−y2|mayappear tobe anatural candidate.
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Because the adversary has an accuracy parameter
of δ, we could impose, as a privacy constraint, that
the diameter of I(q) be greater than δ. The diameter,
however, is not a good metric because it paints an
overly optimistic picture for the learner. For example,
consider the case where the information set is the
union of two intervals of length δ each placed far apart
from each other. By setting his or her estimate to be the
center of one of the two intervals, chosen at random
with equal probabilities, the adversary will have
probability 1/2 of correctly predicting the true value,
even though the diameter of the information set could
be large. As a second attempt, we might consider the
Lebesgue measure of the information set. However, it
also fails to capture the intended meaning of learner
privacy. For example, consider the case where the
information set consists of many distantly placed but
very small intervals. It is not difficult to see that the
adversary would not be able to correctly estimate the
true value with high certainty, even if the Lebesgue
measure of the set is arbitrarily small.

The shortcomings of the preceding metrics motivate a
more refined notion of effective size and, in particular,
one that would be appropriate for disconnected in-
formation sets. To this end, we use set coverability
to measure the size of the information set, defined
as follows.

Definition 2. Fix δ > 0, L ∈ N, and a set E ⊂ R. We say
that a collection of L closed intervals [a1, b1], [a2, b2], . . .,
[aL, bL] is a (δ, L) cover for E if E ⊂ ⋃

1≤j≤L[aj, bj] and bj −
aj ≤ δ for all j.

We say that a set E is (δ,L)-coverable if it admits a
(δ, L) cover. In addition, we define the δ-cover number
of a set E, Cδ(E), as

Cδ E( )≜ min L ∈ N : E is (δ,L)-coverable{ }. (3)

We are now ready to define (ε, δ,L)-private learner
strategies.

Definition 3 (Private Learner Strategy). Fix ε > 0, δ > 0,
and L ≥ 2, with L ∈ N. A learner strategy φ ∈ ΦN is
(ε, δ, L)-private if it satisfies the following:

a. Accuracy constraint: The learner estimate accu-
rately recovers the true value with probability one:

P x̂ x,Y( ) − x| | ≤ ε/2( ) # 1, ∀x ∈ 0, 1[ ),

where the probability is measured with respect to the
randomness in Y.

b. Privacy constraint: For every x ∈ [0, 1) and every
possible sequence of queries q ∈ Q(x), the δ-cover
number of the information set for the adversary,
Cδ(I(q)), is at least L, that is,

Cδ I q
( )( ) ≥ L, ∀q ∈ Q x( ). (4)

The accuracy constraint requires that a private
learner strategy always produce an accurate estimate
within the error tolerance ε for any possible true value
in [0, 1). The privacy constraint controls the size of the
information set induced by the sequence of queries
generated, and the parameter L can be interpreted as
the learner’s privacy level: because the intervals used
to cover the information set are of length at most δ,
each interval can be thought of as representing a
plausible guess for the adversary. Therefore, the
probability of the adversary successfully estimating
the location of v∗ is essentially inversely proportional
to the number of intervals needed to cover the in-
formation set, which is at most 1/L. It turns out that
this intuition can be made precise: in Appendix A, we
formally establish the equivalence between 1/L and
the adversary’s probability of correct estimation.

3.3. Worst-Case vs. Bayesian Formulations
Our definition of learner privacy involves worst-case
requirements for both the learner and the adver-
sary. In a Bayesian formulation, these are replaced by
requirements that only need to hold, on average,
under a prior distribution for the value of the un-
known target v∗. We formulate such a Bayesian
variant in detail in Appendix B and argue that it is
complementary, not directly comparable, to our main
formulation. On the technical side, in Appendix B, we
present a learner strategy that achieves privacywith a
query complexity that depends multiplicatively on L;
in more recent work that follows up on this paper,
Xu (2018) establishes a lower bound that shows
that such dependence is also tight. We note that not
only are the two formulations not comparable, but
their analysis is also different: the lower bounds for
our base model rely on combinatorial arguments in
contrast to information-theoretic arguments for the
Bayesian variant (Xu 2018).

4. Main Result
The learner’s overall objective is to use a minimal
number of queries while satisfying the accuracy and
privacy requirements. We state our main theorem
in this section, which establishes lower and upper
bounds for the query complexity of a private learner
strategy as a function of the adversary accuracy
δ, learner accuracy ε, and learner privacy level L.
Recall that ΦN is the set of learner strategies of length
N. We define N∗(ε, δ, L) as the minimum number
of queries needed across all (ε, δ,L)-private learner
strategies. Thus,

N∗ ε, δ,L( ) # min N ∈ N : ΦN contains at least one{
× ε, δ, L( )-private strategy

}
. (5)
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Our result focuses on the regime of parameters where

0 < 2ε < δ ≤ 1/L. (6)

1. Having 2ε < δ corresponds to a scenario where
the learner wants to estimate the true value with high
accuracy while the adversary is content with a coarse
estimate. In contrast, the regime where δ < ε is ar-
guably much less interesting: it is not natural for the
adversary, who is not engaged in the querying pro-
cess, to aim at higher accuracy than the learner.

2. The requirement that δ ≤ 1/L stems from the
following argument: if δ ≥ 1/(L − 1), then the en-
tire interval [0, 1) is trivially (δ,L − 1)-coverable, and
Cδ(I(q))≤Cδ([0,1))≤ L−1< L. Thus, the privacy con-
straint is automatically violated, and no private learner
strategy exists. To obtain a nontrivial problem, we
therefore only need to consider the case where
δ < 1/(L − 1), which is only slightly broader than the
regime δ ≤ 1/L that we consider.

The following theorem is the main result of
this paper.

Theorem 1 (Query Complexity of Private Sequential
Learning). Fix ε > 0, δ > 0, and a positive integer L ≥ 2
such that 2ε < δ ≤ 1/L. Then

max log
1
ε
, log

δ
ε
+ 2L − 4

{ }
≤ N∗ ε, δ, L( )

≤ log
1
Lε

+ 2L.
(7)

The proof of the upper bound in Theorem 1 is
constructive, providing a specific learner strategy
that satisfies the bound. If we set δ # 1/L, where the
adversary’s accuracy requirement is essentially as
loose as possible, and thus corresponds to aworst case
for the learner, then Theorem 1 leads to the following
corollary, which yields upper and lower bounds that are
tight up to an additive constant of four. In other words,
the private learner strategy that we construct achieves
essentially the optimal query complexity in this scenario.

Corollary 1. Fix ε > 0 and a positive integer L ≥ 2 such
that 2ε < 1/L. The following holds:

a. If L # 2, then

log
1
ε
≤ N∗ ε,

1
L
,L

( )
≤ log

1
ε
+ 4. (8)

b. If L ≥ 3, then

log
1
Lε

+ 2L − 4 ≤ N∗ ε,
1
L
,L

( )
≤ log

1
Lε

+ 2L. (9)

A key message from these results is about the price
of privacy: it is not difficult to see that in the absence
of a privacy constraint, the most efficient strategy,
using a bisection search, can locate the true value with
log(1/ε) queries. Our results thus demonstrate that
the price of privacy is at most an additive factor of 2L.
We close by noting the following two important

aspects of our upper bounds:
1. Randomization: The proof of our upper bounds

involves a strategy that relies strongly on the avail-
ability of the randomization variableY. It is not known
whether a deterministic private learner strategy with
comparable query complexity is possible.
2. Practical relevance and limitation: Although math-

ematically valid, the particular strategy we developed
heavily exploits the underlying structure of the infor-
mation set. When the learner’s desired accuracy ε is
very small, the resulting information set will contain
separate, tiny guesses (intervals). From an applied
perspective, the chance that these tiny guesses contain
v∗ is negligible, and a practical adversary might
benefit by essentially ignoring them instead of having
to cover them under the current worst-case formu-
lation. We postpone a detailed discussion together
with two potential remedies until Section 8, after
developing a necessary understanding of the proof in
the next sections.

5. Examples of Learner Strategies
Before delving into the proofs of our main result, we
first provide some intuition and motivation by ex-
amining three representative learner strategies situ-
ated at different locations along the complexity–
privacy tradeoff curve.
Strategy 1: Bisection. A most natural candidate is

the classical bisection strategy, which is known to
achieve the optimal query complexity in the absence
of privacy constraints. Under this strategy, the learner
first submits a query at the midpoint of [0, 1), that is,
q1 # 0.5. Then, based on the response, the learner
identifies the half interval that contains the true value
and subsequently submits its midpoint as the next

Figure 1. (Color online) Example of the Bisection Strategy

Notes. The star represents the true value v∗. The dashed line with arrows represents the learner’s error tolerance. The solid line with arrows
represents the information set of the adversary I(q).
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query q2. The process continues recursively until the
learner finds an interval of length at most ε that
contains the true value v∗. Figure 1 provides an il-
lustration of this strategy.

Under the bisection strategy, the learner knows that
the interval containing the true value is halved with
each successive query. It follows that the number
of queries needed under the bisection strategy is
N # log(1/ε). Unfortunately, the favorable query com-
plexity afforded by the bisection strategy comes at the
cost of the learner’s privacy. In particular, at the end of
the process, the adversary knows that the true value
must be close (within ε) to the last query the learner
submitted. Moreover, the information set is an interval
of length atmost 2ε. Hence, under our assumption that
δ > 2ε, its δ-cover number is one, and the strategy is
not private for any L ≥ 2. The bisection strategy lies at
one extreme end of the complexity–privacy tradeoff,
with a minimal query complexity but no privacy.

Strategy 2: ε-Dense. At the opposite end of the
spectrum is the ε-dense strategy, where the learner
submits a predetermined sequence of N # 1/ε − 1
queries, with q1 # ε, q2 # 2ε, . . . , qN # Nε (Figure 2).
The strategy is accurate because the distance between
any two adjacent queries is equal to the error toler-
ance ε. Moreover, because the sequence of queries is
predetermined anddoes not depend on the location of
the true value, the adversary obtains no information
from the learner’s query pattern, and the information
set remains the interval [0, 1) throughout. Thus, as
long as δ ≤ 1/L, the strategy is (ε, δ, L)-private. Com-
pared with the bisection strategy, the perfect privacy
of the ε-dense strategy is achieved at the expense of
an exponential increase in query complexity, from
log(1/ε) to 1/ε. The ε-dense strategy is therefore
overly conservative and, as our proposed strategy
will demonstrate, leads to unnecessarily high query
complexity for moderate values of L.

Strategy 3: Replicated Bisection. The contrast be-
tween Strategies 1 and 2 highlights the tension between
the learner’s conflicting objectives: on the one hand,
to maximally exploit the information learned from
earlier queries and shorten the search and, on the
other hand, to reduce adaptivity so that the queries
are not too revealing. An efficient private learner
strategy should therefore strike a balance between
these two objectives. To start, it is natural to consider a

learner strategy that combines Strategies 1 and 2 in an
appropriate manner, which leads us to the replicated
bisection strategy, which we describe next and which
consists of two phases:

Phase 1: Deterministic Queries. The learner sub-
mits L − 1 queries, chosen deterministically:

q1 #
1
L
, q2 #

2
L
, . . . , qL−1 #

L − 1
L

. (10)

These queries partition the unit interval into
L disjoint subintervals of length 1/L each, namely
[0, 1/L), [1/L, 2/L), . . . , [1 − 1/L, 1). At this point, the
learner can determine which one of the L subinter-
vals contains the true value, whereas the adversary has
gained no additional information about the true value.
We refer to the subinterval that contains the true value as
the true subinterval and all other subintervals as false
subintervals. This phase uses L − 1 queries.

Phase 2: Replicated Bisection. In the second phase,
the learner conducts a bisection strategy within the
true subinterval until the true value has been located,
while in the meantime submitting translated replicas
of these queries in each false subinterval in parallel.
The exact order in which these queries are submitted
can be arranged in such a manner as to be indepen-
dent from the identity of the true subinterval. This
phase uses L log(1/Lε) queries, where log(1/Lε) is the
number of queries needed to conduct a bisection
strategy in a subinterval.
An example of this strategy is provided in Figure 3.

When the process is completed, the learner will have
identified the true value via the bisection strategy
within the true subinterval, whereas the adversary
will have seen L identical copies of the same bisec-
tion strategy, leading to an information set that con-
sists of L disjoint length-2ε intervals separated from
each other by a distance of 1/L − 2ε. It is not difficult
to show that the replicated bisection strategy is
(ε, δ,L)-private, with L log(1/Lε) + L − 1 queries. In
particular, the replicated bisection strategy achieves
privacy at the cost of an increase in query complexity
that is amultiplicative factor of L comparedwith that of
the bisection strategy (N # log(1/ε)).
The replicated bisection strategy thus appears to

be a natural and successful combination of the bi-
section and ε-dense strategies: it ensures privacy
while requiring substantially fewer than the N # 1/ε

Figure 2. (Color online) Example of the ε-Dense Strategy

Notes. The dashed line with arrows represents the learner’s error tolerance. The solid line with arrows represents the information set of the
adversary I(q).
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queriesof theε-dense strategy.Nevertheless, the upper
bound in Theorem 1 indicates that the query complex-
ity can be significantly improved, with an additive—
rather than multiplicative—dependence on L.

6. Proof of the Upper Bound:
Opportunistic Bisection Strategy

We prove in this section the upper bound on the
query complexity in Theorem 1. This is achieved by
constructing a specific learner strategy, which we
will refer to as the opportunistic bisection (OB) strategy.
We start with some terminology to facilitate the
exposition.

Definition 4. Fix M ∈ N and an interval J ⊂ [0, 1). Let
Z # (Z1,Z2, . . .) be an infinite sequence of indepen-
dent and identically distributed (i.i.d.) Bernoulli ran-
dom variables with P(Zi # 0) # 1/2. Let (q1, q2, . . . , qM)
be a sequence of M queries, where q1 is equal to the
midpoint of J , and let (r1, r2, . . . , rM) be their corre-
sponding responses.

a. We say that (q1, q2, . . . , qM) is a truthful bisection
search of J if it satisfies the following criteria, defined
inductively. Let J 1 # J . For i # 1, 2, . . . ,M,

(a) The query qi is set to

qi # midpoint of interval J i. (11)

(b) The interval J i+1 is set to

J i+1 # infJ i , qi
[ )

, if ri # 0, qi , supJ i
[ )

, if ri # 1.
{

(12)
b. We say that (q1, q2, . . . , qM) is a fictitious bisection

search of J if it satisfies the following criteria, defined
inductively. Let J 1 # J . For i # 1, 2, . . . ,M,

(a) The query qi is set to

qi # midpoint of interval J i. (13)

(b) The interval J i+1 is set to

J i+1 # infJ i , qi
[ )

, if Zi # 0, qi , supJ i
[ )

, if Zi # 1.
{

(14)
In words, whether a bisection search is truthful or

fictitious depends on how the interval J i is updated.
In a truthful search, J i+1 is set to the half-interval
within J i that, according to the response ri, contains

the true value. In a fictitious search, this choice is
made uniformly at random, according to Z.
We are now ready to define the OB strategy, which

consists of two phases.
Phase 1: Opportunistic Guesses. The first 2L queries

submitted by the strategy are deterministic and do
not depend on responses from earlier queries, with

qi # i − 1( ) 1
L
, i # 1, . . . ,L, (15)

and

qL+1, qL+2, . . . , q2L
( ) # q1 + ε, q2 + ε, . . . , qL + ε

( )
. (16)

The two queries qi and qi+L determine an interval
[qi, qi+L) of length ε. At the end of this phase, there will
be L such intervals, evenly spaced across the unit
interval. Each such interval [qi, qi+L) thus represents a
guess on the true value v∗; if v∗ lies in [qi, qi+L) for some
i ∈ {1, . . . , L}, then the learner learns the location of v∗
within the desired level of accuracy. We refer to the
interval [qi, qi+L) as the ith guess.
Phase 2: Local Bisection Search. The guesses sub-

mitted in Phase 1 are few and spaced apart, and it is
possible that none of the L guesses contains v∗. The
goal of Phase 2 is to ensure that the learner identifies
v∗ at the end, but the queries are to be executed in a
fashion that conceals from the adversary whether v∗
was identified during Phase 1 or Phase 2.
Define J (i) as the interval between the ith and

(i + 1)th guesses:

J i( ) # qL+i, qi+1
[ ) # i − 1( ) 1

L
+ ε,

i
L

[ )
,

i # 1, 2, . . . ,L. (17)

We refer to J (i) as the ith subinterval. Importantly, by
the end of Phase 1, if none of the guesses contains the
true value, then the learner knows which subinterval
contains the true value, which we denote by J ∗. The
queries in Phase 2 will be chosen according to the
following rule:
1. If none of the guesses in Phase 1 contains v∗, then

let (q2L+1, q2L+2, . . . , q2L+M)be a truthful bisection search
of J ∗ with M # log ( 1/εL ).
2. If one of the guesses in Phase 1 contains v∗, then

let J̃ be a subinterval chosen uniformly at ran-
dom among all L subintervals, and let (q2L+1, q2L+2,
. . . , q2L+M) be a fictitious bisection search of J̃ with

Figure 3. (Color online) Example of the Replicated Bisection Strategy with L # 2

Notes. The dashed lines with arrows represent the learner’s error tolerance. The solid lines with arrows represent the information set of the
adversary I(q).
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M # log ( 1/εL), using the randomization provided by
Y (i.e., using Y to generate the sequence of i.i.d.
Bernoulli random variables Zi).

An example of this strategy is provided in Figure 4.

Remark. It is interesting to contrast OB with the rep-
licated bisection strategy in Section 5. Both strategies
use deterministic queries in the first phase, but in-
stead of submitting L queries, the OB strategy incurs a
slight overhead and submits L guesses (2L queries).
Crucially, the guesses make it possible to immediately
discover the location of the true value in the first phase,
although such discoveries might be unlikely. In the
second stage, although the replicated bisection strategy
conducts a bisection search in each of the L subintervals,
the OB strategy does so in only one of the subintervals,
hence drastically reducing the number of queries.

It follows directly from the definition that the
number of queries submitted under the OB strat-
egy is

N # 2L + log
1
εL

( )
. (18)

To complete the proof of the upper bound in
Theorem 1, it thus suffices to show that the OB
strategy satisfies both the accuracy and privacy con-
straints. This is accomplished in the following prop-
osition, which is the main result of this section.

Proposition 1. Fix ε > 0, δ > 0, and a positive integer
L ≥ 2 such that 2ε < δ ≤ 1/L. Then the OB strategy is
(ε, δ, L)-private.

Proof. We first show that the OB strategy is accurate
and, specifically, that it allows the learner to produce an
estimate of v∗ with an absolute error of at most ε/2. To
this end, we consider two possible scenarios:

Case 1. Suppose that some guess in Phase 1, namely
the interval [qi′ , qi′+L), contains the true value, v∗. In
this case, the learner can set x̂ to be themidpoint of the
guess, that is, x̂ # (qi′ + qi′+L)/2. Because the length of
each guess is exactly ε, we have |x̂ − v∗| ≤ ε/2.

Case 2. Suppose that none of the guesses in Phase 1
contains v∗. This means that a truthful bisection search
will be conducted in Phase 2 in the subinterval that
contains v∗. Because the search is truthful, we know

that one of the two intervals adjacent to qN must
contain v∗. Let this interval be denoted by H∗. Fur-
thermore, because the length of each subinterval is
less than 1/L and there are log(1/εL) steps in the bi-
section search, we know that the length of H∗ is at
most ε. Therefore, the learner can generate an accurate
estimate by setting x̂ to be the midpoint of H∗. To-
gether with Case 1, this shows that the OB strategy
leads to an accurate estimate of v∗.
We now show that the OB strategy is private and, in

particular, that the δ-cover number of the information
set of the adversary Cδ(I(q)) is at least L.
Denote by G the union of the guesses, that is,

G #
⋃L

i#1
qi, qi+L
[ )

. (19)

It is elementary to show that for two setsU and V, with
U ⊂ V, ifCδ(U) is at least L, then so isCδ(V). Therefore,
it suffices to prove the following two claims:

Claim 1. The δ-cover number of G, Cδ(G), is at least L.

Claim 2. The information set I(q) contains G.
We first show Claim 1. Consider any interval J ⊂

[0, 1) with length at most δ used in a cover for G. By
construction, each guess has length ε, and two ad-
jacent guesses are separated by a distance of 1/L − ε.
Because δ ≤ 1/L, this implies that the Lebesgue mea-
sure of J ∩ G is at most ε. Because the Lebesgue
measure ofG is εL, we conclude that it will take at least
L such intervals J (i.e., of size at most δ) to cover G.
Therefore, Cδ(G) ≥ L. This proves Claim 1.
We next show Claim 2. Any particular query se-

quence q can arise in two different ways: (1) it may be
that v∗ is an arbitrary element of one of the guesses
(i.e., v∗ ∈ G), and q is the result of a fictitious bisection
search, or (2) it may be that v∗ lies outside the guesses,
and q is the result of a truthful bisection search. The
adversary has no way of distinguishing between
these two possibilities. Furthermore, there is no in-
formation available to the adversary that could
distinguish between different elements of G. As
a consequence, all elements of G are included within
the information set (i.e., G ⊂ I(q)), which proves
Claim 2. □

Figure 4. (Color online) Example of the OB Strategy with L # 3
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7. Proof of the Lower Bound
Wenowderive the two lower bounds in Theorem 1 on
the query complexity. The query complexity of the
OB strategy carries a 2L overhead compared with
the (nonprivate) bisection strategy. The value 2L admits
an intuitive justification: a private learner strategy
must create L plausible locations of the true values,
and each such location is associated with at least two
queries. One may question, however, whether the 2L
queries need to be distinct from the log(1/ε) queries
already used by the bisection search or whether
the query complexity could be further reduced by
blending the queries for obfuscation with those for
identifying the true value in a more effective manner.
The key to the proof of the lower bound in this section
is to show that such blending is not possible: in order
to successfully obfuscate the true value, one needs 2L
queries that are distinct from those that participate in
the bisection algorithm.

7.1. Information Sets
We first introduce some notation to facilitate our
discussion. Recall that (q1, q2, . . . , qN) is the sequence of
learner queries. For the remainder of this section, we
augment this sequence with two more queries, q0 ≜ 0
and qN+1 ≜ 1, so that q # (0, q1, q2, . . . , qN , 1). This is
inconsequential because 0 ≤ v∗ < 1, and hence adding
q0 and qN+1 does not provide additional information
to either the learner or the adversary.

We start by examining the information provided
to the learner through the queries and the responses.
Let us fix an arbitrary y ∈ {1, . . . ,Y} that has posi-
tive probability and some v∗ ∈ [0, 1). Consider the
resulting sequence of queries q # q(v∗, y), and then let
qS # (q0, q1, . . . , qN , qN+1) be the sequence of queries in q
arranged in increasing order (in particular, q0 # 0
and qN+1 # 1). For each query qi, the learner knows
(through the response to the corresponding query)
whether v∗ < qi or v∗ ≥ qi. In particular, at the end
of the learning process, the learner has access to an in-
terval of the formH # [qi, qi+1), for some i ∈ {0, 1, . . . ,N},
such that v∗ is certain to belong to that interval.
Furthermore, from the definition of learner strategies,
all elements of that interval would have produced
identical responses to the queries, and the learner has no
information that distinguishes between such elements.

It is not hard to see that if qi+1 − qi > ε, then the
learner has no way of producing an (ε/2)-accurate
estimate of v∗.3 Because we are interested in learner
strategies that satisfy the accuracy constraint in Defini-
tion 3, we conclude that the length of H is at most ε.

Let us now consider the situation from the point of
view of the adversary. The adversary can look at the
query sequence q, form the intervals of the form
[qi, qi+1), and select those intervals whose length is at

most ε; we refer to these as special intervals. We have
already argued that v∗ must lie inside a special in-
terval. Therefore, the adversary has enough infor-
mation to conclude that v∗ lies in the union of the
special intervals. We denote that union by I(q), and
we have

I q
( ) ⊂ I q

( )
. (20)

7.2. Completing the Proof of the Lower Bound
We are now ready to prove the lower bound. We
begin with a lemma.

Lemma 1. Fix a learner strategy φ that satisfies the ac-
curacy constraint. For every y ∈ {1, 2, . . . ,Y}, there exists
x ∈ (0, δ) such that there are at least log(δ/ε) of the queries
in q(x, y) that belong to (0, δ).
Lemma 1 is essentially the classical result that log(1/ε)

query complexity of the bisection strategy is optimal
for the unit interval (Waeber et al. 2013), which proves
thefirst termof the lower bound in Theorem 1.We omit
the proof of Lemma 1, which is fairly standard, but
provide an intuitive argument. Fix y ∈ {1, 2, . . . ,Y}.
The interval (0, δ) consists of δ/ε disjoint subintervals
of length ε each. An accurate learner strategy therefore
must be able to distinguish in which one of these sub-
intervals the true value resides. Distinguishing among
δ/ε possibilities using binary feedback therefore im-
plies that there will be some v∗ ∈ (0, δ)whose accurate
identification requires log(δ/ε) queries in (0, δ).
For the rest of this proof, fix v∗ # x0 and Y # y0 for

some x0 and y0 satisfying Lemma 1, and use q to
denote q(x0, y0). We now consider the queries in the
interval [δ, 1]. Among them, we restrict attention to
queries that are endpoints of special intervals. We call
these special queries and letK be their number.We sort
the special queries in ascending order and denote
them by s1, s2, . . . , sK, where K is their number.
The outline of the rest of the argument is as follows.

For a private learner strategy, the δ-cover number of
I(q) is at least L. FromEquation (20), it follows that the
δ-cover number of I(q) is also at least L. Because
endpoints of special intervals are within ε of each
other, every si must be within ε of a neighboring query
(namely si−1 or si+2), with the possible exception of s1,
which could be the right endpoint of a special interval
whose left endpoint, denoted s0, is in [0, δ). Using the
assumption that δ > 2ε, each interval used in the cover
can include two, and often three, queries si. In what
follows, we will make this argument precise and show
that the number K of special queries is at least 2L − 3.
Let us consider first the case where the previously

mentioned exception does not arise; that is, we as-
sume that s1 is not the right endpoint of a special
interval. We decompose the set I(q) ∩ [δ, 1] as the
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union of its (finitely many) connected components,
which we call just components for short (see Figure 5
for an illustration). Each connected component is
an interval whose endpoints are special queries (si
for some i). Furthermore, within each such interval,
special queries are separated by at most ε. Suppose
that we have m components. For the jth component,
let kj be the number of special queries it contains, and
let dj be its length.We have dj ≤ (kj − 1)ε. In particular,
the jth interval can be covered by at most

dj
δ

⌈ ⌉
≤ kj − 1

( ) ε
δ

⌈ ⌉
≤ kj − 1

2

⌈ ⌉
≤ kj

2

intervals of length δ. (We have used here our standing
assumption that δ > 2ε.) Summing over the different
components, we conclude that I(q) ∩ [δ, 1] can be
covered by at most ∑j kj/2 # K/2 intervals of length δ.

For the exceptional case where s1 is the right end-
point of a special interval [s0, s1], we just apply the
same argument, nowon the setI(q) ∩ [s0, 1], and for an
augmented collection of special queries (s0, s1, . . . , sK).
Having effectively increased the number of points of
interest, from K to K + 1, we obtain an upper bound of
(K + 1)/2 on the number of intervals of length δ that
are needed to cover I(q) ∩ [s0, 1].

By combining the results of the two cases and using
one more interval of length δ to cover the set [0, δ],
we conclude that the δ-cover number of I(q), and
therefore of I(q) as well, is at most (K + 3)/2. By
contrast, as longaswearedealingwithan (ε, δ, L)-private
strategy, this δ-cover number is at least L. Thus, (K +
3)/2 ≥ L or K ≥ 2L − 3.

Recall that the argument is being carried out for
the case of particular x0 and y0 with the properties
specified earlier. For such x0 and y0, we have at least
log(δ/ε) queries in the set [0, δ) and at least 2L − 3
queries in the set [δ, 1]. Recall that we have introduced
an additional artificial query at x # 1 (i.e., qN+1 # 1),
which is above and beyond the N queries used by the
strategy, and this query may be included in the K
special queries. For this reason, the lower bound onN
has to be decremented by one, leading to the lower
bound in Theorem 1.

8. Conclusions and Future Work
This paper studies an intrinsic privacy–complexity
tradeoff faced by a learner in a sequential learning
problem who tries to conceal his or her findings from
an observant adversary. We use the notion of infor-
mation set, the set of possible true values, to capture
the information available to the adversary through
the learner’s learning process and focus on the cov-
erability of the information set as the main metric for
measuring a learner strategy’s level of privacy. Our
main result shows that to ensure privacy, that is, so
that the resulting information set requires at least L
intervals of size δ to be fully covered, it is necessary for
the learner to use at least log(δ/ε) + 2L − 4 queries.We
further provide a constructive learner strategy that
achieves privacywith log(1/Lε) + 2Lqueries. Together
the upper and lower bounds on the query complexity
demonstrate that increasing the level of privacy L
leads to a linear additive increase in the learner’s
query complexity.
Although mathematically valid and worst-case op-

timal, the OB strategy could be potentially undesirable
in applicationswhere the learner aims for an extremely
accurate estimate, that is, ε → 0. Indeed, when ε is
small, the chance that the guesses contain the true
value becomes negligible. In practice, as long as the
adversary is willing to tolerate a small chance of
making an error, predicting according to the subse-
quent bisection phase would be much more benefi-
cial: as ε goes to zero, the probability of accurately
estimating v∗ approaches one for the adversary. As
wasmentioned in Section 3.3, this naturallymotivates
an average-case Bayesian variant that essentially fo-
cuses on covering most, rather than all, of the infor-
mation set (see Appendix B). There the OB strategy
performs arbitrarily badly when ε is small enough,
and the formulation warrants a new private strategy,
which turns out to be the replicated bisection in
Section 5. We refer readers to Appendix B for a much
more elaborated discussion of the Bayesian variant.
Relatedly, as another direction of resolving the pre-
cerding practical issue, one could attempt to refine the
information set to contain only those x′ values whose
probability of producing the observed sequence of

Figure 5. Illustration of the Proof

Notes. Here s1 − s0 ≤ ε and hence [s0, s1] is a special interval. There are three connected components: [s0, s1], [s2, s6], and [s7, s10]. The dashed lines
with arrows represent a cover.
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queries is greater than some confidence level ξ. This
is to be contrasted with only requiring a positive
probability in the current formulation. More pre-
cisely, in Equation (1), one could let the requirement
be Pφ(Qx # q̄) > ξ for some confidence level ξ > 0. It
would be interesting to see whether we can use the OB
strategy as the base case to construct a class of strat-
egies with respect to different confidence levels ξ.

In addition, there are several interesting extensions
and variations of the model that were left unad-
dressed. One may consider the binary query model in
higher dimensions, where v∗ ∈ [0, 1)d. A query in this
setting will be a hyperplane inRd, where the response
indicateswhether the true value is to the right or to the
left of the queried hyperplane. We further investigate
this extension in Appendix C. Yet another interesting
extension is to consider alternative response models,
such as noisy binary responses, or real-valued re-
sponses that can convey a richer set of information.
More broadly, there could be other interesting problem
formulations for understanding the privacy implica-
tions in a number of sequential decision problems in
learning theory, optimization, anddecision theory. It is
not difficult to see that standard algorithms, originally
designed to optimize runtime or query complexity,
often provide little or no protection for the learner’s
privacy. Can we identify a universal procedure to
design sample-efficient private decision strategies? Is
there a more general tradeoff between privacy and
complexity in sequential decision making? We are
optimistic that there are many fruitful inquiries along
these directions.

Appendix A. Coverability and the Adversary’s
Probability of Correct Estimation
In this appendix, we provide an alternative, probabilistic
interpretation of the definition of privacy in Definition A.2.
In particular, we show that 1/L can be interpreted as a
worst-case guarantee on the adversary’s probability of
correct detection.

Recall the definition ofQ(x) as the set of all possible query
sequences when v∗ # x (cf. Equation (1)), and let Q #
∪x∈[0,1)Q(x). We next define adversary estimators x̂a as
random variables whose values are determined by the
observed query sequence q together with an independent
randomization seed.

Definition A.1. Fix δ > 0, L ≥ 2, a learner strategy φ ∈ ΦN ,
and a sequence of queries q ∈ Q. We say that an adversary
estimator x̂a is (δ, L)-correct with respect to q if

P x̂a q
( ) − x

⃒⃒ ⃒⃒
≤ δ/2

( )
>
1
L
, ∀x ∈ I q

( )
, (A.1)

where the probability is taken with respect to any ran-
domization in the adversary’s estimator x̂a.

In words, an adversary estimator is (δ,L)-correct with
respect to q if as soon as the learner deploys the queries q,
the adversarywill know that the resulting estimate will incur

an error of at most δ/2 with probability larger than 1/L. In
a sense, this means that q conceals the true value poorly.

Based on this probabilistic definition of the correctness
of adversary estimators, we can then define a new notion
of privacy for learner strategies in a manner similar to
Definition 3. To distinguish the two, we use the term secure
learner strategies for the new notion.

Definition A.2 (Secure Learner Strategy). Fix ε > 0, δ > 0,
and L ≥ 2, with L ∈ N. A learner strategy φ ∈ ΦN is (ε,
δ,L)-secure if it satisfies the following:

a. Accuracy constraint: The learner estimate accurately
recovers the true value, with probability one:

P x̂ x,Y( ) − x| | ≤ ε/2( ) # 1, ∀x ∈ 0, 1[ ),

where the probability is measured with respect to the
randomness in Y.

b. Privacy constraint: For every possible sequence of
queries q ∈ Q, there does not exist an adversary estimator x̂a
that is (δ, L)-correct with respect to q. That is, for every q ∈ Q,
there exists x ∈ I(q) such that

P x̂a q
( ) − x

⃒⃒ ⃒⃒
≤ δ/2

( ) ≤ 1
L
, (A.2)

where the probability is taken with respect to any ran-
domization in x̂a.

The following proposition establishes an equivalence
between the private learner strategies, defined in terms of
the coverability of information set, and secure learner
strategies, defined in terms of adversary’s probability of
correct estimation.

Proposition A.1. Fix δ > 0, ε > 0, and L ≥ 2, with L ∈ N. A
learner strategy φ ∈ Φ is (ε, δ, L)-secure if and only if it
is (ε, δ, L)-private.

Proof. We first establish the forward direction that if φ is
(ε, δ, L)-secure, then φ is (ε, δ, L)-private. We will actually
establish the equivalent statement that if φ is not
(ε, δ, L)-private, then it is not (ε, δ, L)-secure. For this, it
suffices to show the claim that for a sequence of queries
q ∈ Q, if the δ-cover number of the information set I(q),
Cδ(I(q)), is at most L − 1 (thus violating (ε, δ, L)-privacy),
then there exists an adversary estimator that is (δ, L)-
correct with respect to q. To show the claim, fix q ∈ Q such
that I(q) is (δ,L − 1)-coverable. Then there exist L − 1 in-
tervals [a1, b1], [a2, b2], . . ., [aL−1, bL−1] each of length δ that
cover I(q). Consider a randomized adversary estimator x̂a

that is distributed uniformly at random among the L − 1
midpoints of the intervals. Then, with probability 1/(L − 1),
the resulting estimator x̂a will lie in the same interval as the
true value; when this event occurs, and because the length of
each one of the intervals is at most δ, the estimate will be at a
distance of at most δ/2 from the true value, implying that

P x̂a q
( ) − x

⃒⃒ ⃒⃒
≤ δ/2

( ) # 1
L − 1

>
1
L
, ∀x ∈ I q

( )
.

This shows that x̂a is (δ, L)-correct given q, which proves
the claim.

Conversely, we now prove that if φ is (ε, δ,L)-private,
then it is (ε, δ, L)-secure. It suffices to show the following
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claim: for any sequence of queries q ∈ Q, if Cδ (I(q) ) is at
least L, then there does not exist an adversary estimator that
is (δ,L)-correct with respect to q. We make use of the fol-
lowing lemma.

Lemma A.1. Fix δ ∈ (0, 1) and L ≥ 2. Let J be a subset of [0, 1)
such that the δ-cover number of J, Cδ(J), is at least L. Then there
exist points {x1, x2, . . . , xL} in the closure of J such that

|xi − xj| > δ, ∀i .# j. (A.3)

Proof. We prove the lemma by constructing the set of xj
values explicitly, with the aid of a helper sequence {zj}. In
particular, we construct {zj} so that the sequence of intervals
{[zj, zj + δ]} forms a cover. The sequence {xj} will then be
derived from a perturbed version of {zj}, so the constraint in
Equation (A.3) can be satisfied.

Let J be the closure of J. Consider the following procedure:
1. Let z1 # x1 # min J.
2. For i # 2, 3, . . ., consider the following recursive process

of constructing zi and xi: let

yi ≜ min x ∈ J : x ≥ zi−1 + δ
{ }

.

Now consider two scenarios:
2.1. If yi > zi−1 + δ, then let zi # xi # yi.
2.2. If yi # zi−1 + δ, then checkwhether yi is a right endpoint

of some interval in J.
a. If there exists λi > 0 small enough such that [yi, yi +

λi] ⊂ J, then let zi # yi and xi # yi + λ′
i , where 0 < λ′

i < λi and
λ′
i is sufficiently small.

b. Otherwise, if such a λi does not exist, let

zi # xi # min x ∈ J : x > zi−1 + δ
{ }

.

The procedure terminates at some step T when (zT + δ, 1)∩
J # ∅. By construction, all zi and xi values belong to the closure
of J. Furthermore, the intervals

Wi :# zi, zi + δ[ ], i # 1, 2, . . . ,T,

form a cover of J. Because Cδ(J) ≥ L by assumption, it follows
that we must have T ≥ L. Finally, it is easy to verify that the
points {x1, x2, . . . , xL} satisfy the conditions outlined in the
lemma (Equation (A.3)). In particular, this is guaranteed by
choosing λ′

i to be sufficiently small and λ′
i < λ′

j for i < j, when
Case 2(i) occurs. This completes the proof. □

Fix an adversary estimator x̂a and some q ∈ Q such that
Cδ(I(q)) ≥ L. Apply Lemma A.1 with J # I(q), and let
{x1, x2, . . . , xL} be as defined in the lemma. Because the xi
values belong to the closure of I(q) and |xi − xj| > δ for any
i .# j, by slightly perturbing them, we can obtain a set of
points {x̃1, x̃2, . . . , x̃T} ⊂ I(q) such that

|x̃i − x̃j| > δ, ∀i .# j,

still holds. Define intervals

Ui :# x̃i − δ/2, x̃i + δ/2[ ], i # 1, 2, . . . , L.

Because the distance between any two distinct x̃i values is
greater than δ, we know that the intervals Ui are disjoint,

which implies that at least one of these L intervals will have
probability of containing x̂a(q̄) less than or equal to 1/L. In
particular, there exists i∗ ∈ {1, 2, . . . , L} such that

P |x̂a q
( ) − x̃i∗ | ≤ δ/2

( ) # P x̂a q
( ) ∈ Ui∗

( ) ≤ 1/L.

Because x̃i∗ ∈ I(q) by construction, we conclude that the
adversary estimate x̂a is not (δ, L)-correct with respect to q.
This completes the proof of the claim and hence the con-
verse direction of the proposition. □

Appendix B. Bayesian Private Learning Model
The private sequential learning model we studied in this
paper assumes that neither the learner nor the adversary
has any prior information on the true value v∗ and that they
can obtain information only gradually, through queries. In
this section, we discuss a Bayesian variant of the model
where the true value v∗ is generated according to a prior
distribution, known to both parties. In particular, we as-
sume that v∗ is distributed according to a distribution Pv∗ ,
where, for simplicity, we assume that the support of Pv∗ is
equal to [0, 1).

Naturally, we allow the learner strategy, defined in
Section 2.1, to depend on Pv∗ . In addition, because the
adversary aims to produce an estimate x̂a that is close to the
true value, we define an adversary strategy to be a function
ψ that maps the adversary’s available information (i.e., the
prior distribution Pv∗ , the learner strategy φ, and the se-
quence of observed queries q) to a probability distribution
over [0, 1)or, equivalently, to a randomvariable x̂a that takes
values in [0, 1). Denote byΨ the set of all such functions, that
is, the set of all adversary strategies.

Because the true value in the Bayesian private learning
model admits a prior distribution, instead of using the
information set, it is sufficient for the adversary to keep
track of the posterior distribution of v∗ given the learner’s
queries. The Bayesian formulation also allows us to mea-
sure the probability that the adversary is able to provide an
estimate of the true value that is within a given error tol-
erance. This leads to the following definition of Bayesian
private learner strategies.

Definition B.1. Fix ε > 0, δ > 0, an integer L ≥ 2, and a prior
distribution Pv∗ . A learner strategy φ ∈ ΦN is (ε, δ, L)-B-
private if it satisfies the following:

a. Accuracy constraint: The strategy accurately recovers v∗
with probability one:

P x̂ v∗,Y( ) − v∗
⃒⃒ ⃒⃒

≤ ε
2

( )
# 1,

where the probability is taken with respect to the ran-
domness in v∗ and Y.

b. Privacy constraint: Under this learner strategy, and for
every adversary strategy ψ ∈ Ψ, we have

P |x̂a − v∗| ≤ δ/2
( ) ≤ 1

L
, (B.1)

where the probability is taken with respect to the ran-
domness in v∗, Y, and x̂a.
Notice the resemblance of this definition with Definition 3.
The parameters ε and δ have the same meaning as in the orig-
inal model, and L mirrors the role of L in (δ, L)-coverability
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but now has a more concrete interpretation in terms of the
adversary’s probability of error.

Fix a prior distribution Pv∗ . Denote by N∗
B(ε, δ, L) the

minimum number of queries needed for there to exist an
(ε, δ, L)-B-private learner strategy:

N∗
B ε, δ, L( ) # min N ∈ N : ∃φ ∈ ΦN s.t. φ is

{

× ε, δ, L( )-B-private
}
.

Similar to the original model, we would like to obtain lower
and upper bounds on N∗

B(ε, δ,L).

B.1. Comparing the Two Formulations
In single-player optimization, Bayesian formulations are
always less demanding than worst-case formulations. How-
ever, this is not the case in game-theoretic situations, and an
automatic comparison between N∗(ε, δ, L) and N∗

B(ε, δ,L) is
not available. This is because the Bayesian formulation can,
in principle, work in the favor of either player, as discussed:

1. Under the worst-case formulation, once an informa-
tion set is determined, and in order to break the learner’s
privacy, the adversary must be able to cover (with intervals
of length δ) the entire information set. In contrast, in the
Bayesian formulation, the adversary can break the learner’s
privacy by coveringmost of the information set. Because the
Bayesian formulation seems to make the adversary’s ob-
jective easier to achieve, one might expect that the situation
has become more demanding for the learner, resulting in
higher query complexity.

2. Under the worst-case formulation, part (b) of Defini-
tion 3 involves a privacy requirement that holds for every
x ∈ [0, 1). In a Bayesian formulation, this is essentially re-
placed by a requirement that holds, on average, over x. In
principle, this is an easier requirement for the learner and
might work in the direction of lower query complexity under
a Bayesian formulation.

For a concrete illustration of the difference between the
two formulations, consider the OB strategy in Section 6,
whichwas private under theworst-case formulation. Under
that strategy, privacy was ensured by having many small
intervals in the information set (the guesses) that the ad-
versary could not ignore. By contrast, under the Bayesian
formulation, and as long as ε is small enough, the proba-
bility that these small intervals contain v∗ is negligible, and
privacy is completely lost in the Bayesian setting. Specifi-
cally, suppose that the prior distribution of v∗ is uniform
over [0, 1), and consider an adversary strategy that always
uses the last query of Phase 2 of the OB strategy as his or her
estimator, that is, the last query of the local bisection search
phase. Recall the regime of interest 2ε < δ ≤ 1/L. With
probability 1 − Lε, the L guesses will not contain v∗, and
Phase 2 would be a truthful bisection search, under which
the adversary strategy would succeed. That is, the proba-
bility that the adversary recovers v∗ with error at most δ/2
is at least 1 − Lε. These arguments demonstrate that when ε
is too small, privacy cannot be guaranteed under the
Bayesian formulation.

B.2. Results
For the case where Pv∗ is a uniform distribution over [0, 1),
we can obtain the following result by adapting the proof
for the original model.

Proposition B.1. Fix ε > 0, δ > 0, and a positive integer L ≥ 2
such that 2ε < δ ≤ 1/L. Suppose that the prior distribution Pv∗ is
uniform over [0, 1). Then

log
1
ε
≤ N∗

B ε, δ, L( ) ≤ L log
1
Lε

+ L − 1.

The lower bound log(1/ε) follows directly from the ac-
curacy constraint (see Section 7). The upper bound is
achieved by the replicated bisection strategy in Section 5,
with L replications. Because the replicated bisection strat-
egy creates L identical copies of query patterns across L
subintervals, the symmetry ensures that the posterior dis-
tribution of v∗ will be evenly spread across all subintervals,
forcing the adversary’s probability of correct detection to be
at most 1/L.

In contrast to the bounds in Theorem 1, the leading terms
in the upper and lower bounds in Proposition B.1 differ by a
multiplicative factor of L, and closing this gap is nontrivial.
In particular, the approach used in this paper to prove the
lower bound is highly dependent on the structure of the
information set and is unlikely to apply.4

Appendix C. High-Dimensional Private
Sequential Learning
In this appendix, we provide a brief discussion of a high-
dimensional variant of the private sequential learning
model that allows us to apply the insights from the original
model to a more general setting. Consider a learner who
wants to identify a true value v∗ situated in a d-dimensional
unit cube [0, 1)d. A query is now a hyperplane in Rd, where
the response indicates whether the true value is to the right
or to the left of the queried hyperplane. Formally, a query is
specified by some q # (q(1), q(2), . . . , q(d), c) ∈ Rd+1, and the
corresponding response is r # I(〈(q(1), . . . , q(d)), v∗〉 ≤ c). The
distance metric for measuring estimation errors is the l∞
norm. In this setting, the adversary aims to cover the in-
formation set using less than L hypercubes of edge length δ
(and hence volume δd).

Let us focus on the regime where 2ε < δ ≤ 1/L1/d and
assume, for the sake of this discussion, that L1/d is an integer.
For an upper bound, it is not hard to see that we can extend
the OB strategy to this case in a straightforward manner. In
particular, we can use the following two-phase strategy:

Phase 1: Opportunistic Guesses. During the first phase, we
first partition the space into L equal-sized large hypercubes,
each with volume 1/L, so that each side of a hypercube has
length L−1/d. This can be achieved by submitting L1/d queries
for each dimension. For example, the queries for the first
dimension are {(1, 0, . . . , 0, (i − 1)L−1/d)}L1/di#1 and the queries
for the second dimension are {(0, 1, . . . , 0, (i − 1)L−1/d)}L1/di#1 . To
achieve successful obfuscation so that the adversary is not
able to cover the information set with L − 1 hypercubes, the
second step of this phase is to construct a smaller subcube
with edge length ε inside each one of the L hypercubes to
serve as the plausible guesses. Again, this is achieved by an-
other L1/d query for each dimension. For instance, the quer-
ies for the first dimension are {(1,0, . . . ,0, (i−1)L−1/d+ ε)}L1/di#1 ,
and the queries for the second dimension are {(0, 1, . . . , 0,
(i − 1)L−1/d + ε)}L1/di#1 .
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Phase 2: Local Bisection Search. After the guesses are created
in Phase 1, the learner then performs a bisection search inside
one of the L large hypercubes (i.e., d bisection searches along
each dimension). Depending on whether the guesses contain
v∗ or not, this bisection search is either truthful or fictitious,
similar to the original policy.

Using the same argument as in the analysis for the
original OB strategy, it is not difficult to verify that the
previous strategy is private and achieves a query com-
plexity of d log(1/(L1/dε)) + 2dL1/d. For the lower bound, it is
evident that the agent needs at least d log(1/ε) queries to
satisfy the accuracy constraint, even in the absence of a
privacy constraint. It appears challenging, however, to
obtain a stronger lower bound that depends on the di-
mension in a meaningful way. The argument that we use in
the proof of the current lower bound does not generalize
easily to higher dimensions.

Endnotes
1All logarithms are taken with respect to base 2. To reduce clutter,
noninteger numbers are to be understood as rounded upward. For
example, the lower bound should be understood as 4log(1/Lε)5 + 2L,
where 4·5 represents the ceiling function.
2We consider a half-open interval here, which allows for a cleaner
presentation, but the essence is not changed if the interval is closed.
3 For any choice of x̂, there will always be some x ∈ H such that
|x̂ − x| > ε/2. Furthermore, such an x is a possible value of v∗ because
it would have produced the exact same sequence of responses.
4 In a recent paper that follows up on our work, Xu (2018) shows that
the upper bound in Proposition B.1 is asymptotically tight up to the
first order in the limit as ε → 0, whereas L and δ remain fixed. The
proof in Xu (2018) uses an information-theoretic argument that is very
different from the line of analysis in this paper.
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