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Abstract. We formulate a model of sequential decision making, dubbed the Goal Pre-
diction game, to study the extent to which an overseeing adversary can predict the final
goal of an agent who tries to reach that goal quickly, through a sequence of intermediate
actions. Our formulation is motivated by the increasing ubiquity of large-scale surveillance
and data collection infrastructures, which can be used to predict an agent’s intentions and
future actions, despite the agent’s desire for privacy.

Our main result shows that with a carefully chosen agent strategy, the probability that
the agent’s goal is correctly predicted by an adversary can be made inversely proportional
to the time that the agent is willing to spend in reaching the goal, but cannot be made any
smaller than that. Moreover, this characterization depends on the topology of the agent’s
state space only through its diameter.
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1. Introduction
Information technologies and large-scale surveillance
infrastructures have become ubiquitous and continue to
expand at a rapid pace. It is conceivable that in the near
future most of an agent’s virtual or physical actions will
be measured, monitored, and recorded by private enter-
prises or governmental entities. These measurements
will potentially enable data collectors to make powerful
predictions of an agent’s intentions or future behavior,
based on knowledge of her past actions.

In an environment where past actions are increas-
ingly difficult to conceal, can we still keep our inten-
tions unpredictable? If so, what is the additional effort
required? Conversely, can a data collector design reli-
able prediction methods that are robust even against a
sophisticated agent who carefully engineers a sequence
of actions to hide her true goals? In this paper, we
aim to study such issues in the context of a simple
model of sequential decision making, which we call
the Goal Prediction game, and to characterize an agent’s
intrinsic level of predictability as she approaches the final
goal. Our main result shows, in a fairly general setting,
that the predictability of the agent’s final goal can be
made inversely proportional to the time the agent is will-
ing to spend in reaching it. While our model is highly
stylized, it is intended to provide insights on the gen-
eral trade-off between predictability and the conceal-
ment effort.

1.1. Preview of the Model
We begin by informally describing our model; precise
definitions will be given in Section 2. The Goal Predic-
tion game is played between an agent (e.g., an indi-
vidual) and an adversary (e.g., a data collector or a law
enforcement agency), in discrete time. The agent’s state
at any time t, belongs to a finite set V . At time t ⇤ 1,
the agent is at an initial state x1 2V , and has a goal D,
drawn randomly from V according to some prior dis-
tribution. The goal is unknown to the adversary. The
agent’s objective is to approach and eventually reach
the goal D, through a sequence of state transitions.
We assume that the agent’s state transitions are con-
strained to lie along the edges of a given undirected
graph G with vertex set V .

The objective of the adversary is to guess the identity
of the goal D, by the time it is reached by the agent.
We assume that the adversary can make at most one
attempt to guess the goal, at a time of her own choos-
ing. In particular, at any given time, the adversary can
either wait or make a guess, based on the knowledge
of the graph G, the agent’s decision-making strategy,
and all of the agent’s past actions (i.e., state transitions);
the only information that the adversary does not pos-
sess is D itself, and any internal randomness that the
agent might use when choosing her transitions. The
adversary wins the game if she correctly guesses D

by the time that it is reached by the agent, and loses,
otherwise.
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1.2. Motivating Examples
The structure of the model is easiest to understand
in the context of a highly abstracted version of a law
enforcement scenario. The agent, who is engaged in ille-
gal activities, moves between different physical loca-
tions (vertices in V ). One of these locations (the goal
state) is special, in that it stores certain incriminating
evidence (e.g., drugs or explosives). At each stage of
the process, the agent can move to a new location,
as allowed by the underlying graph G. Similarly, at
each stage, the adversary (the authorities) has three
options:

(a) do nothing;
(b) perform a raid at the current location of the

agent;
(c) perform a raid at some other location.
Here, a raid corresponds to guessing the special loca-

tion and acting on this guess. The agent loses if the spe-
cial location is raided at the time that the agent reaches
that location, or earlier. If, on the other hand, the agent
reaches the special location and no raid takes place by
that time, then the agent has succeeded in her illegal
activities, and wins. Our restriction that the adversary
can make at most one attempt to guess the goal, reflects
an assumption that once law enforcement performs a
raid, its cover is exposed, the illegal agent can change
its mode of operations, and hence law enforcement
loses because it fails to arrest her.

Remark. It can be shown that under our model, there
is no loss of optimality on the part of the adversary if
at each time they are only allowed to raid the agent’s
current location; that is, if they never exercise option
(c) above. However, we will still allow option (c) in
the authorities’ strategy space. This additional flexibil-
ity can become relevant in extensions of our model in
which the adversary’s objective incorporates a prefer-
ence for an early decision/raid.

Our model is not limited to the law enforcement
application, and may also be used to capture, say, the
strategic interactions between a small firm trying to
conceal its long-term product strategy against a com-
petitor who tries to predict the firm’s future products.

1.3. The Trade-O�s
In the example in the preceding subsection, it is nat-
ural to assume that the agent prefers to reach the
goal sooner rather than later. This leads to a trade-off
between delay and predictability: if the agent is eager to
reach the goal quickly by traversing a shortest path,
then the adversary, by observing a few initial actions
of the agent, may be able to quickly eliminate many
potential goals, namely, those that are inconsistent with
the path taken, leading to a high probability of a cor-
rect guess. On the other hand, an extremely patient
agent, with a large time budget, can start along a path

that traverses the entire state space (e.g., a Hamiltonian
path) and stop when her goal is reached. Under this
strategy for the agent, her past actions reveal essen-
tially nothing about the identity of the goal, making
prediction difficult. A general strategy for the agent
will typically lie somewhere in the middle, by com-
bining a fast, time-efficient path, with some wasteful
but obfuscating steps. Our main focus is to understand
the resulting trade-off, between predictability and time
wasted in obfuscating actions.

Example: Complete Graph. Suppose that G is a com-
plete graph with n nodes, and let k be an integer
between 1 and n. The agent can use the following sim-
ple strategy. Generate a set of k nodes that consists of
the goal and another k � 1 randomly chosen nodes.
Then, visit those k nodes in a random order. Even if this
k-element set is revealed to the adversary, the adver-
sary can do no better than a random guess, so that the
probability of a correct guess is 1/k. At the same time,
the agent reaches the goal in approximately k/2 time
units, in expectation.

In the above example, and for the particular agent
strategy that we discussed, we see a trade-off, in the
form of an inverse relation between the probability that
the adversary wins and the expected time to reach the
goal. Our subsequent results show a similar trade-off
for Pareto optimal agent strategies, and also for arbi-
trary graphs.

1.4. Preview of Main Result
In this subsection, we introduce some terminology, and
summarize our results. The key quantities of interest
are the delay of the agent, defined as the expected num-
ber of steps until the goal is reached, and the predic-
tion risk, defined as the probability that the adversary
makes a correct guess by the time that the goal state
is reached. Our main result (Theorem 1) characterizes
the minimax prediction risk for the agent, for any con-
nected undirected graph, G. They are informally stated
below, where, for simplicity of exposition, we assume
that the agent’s goal is distributed uniformly at ran-
dom in V .

1. Let d be the diameter of a graph G with n vertices.
For any w that satisfies d < w 6 n, we show that there
exists an agent strategy with a delay of at most w, under
which the prediction risk, denoted by q, satisfies the
upper bound

q 6
2

w � d
, (1)

against any adversary strategy. Note that the diame-
ter, d, is essentially the unavoidable worst-case delay
in reaching the goal, even in the absence of a secrecy
constraint.

2. Conversely, given any agent strategy that incurs a
delay of at most w, we show that there exists a strategy
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for the adversary, which correctly predicts the goal
with probability

q >
1

2w + 1 . (2)

These results, taken together, establish that the intrinsic
prediction risk faced by the agent is inversely propor-
tional to the delay she is willing to sustain:

prediction risk⇤⇥

✓
1

delay

◆
, (3)

and that this holds regardless of the detailed topology
of the agent’s state space. Our proof is constructive and
provides concrete strategies for the two players that
achieve the upper and lower bounds on the predic-
tion risk.

1.5. Related Work
To the best of our knowledge, our formulation is new.
Our model is related, in spirit, to the literature on
search games (cf. Alpern and Gal 2003, Garnaev 2000),
in which a searcher tries to identify the hidden loca-
tion of an evader, and the decision maker is concerned
with finding search strategies that minimize the time
until the evader is found. More broadly, researchers
have also investigated how to efficiently detect ter-
ror plots (Kaplan 2015), or uncover consumer choices
from behavioral data (Cummings et al. 2016). While
the details differ, the majority of these models focus
on uncovering some present or past state of an oppo-
nent; in contrast, our work focuses on the predictability
of the agent’s future actions, and it brings about very
different strategic considerations.

The challenges faced by the adversary in our model
are reminiscent of those of an inspector in inspection
games (Dresher 1962, von Stengel 2016, Avenhaus et al.
2002), whose objective is to allocate a small number
of inspections across a finite number of time slots so
as to efficiently detect any violations that an inspectee
may commit during this period. Among other things,
a crucial difference between our model and this litera-
ture is that inspection games do not possess a spatial
dimension, while in our case the agent must traverse an
underlying graph and reach a specific node in order for
a “violation” to occur. As a result, the actions available
to the inspectee in an inspection game, i.e., to violate
or act lawfully, remain the same throughout the game,
whereas those of our agent evolve over time as she tra-
verses the graph.

There is also a large body of computer science lit-
erature on information security, which is concerned
with secure communication or computation protocols
that can prevent an adversary from accessing infor-
mation (cf. Pfleeger and Pfleeger 2002). More recently,
there has been a growing interest in designing privacy-
preserving data release protocols, which aim to protect

individual identities when releasing statistical sum-
maries of a data set, typically by injecting noise in the
outputs (cf. Dwork and Roth 2013). Compared to these
areas of research, our formulation assumes a much
stronger adversary who observes all past actions of the
agent and her strategy. This could arise when the secu-
rity or privacy-preserving mechanisms employed by
an individual have already been compromised, which
is not difficult to imagine when the adversary has a
vast technological superiority over the individual, e.g.,
a large Internet provider versus an average user. As a
result, in our model, the agent can only conceal her goal
by doing, not by hiding. It would be interesting to study
the possible improvement of the agent’s performance
if she is capable of also hiding some of her past actions,
but this is beyond the scope of the current paper.

1.6. Organization
The remainder of the paper is organized as follows.
We formally define the Goal Prediction game in Sec-
tion 2, along with the performance metrics. Our main
result is stated in Section 3. Its proof is given in Sec-
tion 4, after an overview of the main steps. Section 5
presents some numerical results. Section 6 discusses an
alternative measure of prediction risk. We conclude in
Section 7, together with a discussion of possible model
variations.

2. The Goal Prediction Game
In this section, we provide a formal definition of the
Goal Prediction game. The game is played between two
players, the agent and the adversary, and will be defined
in terms of the following elements.

Definition 1 (The Elements of the Goal Prediction Game).

The game is specified by a quintuple (G, x1 ,⇡,RA
,R

D
),

consisting of the following:
(a) an undirected graph, G ⇤ (V ,E), with n vertices;
(b) an initial agent state x1 2V ;
(c) a probability distribution ⇡, used to generate a

V -valued random variable D, with components ⇡
v
⇤

⇣ (D ⇤ v);
(d) an auxiliary collection of independent random

variables R
A
;

(e) an auxiliary collection of independent random
variables R

D
.

For an interpretation of the different elements of the
game, V represents the possible states of the agent, E
the transitions that are allowed at each step, and D the
agent’s goal. Finally, R

A
and R

D
are independent inter-

nal random variables that the agent or the adversary,
respectively, can use for the purpose of randomization.

2.1. Agent Strategies and Trajectories
An agent trajectory is defined as a sequence of random
variables {(X

t
,�

t
)}

t2�, where the X
t

take values in the
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set V and satisfy the constraints X1 ⇤ x1 and (X
t
,X

t+1)
2 E, for all t > 1, and the �

t
take values in some arbi-

trary set.
We interpret X

t
as the state of the agent at time t. Fur-

thermore, �
t
encodes any side information that the agent

is willing to provide to the adversary at the beginning
of time slot t. The use of �

t
is mainly intended to sim-

plify our analysis and does not change the nature of the
game, since the agent can always choose to not disclose
any side information, by setting �

t
to a fixed symbol

for all t 2 �.
An agent strategy, generically denoted by  , is a map-

ping that takes G, x1, and the realized values of D

and R
A

as inputs, and generates the agent’s trajectory.
For any agent strategy  , we define the time that the
goal is reached (to be referred to as the goal-reaching
time) as

T ⇤min{t 2 �: X
t
⇤ D}, (4)

with the convention that T ⇤ 1 if the goal is never
reached. We will refer to ⇧(T ) as the delay of agent
strategy  , where the expectation is taken with respect
to the randomness in D and R

A
.

2.2. Adversary Actions and Strategies, and the
Prediction Risk

In contrast to the agent’s strategy, which generates the
entire trajectory at once, the adversary’s strategy, gener-
ically denoted by �, operates sequentially, because it
also takes into account the agent’s past actions.

At each time t, the adversary’s strategy has access
to G, x1, RD

, and the history of the agent trajectory
up to and including time t, namely, X1 , . . . ,Xt

, and
�1 , . . . ,�t

. On the basis of this information, the adver-
sary determines the realized value of an associated
decision random variable, D̂

t
2V [ {0}.1 Under a given

pair ( , �) of strategies for the agent and the adver-
sary, respectively, denote by U , � the first time that the
adversary lets D̂

t
be an element of V , i.e.,

U , � ⇤ inf{t: D̂
t
2V }. (5)

We interpret D̂
U , �

as the prediction made by the adver-
sary. See Figure 1 for an illustration.

The adversary wins the game if it makes a correct
prediction of D, no later than the goal-reaching time.
We define the prediction risk to be the probability of this
event, namely,

q( , �)⇤ ⇣ (D̂
U , �

⇤ D and U , � 6 T ), (6)

where the the probabilities are calculated with respect
to the randomness in D, R

A
, and R

D
.

2.3. The Minimax Prediction Risk
If the agent is to use strategy  , she will be concerned
about all possible adversary strategies. By focusing on

Figure 1. An Example of the Goal Prediction Game

1 3 5

42

X1 X2 X3

D

D2

6

X4

Notes. The agent starts at the initial state 1, and the (secret) goal
is state 6. The agent plans to follow the trajectory 1 ! 3 ! 5 ! 6.
Suppose that the adversary makes a prediction at time t ⇤ 2 by letting
D̂2 ⇤ 4. At that time, the game terminates, and since D̂2 ,D, the agent
wins. If on the other hand, the adversary makes a prediction D̂

t
⇤ 6

at any time t 6 4, then the adversary wins.

the most unfavorable adversary strategy �, we are led
to define the maximal prediction risk of  by

q
⇤( )⇤ sup

�
q( , �). (7)

As already discussed, we are interested in the trade-off
between the prediction risk and the expected time to
reach the goal. Accordingly, for any given time budget
w 2 ✓+, we define  

w
as the set of all agent strategies

with a delay of at most w:

 
w
⇤ { : ⇧(T ) 6 w}. (8)

The agent is interested in minimizing the maximal pre-
diction risk, subject to a given time budget. Accord-
ingly, we define the minimax prediction risk associated
with a given time budget w as

Q(w)⇤ inf
 2 w

q
⇤( )⇤ inf

 2 w

sup
�

q( , �). (9)

3. Main Result: Characterization of
Minimax Prediction Risk

We denote by d
G

the diameter of a graph G, i.e., d
G
⇤

max
u , v2V d(u , v), where d(u , v) is the number of edges

on a shortest path from u to v. The following is our
main result.
Theorem 1. Fix n 2 � and let G ⇤ (V ,E) be a connected
undirected graph with n vertices. Fix x1 2 V and w 2
{1, . . . , n}, such that w � d

G
is a positive even integer.2

Let c
⇤ be the maximum entry of ⇡, i.e., c

⇤ ⇤ max
v2V ⇡v

.
Then, the minimax prediction risk under a time budget of w

satisfies

max
⇢

1
2w + 1 , c

⇤
�
6 Q(w) 6 2nc

⇤

w � d
G

. (10)

In the special case where the prior distribution ⇡ is
uniform over V , Theorem 1 yields a fairly tight charac-
terization of the minimax prediction risk: as long as d

G

is relatively small compared to w, the upper and lower
bounds agree within a factor of 4. Indeed, the follow-
ing corollary follows from Theorem 1 by replacing c

⇤

with 1/n.
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Corollary 1. Suppose that ⇡ is uniform over V . Then, the
minimax prediction risk in Theorem � satisfies

1
2w + 1 6 Q(w) 6 2

w � d
G

. (11)

4. Proof of Theorem 1
We present in this section the proof of Theorem 1, start-
ing with an overview of the main steps involved.

4.1. Overview of the Proof
For the upper bound on the minimax prediction risk
in Equation (10), we focus on a specific family of
agent strategies, which we call segment-based strategies,
and show that the prediction risk under an appro-
priately chosen segment-based strategy always satis-
fies the upper bound, against any adversary strategy.
A segment-based strategy can be roughly described
as follows. For a given goal D, the agent first gener-
ates a certain random path in the graph G, referred
to as a segment, which contains D, and immediately
reveals the segment to the adversary. The agent then
proceeds to traverse the segment in a deterministic
manner, until D is reached. The key idea is to have the
agent generate the segment so that conditional on the
realized segment, all of its member vertices are nearly
equally likely to be the goal, in which case, it is difficult
for the adversary to make an accurate prediction.

The performance analysis of segment-based strate-
gies is carried out in two parts. We first express the
maximal prediction risk of a given segment-based
strategy as a function of some basic structural prop-
erties of the strategy, which roughly correspond to
the total number of possible segments, as well as the
degree of uniformity with which different segments
are spread over the underlying graph G (Section 4.3).
Subsequently (Section 4.4), we show how to construct
a segment-based strategy with the desirable structure
just alluded to. Combining these results, the upper
bound in Theorem 1 then follows from some straight-
forward calculations.

The lower bound in Theorem 1 is proved in Sec-
tion 4.6. We will show that for any agent strategy  ,
there exists a simple adversary strategy that results in
a prediction risk of at least 1/(2w+1). The main insight
is that, in order to have delay of at most w, the distri-
bution of the agent’s goal-reaching time T needs to be
somewhat concentrated. As a consequence, there will
exist a time t

⇤ 2 �, such that T ⇤ t
⇤ with probability

at least 1/(2w + 1). The adversary can then achieve a
prediction risk of 1/(2w + 1) by waiting until t

⇤, and
setting the prediction D̂

t⇤ to the value of the current
agent state X

t⇤ .

4.2. Segment-Based Strategies
The upper bound in Equation (10) is proved by focus-
ing on a restricted class of agent strategies, which we
now proceed to define. We say that s ⇤ (s1 , . . . , sr

)
is a segment, of length |s | ⇤ r, if (s

i
, s

i+1) 2 E, for
i ⇤ 1, . . . , r � 1. (A segment may have repeated vertices.)

Definition 2 (Covering Index). Fix a set S of segments
and a vertex v 2V . We define S

v
as the set of segments

in S that contain v, i.e.,

S
v
⇤ {s 2S : v 2 s}. (12)

We define the covering index of v with respect to S ,
denoted by cS (v), as the number of segments that
belong to S

v
:

cS (v)⇤ |S
v
|. (13)

We now describe segment-based strategies.

Definition 3 (Segment-Based Strategies). Fix r 2 �. Let
S be a set of segments, with each segment having
the same length r, and with cS (v) > 0 for all ver-
tices v. A segment-based strategy based on S is defined as
follows.

1. Recall that S
v

is the set of segments in S that
cover the vertex v (cf. Equation (12)). The agent chooses
a segment S

D
, uniformly at random from S

D
.

2. The agent then travels to the goal, in two
stages:

(a) Stage 1. She travels to the first vertex, S
1
D

, of the
segment S

D
along a shortest path.

(b) Stage 2. She then travels along the segment S
D

.
3. The agent, at time t ⇤ 1, announces to the adver-

sary (through the side-information variable �1) the seg-
ment S

D
, as well as the shortest path to be followed

in Stage 1. She also sets �
t
, for t > 2 to a fixed (hence

uninformative) symbol.

Note that the goal D will be reached either during
Stage 1, if D happens to lie on the shortest path from x1
to L

1
D

, or, otherwise, during Stage 2. In either case, the
time at which the goal is reached is upper bounded
by the diameter of the graph, plus the length r of the
chosen segment, so that

T 6 d
G
+ r. (14)

In particular, given a time budget w > d
G
, it suffices to

set r ⇤ w � d
G
.

4.3. Characterization of the Maximal Prediction
Risk Under a Segment-Based Strategy

In this section we develop a characterization of the
maximal prediction risk under a segment-based strat-
egy, in terms of the covering indices associated with S ,
the size of the setS of segments, and the prior distribu-
tion ⇡. This result will be used in the next subsection to
derive an upper bound on the maximal prediction risk.
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Proposition 1. Let  be a segment-based strategy, based
on a family S of segments. Its maximal prediction risk is
given by

q
⇤( )⇤ sup

�
q( , �)⇤

X
s2S

max
v2s

⇡
v

cS (v)
. (15)

Proof. We begin the proof with a simple observation:
given that the trajectory to be followed by the agent is
announced in the beginning (through �1) to the adver-
sary, the adversary’s decisions D̂

t
are all determined at

time t ⇤ 1. That is, there is an optimal adversary strat-
egy in which U , � ⇤ 1. Let D̂ ⇤ D̂1 be the adversary’s
prediction of D, under a strategy � of this type.

Because of the above observation, the adversary
should use a maximum a posteriori probability rule,
and set D̂ to be equal to a node v for which the proba-
bility ⇣ (D ⇤ v | �1) is largest. Note that the value of �1
provides information to the adversary that the target
node D belongs to a certain segment s. In particular, the
adversary should simply maximize, over v, the proba-
bility

⇣ (D ⇤ v | S
D
⇤ s).

It follows that the conditional maximal prediction risk,
given S ⇤ s is max

v2s
⇣ (D ⇤ v | v 2 s). We then have

sup
�

q( d , �)
(a)
⇤
X
s2S

⇣ (D̂1 ⇤ D | S
D
⇤ s)⇣ (S

D
⇤ s)

(b)
⇤
X
s2S

⇣
max

v2s

⇣ (D ⇤ v | S
D
⇤ s)

⌘
⇣ (S

D
⇤ s)

⇤
X
s2S

max
v2s

(⇣ (S
D
⇤ s | D ⇤ v)⇣ (D ⇤ v))

(c)
⇤
X
s2S

max
v2s

⇡
v

cS (v)
,

where step (a) follows from the definition of q( , �),
step (b) from our earlier discussion, and step (c) from
the fact that S

D
is drawn uniformly at random from S

v
,

the set of segments in S that cover v, and whose
number is cS (v). This completes the proof of Proposi-
tion 1. Q.E.D.

4.4. Constructing a Good Segment Family
In this subsection, we show how to construct a “good”
segment family S , so that the resulting maximal pre-
diction risk, in Equation (15), is small. Before present-
ing the details, let us first discuss, heuristically, the
properties that a good segment family should satisfy.
From Equation (15), we see an inverse dependence on
the covering indices, cS (v). Thus, a good segment fam-
ily should ensure that most of the vertices of G are
covered by a large number of segments. At the same
time, we want to ensure that the number of summands
on the right-hand side of Equation (15) is not too large,
i.e., we do not want to have too many segments. In the
remainder of this subsection, we show how to satisfy
both of the above requirements. Specifically, we show

that there exists a segment family containing no more
than 2(n � 1) segments, under which all vertices are
covered by at least r segments.

Proposition 2. Let r be an even integer that satisfies 1 6
r 6 n � 1. There exists a family S of segments of length r

that satisfies
|S | ⇤ 2(n � 1), (16)

and
cS (v) > r, 8 v 2V . (17)

Proof. We construct the segment family by exploiting
some elementary properties of the depth-first traversal
of a spanning tree. Let H ⇤ (V ,E

H
) be a spanning tree

of G, i.e., a connected subgraph of G that contains all
vertices and has no cycles. In particular, the number of
edges of the spanning tree, |E

H
|, is n � 1. We say that a

path (in which vertices may be repeated) is a loop if its
first and last vertices coincide. Pick an arbitrary node
v0 2 V as the root of H, and let h be a loop generated
by a depth-first traversal of H that starts and ends on
the vertex v0 (cf. Section 22.3 of Cormen et al. 2009);
i.e., h traverses H by exploring as far as possible along
each subtree of H before returning to the parent vertex.
It is not difficult to see that h traverses each edge in H

exactly twice, and hence we have that

|h | ⇤ 2 |E
H
| + 1⇤ 2(n � 1)+ 1⇤ 2n � 1. (18)

Let h ⇤ (h1 , . . . , h2n�1) be the above constructed loop.
We extend the loop, by omitting the last vertex on the
loop (which coincides with the initial vertex) and then
continuing along the same loop, for another r �1 steps,
resulting in a path of the form

ĥ ⇤ (h1 , h2 , . . . , h2n�2 , h1 , h2 , . . . hr�1).

We now use ĥ to construct a segment family S , which
consists of |h |�1 segments, where the ith segment, s

(i),
is of the form

s
(i)
⇤ (ĥ

i
, ĥ

i+1 . . . , ĥi+r�1), i ⇤ 1, . . . , |h | � 1. (19)

Note that since |h | � 1 ⇤ 2n � 2, the requirement in
Equation (16) is automatically satisfied. For a concrete
example, if n ⇤ 3, h ⇤ (a , b , c , b , a), and r ⇤ 3, then ĥ ⇤

(a , b , c , b , a , b), the set S will consist of the |h | � 1 ⇤

2n � 2⇤ 4 paths (a , b , c), (b , c , b), (c , b , a), and (b , a , b).
Next, we show that with the segment family S

defined in Equation (19), the covering index cS (v) of
every vertex v is at least r. Fix i 2 {1, . . . , |h | � 1}. Since
ĥ is a continuation of h, which repeats the first r � 1
vertices of h, it follows that

1. if i > r, then h
i
belongs to s

(i�r+1) , . . . , s(i);
2. if i < r, then h

i
belongs to the first i segments and

the last r � i segments of S .
In particular, h

i
belongs to at least r different seg-

ments, and cS (hi
) > r, which establishes Equation (17).
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4.5. Completing the Proof of the Upper Bound
Given a time budget w > d

G
, we let r ⇤ w � d

G
,

and construct a segment-based strategy, with seg-
ments of length r, with the properties in Proposition 2.
From Equation (14), the strategy satisfies the budget
constraint

⇧(T ) 6 d
G
+ r ⇤ w.

Furthermore, by combining Propositions 1 and 2, we
obtain

q
⇤( ) (a)

⇤
X
s2S

max
v2s

⇡
v

cS (v)
(b)
6

c
⇤

r
|S | (c)

⇤
2(n � 1)c⇤

r
6

2nc
⇤

r
, (20)

where c
⇤ ⇤ max

v2V ⇡v
. Step (a) follows from Equa-

tion (15) in Proposition 1. Steps (b) and (c) follow
from the properties cS (v) > r and |S | ⇤ 2(n � 1) in
Proposition 2.

This completes the proof of the upper bound in
Theorem 1.

4.6. Proof of the Lower Bound
We now turn to the lower bound in Theorem 1. We will
showthat, foranysuch , asimplestrategyfortheadver-
sary will perform well.

Definition 4 (Follow-and-Predict). Fix an agent strat-
egy  , and let

t( ) 2 argmax
t2�

⇣ (T ⇤ t). (21)

The adversary’s strategy consists of making a predic-
tion at time t ⇤ t( ), equal to the agent’s current state,
i.e., D̂

t( ) ⇤ X
t( ).

Figure 2. (Color online) An Illustration of the Prediction Risks as a Function of the Agent’s Delay
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Let us denote by �
F

the Follow-and-Predict strategy
for the adversary. To analyze its performance, we make
use of the following fact. The proof involves an ele-
mentary application of the Markov’s inequality and is
given in Appendix A.1.

Lemma 1. Let Y be a random variable taking values in �.
Then, there exists y 2 � such that

⇣ (Y ⇤ y) > 1
2⇧(Y)+ 1 . (22)

We observe that if T ⇤ t( ), then the adversary
makes a correct prediction, and this happens by the
time that the agent reaches the goal, so that the adver-
sary wins. Therefore, applying also Lemma 1 to T , we
obtain

q( , �
F
) > ⇣ (T ⇤ t( ))⇤max

t2�
⇣ (T ⇤ t)

>
1

2⇧(T )+ 1 >
1

2w + 1 . (23)

Finally, note that the adversary could also make a pre-
diction at time t ⇤ 1 based on the prior ⇡ alone, by
choosing a v that maximizes ⇡

v
, which yields a proba-

bility of success of c
⇤. Therefore, we conclude that

Q(w) >max{q( , �
F
), c⇤} >max

⇢
1

2w + 1 , c
⇤
�
. (24)

This proves the lower bound in Equation (10), and com-
pletes the proof of Theorem 1.

5. Numerical Examples
Figure 2 illustrates simulation results on graphs with
100 vertices and a uniform prior distribution for the
goal vertex. The agent in these experiments uses
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the segment-based strategy outlined in Section 4.2,
while the length of the segment, r, varies. Each marker
in the figure corresponds to a fixed value of r, where
the delay and risk are calculated by averaging over
100 Erdős-Rényi random graphs with edge probabil-
ity p ⇤ 0.2, conditional on the graph being connected.
The solid curve with diamond markers corresponds to
the scenario where the adversary uses the follow-and-
predict strategy (Definition 4), and the dashed curve
with triangle markers corresponds to a simpler strat-
egy, dubbed naive, where the adversary makes a pre-
diction on a time slot chosen uniformly at random from
the first w slots, where w is equal to the agent’s delay.
The dash-dot line is the lower bound in Equation (11),
i.e., 1/(2w+1). The follow-and-predict strategy appears
to outperform the naive strategy (from the point of
view of the adversary) when the delay is small, and the
gap between the two diminishes as the delay grows.
Notably, the solid-diamond curve (follow-and-predict)
in the log-log scale plot of Figure 2 is nearly linear
with a slope of approximately �0.99. This suggests that
the prediction risk scales inversely proportionally with
respect to the agent’s delay, which is consistent with
the theoretical results in Corollary 1.

6. The Maximin Prediction Risk
The minimax prediction risk defined in Equation (9)
can be interpreted as the minimax value of a zero-
sum game played between an adversary and the agent,
whose payoffs are the prediction risk (Equation (6))
and its negative, respectively. It is therefore natural to
consider, similar to Equation (9), the maximin prediction
risk associated with a time budget w:

Q̄(w)⇤ sup
�

inf
 2 w

q( , �). (25)

By the max-min inequality (cf. Section 5.4.1 of Boyd
and Vandenberghe 2004), we have

Q̄(w)⇤ sup
�

inf
 2 w

q( ,�)6 inf
 2 w

sup
�

q( ,�)⇤Q(w), (26)

and hence the upper bound on the minimax predic-
tion risk in Theorem 1 also applies to Q̄(w). The result
that follows, stated in a form that parallels Theorem 1,
provides a lower bound on Q̄(w), which is weaker than
the lower bound in Theorem 1 by a factor of 2. The
proof is based on an adversary strategy, which is simi-
lar to but simpler than the follow-and-predict strategy
(Definition 4), and is given in Appendix A.2.
Theorem 2. Fix n 2 � and let G ⇤ (V ,E) be a connected
undirected graph with n vertices. Fix x1 2 V and w 2
{1, . . . , n}, such that w � d

G
is a positive even integer. Let c

⇤

be the maximum entry of ⇡, i.e., c
⇤ ⇤ max

v2V ⇡v
. Then, the

maximin prediction risks under a time budget of w satisfies

max
⇢

1
4w
, c⇤

�
6 Q̄(w) 6 2nc

⇤

w � d
G

. (27)

It may well be the case that Q(w)⇤ Q̄(w), i.e., that the
zero-sum game has a value.3 But even if this were to be
the case, an exact expression for the value is unlikely to
become available (since it would depend in a compli-
cated way on the detailed topology of the graph), and
we do not expect to be able to state any results stronger
than what is already implied by Theorems 1 and 2.

On a pragmatic level, we have focused on the min-
imax prediction risk because we consider it more rel-
evant for the applications that we have in mind: the
minimax formulation captures the thought process of
an agent who wishes to protect herself against a power-
ful adversarial data collector. In contrast, the maximin
formulation applies to the less realistic situation where
the agent is sophisticated, experienced, and possessing
information on the data collector’s prediction strategy.

7. Conclusions and Model Variations
We have proposed in this paper a framework for quan-
tifying the trade-off between the predictability of an
agent’s goal and the additional effort that the agent
is willing to sustain in order to hide its goal from an
adversary who oversees the agent’s actions. Our main
result establishes that the probability of a correct pre-
diction by the adversary scales in inverse proportion to
the additional time that the agent is willing to spend.
Furthermore, this result holds independently of the
detailed topology of the individual’s state space.

We now discuss a number of potentially interesting
variations and extensions of our model and results,
some of which may be better suited for modeling more
realistic situations.
Far-from-uniform distributions of the final goal. We
note that there remains a gap between the upper
and lower bounds in Theorem 1, which becomes pro-
nounced if the prior distribution of the goal is highly
nonuniform. We believe that this gap can be reduced
with an improved construction of the agent’s strategy,
which takes into account the variability in the entries
of ⇡

D
, although it is not clear how to do so within

the framework of segment-based strategies. An inter-
esting special case to consider is one where the goal is
(approximately) uniformly chosen within a proper sub-
set of nodes.
Directed graphs. In this variation, the underlying
graph, G, has directed edges, i.e., it may be possible to
transit from vertex v to u, but not the other way around.
Our method of generating a family of segments (Sec-
tion 4.4) cannot be applied directly, since one may not
be able to traverse an edge of the spanning tree in both
directions. On the positive side, as long as one is able
to construct a family of segments that admits a lower
bound on the covering index, as in Proposition 2, the
proof of Theorem 1 should carry over to the directed
case with little difficulty.
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Weighted states or edges. We have quantified the
agent’s obfuscation effort in terms of the delay in reach-
ing the goal. In more realistic settings, it may be more
expensive to visit some states than others. It is thus
natural to consider a generalization where each state is
associated with a cost and the agent’s cost is defined
as the expected value sum of the total cost until the
goal is reached. If the cost at different states differs by
at most a constant factor, segment-based strategies still
apply, and results similar to Theorem 1 will again hold
(with different constants involved). On the other hand,
if some states are significantly more costly than others,
the picture is less clear, since the agent may prefer to
choose the segments in a way that depends on the costs
of the states in a complex manner. A similar variation,
involving different edge costs, may also be of interest.
Multiple executions or predictions. We may consider a
scenario where the adversary is allowed to make more
than one prediction. Here, the agent will encounter a
new strategic dimension as she should now take into
account the adversary’s past predictions. We may con-
sider yet another variation where the agent would like
to execute more than one goal, and we should expect
the adversary’s strategy to become more nuanced by
considering the goals already executed by the agent.
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Appendix A. Proofs
A.1. Proof of Lemma 1
Proof. Let µ ⇤ ⇧(Y). Suppose, for the sake of contradiction,
that ⇣ (Y ⇤ y) < 1/(2µ+ 1), for all y 2 �. We then have

⇣ (Y > i)⇤ 1�⇣ (Y < i)

⇤ 1�
i�1X
j⇤1

⇣ (Y ⇤ y) > 1� (i � 1) · 1
2µ+ 1 . (A.1)

We then obtain

µ ⇤
1X

i⇤1
⇣ (Y > i)

>
b2µ+1cX

i⇤1
⇣ (Y > i)

>
b2µ+1cX

i⇤1

✓
1� (i � 1) · 1

2µ+ 1

◆

⇤ b2µ+ 1c � 1
2µ+ 1 · b2µ+ 1c(b2µ+ 1c � 1)

2
> µ,

which is a contradiction, and proves the desired re-
sult. Q.E.D.

A.2. Proof of Theorem 2
Proof. The upper bound follows directly from Theorem 1 and
the max-min inequality, as discussed in the text preceding

Theorem 2. We will hence focus on the lower bound. Same
as in Theorem 1, the term c

⇤ in the lower bound reflects the
fact that the adversary can simply make a prediction at time
t ⇤ 1 on a vertex with the highest prior probability, resulting
in a prediction risk of c

⇤. It therefore suffices to construct an
adversary strategy, denoted by �̃, which guarantees a predic-
tion risk of at least 1/4w against any agent strategy in  w .
The adversary’s strategy �̃ works as follows. The adversary
first generates a random variable, T̃, uniformly distributed
over {1, 2, . . . , 2w}, and independent of everything else. She
then makes a prediction at time t ⇤ T̃, equal to the agent’s
current state, i.e., D̂T̃ ⇤ XT̃ .

Fix an agent strategy  2  w . We now show that the
strategy �̃ leads to a prediction risk of at least 1/4w when
deployed against  . Intuitively, because the agent’s expected
goal-reaching time, ⇧(T ), is constrained to be at most w, T 

must be no greater than 2w with probability of at least 1/2.
This ensures that an adversary using �̃ will make a correct
prediction at t ⇤ T with probability at least 1/4w. To make
this precise, we observe that the adversary wins the game if
the event {T̃ ⇤ T } occurs, implying that

q( , �̃) >
2wX
t⇤1

⇣ (T̃ ⇤ T ⇤ t) (a)
⇤

2wX
t⇤1

⇣ (T̃ ⇤ t)⇣ (T ⇤ t)

(b)
⇤

1
2w

⇣ (T 6 2w)
(c)
>

1
4w
. (A.2)

Step (a) follows from T̃ being independent from T , and (b)
from T̃ being uniformly distributed. Step (c) is based on the
assumption that  2 w and hence ⇧(T ) 6 w:

⇣ (T 6 2w)> 1�⇣ (T > 2w)> 1�
⇧(T )
2w

> 1� w

2w
⇤

1
2 , (A.3)

where the second inequality follows from Markov’s inequal-
ity and the fact that T is nonnegative. Because Equa-
tion (A.2) holds for any  2 w , we have that

Q̄(w)⇤ sup
�

inf
 2 w

q( , �) > inf
 2 w

q( , �̃) > 1
4w
. (A.4)

This completes the proof of Theorem 2. Q.E.D.

Endnotes
1 We are assuming here that 0 is not one of the elements of V .
2 The assumption of w � d

G
being an even integer helps simplify

notation by avoiding floors and ceilings throughout the proof, and
can be easily relaxed.
3 Unfortunately, such a result does not follow directly from the
usual minimax theorems, because our strategy spaces are com-
plicated enough, and do not readily satisfy the usual topological
assumptions.
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