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Abstract. We study a multiserver model with n flexible servers and n queues, connected
through a bipartite graph, where the level of flexibility is captured by an upper bound on
the graph’s average degree, dn . Applications in content replication in data centers, skill-
based routing in call centers, and flexible supply chains are among our main motivations.
We focus on the scaling regime where the system size n tends to infinity, while the overall
traffic intensity stays fixed. We show that a large capacity region and an asymptotically
vanishing queueing delay are simultaneously achievable even under limited flexibility
(dn ⌧ n). Our main results demonstrate that, when dn � ln n, a family of expander-graph-
based flexibility architectures has a capacity region that is within a constant factor of the
maximum possible, while simultaneously ensuring a diminishing queueing delay for all

arrival rate vectors in the capacity region. Our analysis is centered around a new class
of virtual-queue-based scheduling policies that rely on dynamically constructed job-to-
server assignments on the connectivity graph. For comparison, we also analyze a natural
family of modular architectures, which is simpler but has provably weaker performance.
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1. Introduction
At the heart of a number of modern queueing networks
lies the problem of allocating processing resources
(manufacturing plants, web servers, or call-center staff)
to meet multiple types of demands that arrive dynam-
ically over time (orders, data queries, or customer
inquiries). It is usually the case that a fully flexible or
completely resource-pooled system, where every unit of
processing resource is capable of serving all types of
demands, delivers the best possible performance. Our
inquiry is, however, motivated by the unfortunate real-
ity that such full flexibility is often infeasible due to
overwhelming implementation costs (in the case of a
data center) or human skill limitations (in the case of a
skill-based call center).

What are the key benefits of flexibility and resource
pooling in such queueing networks? Can we harness
the same benefits even when the degree of flexibility is
limited, and how should the network be designed and
operated? These are the main questions that we wish
to address. While these questions can be approached
from a few different angles, we will focus on the
metrics of capacity region and expected queueing delay;
the former measures the system’s robustness against
demand uncertainties (i.e., when the arrival rates for dif-
ferent demand types are unknown or likely to fluc-
tuate over time), while the latter is a direct reflection
of performance. Our main message is positive: in the

regime where the system size is large, improvements
in both the capacity region and delay are jointly achiev-

able even under very limited flexibility, given a proper
choice of the architecture (interconnection topology)
and scheduling policy.

Benefits of Full Flexibility. We begin by illustrating
the benefits of flexibility and resource pooling in a
very simple setting. Consider a system of n servers,
each running at rate one, and n queues, where each
queue stores jobs of a particular demand type. For each
i 2 {1, . . . , n}, queue i receives an independent Pois-
son arrival stream of rate �i . The average arrival rate
(1/n)Pn

i⇤1 �i is denoted by ⇢, and is referred to as the
traffic intensity. The sizes of all jobs are independent
and exponentially distributed with mean 1.

For the remainder of this paper, we will use a mea-

sure of flexibility given by the average number of servers
that a demand type can receive service from, denoted
by dn . Let us consider the two extreme cases: a fully

flexible system, with dn ⇤ n (Figure 1(a)), and an inflex-

ible system, with dn ⇤ 1 (Figure 1(b)). Fixing the traffic
intensity ⇢ < 1, and letting the system size, n, tend to
infinity, we observe the following qualitative benefits
of full flexibility:

1. Large Capacity Region. In the fully flexible case
and under any work-conserving scheduling policy,1 the
collection of all jobs in the system evolves as an M/M/n
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Figure 1. Extreme Cases of Flexibility: dn ⇤ n vs. dn ⇤ 1

(a) (b)

queue, with arrival rate Pn
i⇤1 �i and service rate n. It is

easy to see that the system is stable for all arrival rates
that satisfy Pn

i⇤1 �i < n. In contrast, in the inflexible sys-
tem, since all M/M/1 queues operate independently,
we must have �i < 1, for all i, to achieve stability. Com-
paring the two, we see that the fully flexible system
has a much larger capacity region and is hence more
robust to uncertainties or changes in the arrival rates.
2. Diminishing Delay. Let W be the steady-state ex-
pected waiting time in queue (time from entering the
queue to the initiation of service). As mentioned ear-
lier, the total number of jobs in the system for the fully
flexible case evolves as an M/M/n queue with traffic
intensity ⇢ < 1. It is not difficult to verify that for any
fixed value of ⇢, the expected total number of jobs in
the queues is bounded above by a constant independent
of n, and hence the expected waiting time in queue sat-
isfies ⇧(W)! 0, as n !1.2 In contrast, the inflexible
system is simply a collection of n independent M/M/1
queues, and hence the expected waiting time is ⇧(W)⇤
⇢/(1� ⇢) > 0, for all n. Thus, the expected delay in the
fully flexible system vanishes asymptotically as the sys-
tem size increases but stays bounded away from zero
in the inflexible system.
Preview of Main Results. Will the above benefits of
fully flexible systems continue to be present if the sys-
tem only has limited flexibility—that is, if dn ⌧ n? The
main results of this paper show that a large capacity
region and an asymptotically vanishing delay can still
be simultaneously achieved, even when dn ⌧ n. How-
ever, when flexibility is limited, the architecture and
scheduling policy need to be chosen with care. We show
that, when dn � ln n, a family of expander-graph–based
flexibility architectures has the largest possible capac-
ity region, up to a constant factor, while simultane-
ously ensuring a diminishing queueing delay, of order
ln n/dn as n !1, for all arrival rate vectors in the capac-
ity region (Theorem 3.4). For comparison, we also ana-
lyze a natural family of modular architectures, which
is simpler but has provably weaker performance (Theo-
rems 3.5 and 3.6).

1.1. Motivating Applications
We describe here several motivating applications for
our model; Figure 2 illustrates the overall architecture

Figure 2. A Processing Network with rn Queues and n
Servers
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that they share. Content replication is commonly used in
data centers for bandwidth intensive operations such
as database queries (Soundararajan et al. 2006) or video
streaming (Leconte et al. 2012), by hosting the same
piece of content on multiple servers. Here, a server cor-
responds to a physical machine in the data center, and
each queue stores incoming demands for a particular
piece of content (e.g., a video clip). A server j is con-
nected to queue i if there is a copy of content i on
server j, and dn reflects the average number of replicas
per piece of content across the network. Similar struc-
tures also arise in skill-based routing in call centers, where
agents (servers) are assigned to answer calls from dif-
ferent categories (queues) based on their domains of
expertise (Wallace and Whitt 2005), and in process-

flexible supply chains (Jordan and Graves 1995, Simchi-
Levi and Wei 2012, Chou et al. 2010, Iravani et al. 2005,
Gurumurthi and Benjaafar 2003), where each plant
(server) is capable of producing multiple product types
(queues). In many of these applications, demand rates
can be unpredictable and may change significantly
over time; for instance, unexpected “spikes” in demand
traffic are common in modern data centers (Kandula
et al. 2009). These demand uncertainties make robust-

ness an important criterion for system design. These
practical concerns have been our primary motivation
for studying the interplay between robustness, perfor-
mance, and the level of flexibility.

1.2. Related Research
Bipartite graphs provide a natural model for captur-
ing the relationships between demand types and ser-
vice resources. It is well known in the supply chain
literature that limited flexibility, corresponding to a
sparse bipartite graph, can be surprisingly effective in
resource allocation even when compared to a fully flex-
ible system (Jordan and Graves 1995, Gurumurthi and
Benjaafar 2003, Iravani et al. 2005, Chou et al. 2010,
Simchi-Levi and Wei 2012). The use of sparse ran-
dom graphs or expanders as flexibility structures to
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improve robustness has recently been studied in Chou
et al. (2011), Chen et al. (2015) in the context of sup-
ply chains, and in Leconte et al. (2012) for content
replication. Similar to the robustness results reported
in this paper, these works show that random graphs
or expanders can accommodate a large set of demand
rates. However, in contrast to our work, nearly all ana-
lytical results in this literature focus on static alloca-
tion problems, where one tries to match supply with
demand in a single shot, as opposed to our model,
where resource allocation decisions need to be made
dynamically over time.

In the queueing theory literature, the models that
we consider fall under the umbrella of multiclass mul-
tiserver systems, where a set of servers are connected
to a set of queues through a bipartite graph. Under
these (and similar) settings, complete resource pool-
ing (full flexibility) is known to improve system per-
formance (Mandelbaum and Reiman 1998, Harrison
and Lopez 1999, Bell and Williams 2001). However,
much less is known when only limited flexibility is
available: systems with a nontrivial connectivity graph
are extremely difficult to analyze, even under seem-
ingly simple scheduling policies (e.g., first-come, first-
served) (Talreja and Whitt 2008, Visschers et al. 2012).
Simulations in Wallace and Whitt (2005) show empiri-
cally that limited cross-training can be highly effective
in a large call center under a skill-based routing algo-
rithm. Using a very different set of modeling assump-
tions, Bassamboo et al. (2012) proposes a specific chain-
ing structure with limited flexibility, which is shown
to perform well under heavy traffic. Closer to the
spirit of the current work is Tsitsiklis and Xu (2012),
which studies a partially flexible system where a frac-
tion p > 0 of all processing resources are fully flexi-
ble, while the remaining fraction, 1� p, is dedicated to
specific demand types, and which shows an exponen-
tial improvement in delay scaling under heavy traffic.
However, both Bassamboo et al. (2012) and Tsitsiklis
and Xu (2012) focus on the heavy-traffic regime, which
is different from the current setting where traffic inten-
sity is assumed to be fixed, and the analytical results
in both works apply only to uniform demand rates.
Furthermore, with a constant fraction of the resources
being fully flexible, the average degree in Tsitsiklis
and Xu (2012) scales linearly with the system size n,
whereas here we are interested in the case of a much
slower (sublinear) degree scaling.

At a higher level, our work is focused on the inter-
play between robustness, delay, and the degree of
flexibility in a queueing network, which is much less
studied in the existing literature, and especially for net-
works with a nontrivial interconnection topology.

On the technical end, we build on several existing
ideas. The techniques of batching (cf. Neely et al. 2007,
Shah and Tsitsiklis 2008) and the use of virtual queues

(cf. McKeown et al. 1999, Kunniyur and Srikant 2001)
have appeared in many contexts in queueing theory,
but the specific models considered in the literature
bear little resemblance to ours. The study of expander
graphs has become a rich field in mathematics (cf.
Hoory et al. 2006), but we will refrain from providing
a thorough review because only some elementary and
standard properties of expander graphs are used in the
current paper.

We finally note that preliminary (and weaker) ver-
sions of some of the results were included in the con-
ference paper Tsitsiklis and Xu (2013).
Organization of the Paper. We describe the model in
Section 2, along with the notation to be used through-
out. The main results are provided in Section 3.
The construction and the analysis associated with the
expander architecture will be presented separately, in
Section 4. We conclude the paper in Section 5 with
a further discussion of the results and directions for
future research.

2. Model and Metrics
2.1. Queueing Model and Interconnection

Topologies
The Model. We consider a sequence of systems operat-
ing in continuous time, indexed by the integer n, where
the nth system consists of rn queues and n servers
(Figure 2), and where r is a constant that is held fixed
as n varies. For simplicity, we will set r to one but
note that all results and arguments in this paper can be
extended to the case of general r without difficulty.

A flexible architecture is represented by an n ⇥ n undi-
rected bipartite graph gn ⇤ (E, I [ J), where I and J
represent the sets of queues and servers, respectively,
and E the set of edges between them.3 We will also
refer to I and J as the sets of left and right nodes,
respectively. A server j 2 J is capable of serving a queue
i 2 I, if and only if (i , j) 2 E. We will use the following
notation.

1. Let Gn be the set of all n ⇥ n bipartite graphs.
2. For gn 2 Gn , let deg(gn) be the average degree

among the n left nodes, which is the same as the aver-
age degree of the right nodes.

3. For a subset of nodes, M ⇢ I [ J, let g |M be the
graph induced by g on the nodes in M.

4. Denote by N (i) the set of servers in J connected
to queue i, and similarly, by N ( j) the set of queues in I
connected to server j.

Each queue i receives a stream of incoming jobs
according to a Poisson process of rate �n , i , indepen-
dent of all other streams, and we define �n ⇤ (�n , 1 , �n , 2 ,
. . . , �n , n), which is the arrival rate vector. When the value
of n is clear from the context, we sometimes suppress
the subscript n and write � ⇤ (�1 , . . . , �n) instead. The
sizes of the jobs are exponentially distributed with
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mean 1, independent from each other and from the
arrival processes. All servers are assumed to be run-
ning at a constant rate of 1. The system is assumed to
be empty at time t ⇤ 0.

Jobs arriving at queue i can be assigned (immedi-
ately, or in the future) to an idle server j 2 N (i) to
receive service. The assignment is binding: once the
assignment is made, the job cannot be transferred to, or
simultaneously receive service from, any other server.
Moreover, service is nonpreemptive: once service is ini-
tiated for a job, the assigned server has to dedicate its
full capacity to this job until its completion.4 Formally,
if a server j has just completed the service of a previ-
ous job at time t or is idle, its available actions are as
follows. (a) Serve a new job: Server j can choose to fetch
a job from any queue in N ( j) and immediately start
service. The server will remain occupied and take no
other actions until the processing of the current job is
completed, which will take an amount of time that is
equal to the size of the job. (b) Remain idle: Server j can
choose to remain idle. While in the idling state, it will
be allowed to initiate a service (action (a)) at any point
in time.

Given the limited set of actions available to the
server, the performance of the system is fully deter-
mined by a scheduling policy, ⇡, which specifies for each
server j 2 J, (a) when to remain idle, and when to serve
a new job, and (b) from which queue in N ( j) to fetch
a job when initiating a new service. We only allow
policies that are causal, in the sense that the decision
at time t depends only on the history of the system
(arrivals and service completions) up to t. We allow the
scheduling policy to be centralized (i.e., to have full con-
trol over all server actions) based on the knowledge of
all queue lengths and server states. On the other hand,
the policy does not observe the actual sizes of the jobs
before they are served.

2.2. Performance Metrics
Characterization of Arrival Rates. We will restrict our-
selves to arrival rate vectors with average traffic intensity

at most ⇢; i.e.,
nX

i⇤1
�i 6 ⇢n , (1)

where ⇢ 2 (0, 1) will be treated throughout the paper as
a given absolute constant. To quantify the level of vari-

ability or uncertainty of a set of arrival rate vectors,⇤, we
introduce a fluctuation parameter, denoted by un , with
the property that �i < un , for all i and � 2⇤.

Note that, for a graph with maximum degree dn , the
fluctuation parameter should not exceed dn , because
otherwise there could exist some � 2 ⇤ under which
at least one queue would be unstable. Therefore, the
best we can hope for is a flexible architecture that can
accommodate arrival rate vectors with a un that is close
to dn . The following condition formally characterizes

the range of arrival rate vectors we will be interested
in, parameterized by the fluctuation parameter, un , and
traffic intensity, ⇢.

Condition 2.1 (Rate Condition). Fix n > 1 and some
un > 0. We say that a (nonnegative) arrival rate vector �
satisfies the rate condition if the following hold:

1. max16i6n �i < un .
2. Pn

i⇤1 �i 6 ⇢n.
We denote by ⇤n(un) the set of all arrival rate vectors
that satisfy the above conditions.

Capacity Region. The capacity region for a given ar-
chitecture is defined as the set of all arrival rate vectors
that it can handle. As mentioned in the Introduction,
a larger capacity region indicates that the architecture
is more robust against uncertainties or changes in the
arrival rates. More formally, we have the following
definition.

Definition 2.2 (Feasible Demands and Capacity Region).
Let g ⇤ (I [ J,E) be an n ⇥ n0 bipartite graph. An arrival
rate vector �⇤ (�1 , . . . , �n) is said to be feasible if there
exists a flow, f⇤ { fi j : (i , j) 2 E}, such that

�i ⇤
X

j2N (i)
fi j , 8 i 2 I ,

X
i2N ( j)

fi j < 1, 8 j 2 J, (2)

fi j > 0, 8 (i , j) 2 E.

In this case, we say that the flow f satisfies the de-
mand �. The capacity region of g, denoted by R(g), is
defined as the set of all feasible demand vectors of g.

It is well known that there exists a policy under
which the steady-state expected delay is finite if and
only if � 2 R(gn); the strict inequalities in Definition 2.2
are important here. For the remainder of the paper,
we will use the fluctuation parameter un (cf. Condi-
tion 2.1) to gauge the size of the capacity region, R(gn),
of an architecture. For instance, if ⇤n(un) ⇢ R(gn), then
the architecture gn , together with a suitable scheduling
policy, allows for finite steady-state expected delay, for
any arrival rate vector in ⇤n(un).
Vanishing Delay. We define the expected average delay,
⇧(W |�, g ,⇡) under the arrival rate vector �, flexible
architecture g, and scheduling policy ⇡, as follows. We
denote by Wi ,m the waiting time in queue experienced
by the mth job arriving to queue i, define

⇧(Wi)⇤ limsup
m!1

⇧(Wi ,m),

and let

⇧(W |�, g ,⇡)⇤ 1P
i2I �i

X
i2I
�i⇧(Wi). (3)
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In the sequel, we will often omit the mention of ⇡,
and sometimes of g, and write ⇧(W |�, g) or ⇧(W |�),
to place emphasis on the dependencies that we wish to
focus on.5

The delay performance of the system is measured
by the following criteria: (a) For what ranges ⇤n(un)
of arrival rates, �, does delay diminish to zero as the
system size increases (i.e., sup�2⇤n (un ) ⇧(W |�) ! 0 as
n !1), and (b) at what speed does the delay diminish,
as a function of n?

2.3. Notation
We will denote by �, ⇢+, and ✓+ the sets of natu-
ral numbers, nonnegative integers, and nonnegative
reals, respectively. The following short-hand notation
for asymptotic comparisons will be used often, as an
alternative to the usual O( · ) notation; here, f and g are
positive functions, and L is a certain limiting value of
interest, in the set of extended reals, ✓[ {�1,+1}:

1. f (x). g(x) or g(x)& f (x) for limx!L f (x)/g(x)<1;
2. f (x)⌧ g(x)or g(x)� f (x) for limx!L f (x)/g(x)⇤0;
3. f (x)⇠ g(x) for limx!L f (x)/g(x)⇤ 1.
We will minimize the use of floors and ceilings, to

avoid the cluttering of notation, and thus assume that
all values of interest are appropriately rounded up or
down to an integer, whenever doing so does not cause
ambiguity or confusion. Whenever suitable, we will
use uppercase letters for random variables and lower-
case letters for deterministic values.

3. Main Results: Capacity Region and
Delay of Flexible Architectures

The statements of our main results are given in this
section. Below is a high-level summary of our results;
a more complete comparison is given in Table 1.

Table 1. Summary and Comparison of the Studied Flexibility Architectures, in Terms of
Capacity and Delay

Flexible architectures Rate conditions Capacity region Delay

Expander dn � ln n, Good for all � Good for all �, with
(Theorem 3.4) un . dn ⇧(W) . ln n/dn

Modular dn � 1, Bad for some � Good for uniform �, with
(Theorems 3.5, 3.7) un > 1 (even if un . 1) ⇧(W) . exp(�c · dn)

Random modular (w.h.p.) dn & ln n, Good for most �, Good for most �, with ⇧(W) .
(Theorems 3.6, 3.7) un . dn/ln n bad for some � exp(�c · dn); bad for some �

Notes. We say that capacity is “good” for � if � falls within the capacity region of the architecture, and
that delay is “good” if the expected delay is vanishingly small for large n. When describing the size of
the set of � for which a statement applies, we use the following (progressively weaker) quantifiers:

1. “For all” means that the statement holds for all � 2⇤n(un);
2. “For most” means that the statement holds with high probability when � is drawn from an

arbitrary distribution over ⇤n(un), independently from any randomization in the construction of the
flexibility architecture;

3. “For some” means that the statement is true for a nonempty set of values of �.
The label “w.h.p.” means that all statements in the corresponding row hold “with high probability”
with respect to the randomness in generating the flexibility architecture.

Our main results focus on an expander architecture,
where the interconnection topology is an expander
graph with appropriate expansion. We show that,
when dn � ln n, the expander architecture has a capac-
ity region that is within a constant factor of the
maximum possible among all graphs with average
degree dn , while simultaneously ensuring an asymp-
totically diminishing queueing delay of order ln n/dn
for all arrival rate vectors in the capacity region, as
n !1 (Theorem 3.4). Our analysis involves on a new
class of virtual-queue–based scheduling policies that
rely on dynamically constructed job-to-server assign-
ments on the connectivity graph.

Our secondary results concern a modular architec-
ture, which has a simpler construction and schedul-
ing rule compared to the expander architecture. The
modular architecture consists of a collection of sepa-

rate smaller subnetworks, with complete connectivity
between all queues and servers within each subnet-
work. Since the subnetworks are disconnected from
each other, a modular architecture does not admit a
large capacity region: there always exists an infeasible

arrival rate vector even when the fluctuation param-
eter is of constant order (Theorem 3.5). Nevertheless,
we show that with proper randomization in the con-
struction of the subnetworks (randomized modular
architecture), a simple greedy scheduling policy is able
to deliver asymptotically vanishing delay for “most”
arrival rate vectors with nearly optimal fluctuation
parameters, with high probability (Theorem 3.6). These
findings suggest that, thanks to its simplicity, the ran-
domized modular architecture could be a viable alter-
native to the expander architecture if the robustness
requirement is not as stringent and one is content with
probabilistic guarantees on system stability.
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3.1. Preliminaries
Before proceeding, we provide some information on
expander graphs, which will be used in some of our
constructions and proofs.

Definition 3.1. An n ⇥ n0 bipartite graph (I [ J,E) is an
(↵, �)-expander, if for all S ⇢ I that satisfy |S | 6 ↵n, we
have that |N (S)| > � |S |, where N (S) ⇤S

i2S N (i) is the
set of nodes in J that are connected to some node in S.

The usefulness of expanders in our context comes
from the following lemma, which relates the parame-
ters of an expander to the size of its capacity region, as
measured by the fluctuation parameter, un . The proof
is elementary and is given in the online Appendix A.1.

Lemma 3.2 (Capacity of Expanders). Fix n , n0 2 �, ⇢ 2
(0, 1), � > ⇢. Suppose that an n ⇥ n0

bipartite graph, gn , is a

(�/�n , �n)-expander, where �n > un . Then,⇤n(un)⇢R(gn).
The following lemma ensures that such expander

graphs exist for the range of parameters that we are
interested in. The lemma is a simple consequence of a
standard result on the existence of expander graphs,
and its proof is given in the online Appendix A.3.

Lemma 3.3. Fix ⇢ 2 (0, 1). Suppose that dn ! 1 as

n !1. Let �n ⇤
1
2 · (ln(1/⇢)/(1+ ln(1/⇢)))dn , and �⇤

p
⇢.

There exists n0 > 0, such that for all n > n0
, there exists an

n ⇥ n bipartite graph which is a (�/�n , �n)-expander with

maximum degree dn .

Remark. It is well known that random graphs with ap-
propriate average degree are expanders with high prob-
ability (cf. Hoory et al. 2006). For instance, it is not diffi-
cult to show that if dn � ln n and �n ⇤ ((1� �)/4)dn/ln n,
then an Erdős–Rényi random bipartite graph with aver-
age degree dn is a (�/�n , �n)-expander, with high prob-
ability, as n ! 1 (cf. Xu 2014, Lemma 3.12). We note,
however, that to deterministically construct expanders
in a computationally efficient manner can be challeng-
ing and is in and of itself an active field of research; the
reader is referred to the survey paper Hoory et al. (2006)
and the references therein.

3.2. Expander Architecture
Construction of the Architecture. The connectivity
graph in the expander architecture is an expander
graph with maximum degree dn and appropriate
expansion.
Scheduling Policy. We employ a scheduling policy
that organizes the arrivals into batches, stores the
batches in a virtual queue, and dynamically assigns
the jobs in a batch to appropriate servers. Theorem 3.4,
which is the main result of this paper, shows that
under this policy the expander architecture achieves an
asymptotically vanishing delay for all arrival rate vec-
tors in the set ⇤n(un). Of course, we assume that dn is
sufficiently large so that the corresponding expander

graph exists (Lemma 3.3, with ⇢ replaced with ⇢̂). At a
high level, the strong guarantees stem from the excel-
lent connectivity of an expander graph, and similarly
of random subsets of an expander graph, a fact which
we will exploit to show that jobs arriving to the system
during a small time interval can be quickly assigned
to connected idle servers with high probability, which
then leads to a small delay. The proof of the theorem,
including a detailed description of the scheduling pol-
icy, is given in Section 4.

Theorem 3.4 (Capacity and Delay of Expander Architec-

tures). Let ⇢̂ ⇤ 1/(1+ (1� ⇢)/8). For every n 2 �, define

�n ⇤
1
2 · ln(1/⇢̂)

ln(1/⇢̂)+ 1 dn ,

and

� ⇤
p
⇢̂.

Suppose that ln n ⌧ dn ⌧ n, and

un 6
1� ⇢

2 �n .

Let gn be a (�/�n , �n)-expander with maximum degree dn .

The following holds.

1. There exists a scheduling policy, ⇡n , under which

sup
�n2⇤n (un )

⇧(W |�n , gn) 6
c ln n

dn
, (4)

where c is a constant independent of n and gn .

2. The scheduling policy, ⇡n , only depends on gn and an

upper bound on the traffic intensity, ⇢. It does not require

knowledge of the arrival rate vector �n .

Note that when ⇢ is viewed as a constant, the upper
bound on un in the statement of Theorem 3.4 is just a
constant multiple of dn . Since the fluctuation parame-
ter, un , should be no more than dn for stability to be
possible, the size of ⇤n(un) in Theorem 3.4 is within a
constant factor of the best possible.
Remark. Compared to our earlier results, in a prelimi-
nary version of this paper (theorem 1 in Tsitsiklis and
Xu 2013), Theorem 3.4 is stronger in two major aspects:
(1) the guarantee for diminishing delay holds deter-
ministically over all arrival rate vectors in ⇤n(un), as
opposed to “with high probability” over the random-
ness in the generation of gn ; and (2) the fluctuation
parameter, un , is allowed to be of order dn in Theo-
rem 3.4, while Tsitsiklis and Xu (2013) required that
un ⌧

p
dn/ln n. The flexible architecture considered in

Tsitsiklis and Xu (2013) was based on Erdös–Rényi
random graphs. It also employed a scheduling policy
based on virtual queues, as in this paper. However, the
policy in the present paper is simpler to describe and
analyze.
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Figure 3. A Modular Architecture Consisting of n/dn
Subnetworks, Each with dn Queues and Servers

Note. Within each subnetwork, all servers are connected to all
queues.

3.3. Modular Architectures
In a modular architecture, the designer partitions the
network into n/dn separate subnetworks. Each subnet-
work consists of dn queues and servers that are fully
connected (Figure 3) but disconnected from queues
and servers in other subnetworks.
Construction of the Architecture. Formally, the con-
struction is as follows.

1. We partition the set J of servers into n/dn disjoint
subsets (“clusters”) B1 , . . . ,Bn/dn

, all having the same
cardinality dn . For concreteness, we assign the first dn
servers to the first cluster, B1, the next dn servers to the
second cluster, etc.

2. We form a partition �n ⇤ (A1 , . . . ,An/dn
) of the set I

of queues into n/dn disjoint subsets (“clusters”) Ak , all
having the same cardinality dn .

3. To construct the interconnection topology, for k ⇤

1, . . . , n/dn , we connect every queue i 2 Ak to every
server j 2 Bk . A pair of queue and server clusters with
the same index k will be referred to as a subnetwork.

Note that in a modular architecture, the degree of
each node is equal to the size, dn , of the clusters. Note
also that different choices of �n yield isomorphic archi-
tectures. When �n is drawn uniformly at random from
the set of all possible partitions of I into subsets of
size n/dn , we call the resulting topology a random mod-

ular architecture.
Scheduling Policy. We use a simple greedy policy,
equivalent to running each subnetwork as an M/M/dn
queue. Whenever a server j 2 Bk becomes available, it
starts serving a job from any nonempty queue in Ak .
Similarly, when a job arrives at queue i 2 Ak , it is imme-
diately assigned to an arbitrary idle server in Bk , if such
a server exists, and waits in queue i, otherwise.

Our first result points out that a modular architec-
ture does not have a large capacity region: for any par-
tition �n , there always exists an infeasible arrival rate
vector, even if un is small, of order O(1). The proof is
given in the online Appendix A.3. Note that this is a
negative result that applies no matter what scheduling
policy is used.
Theorem 3.5 (Capacity Region of Deterministic Modular

Architectures). Fix n > 1 and some un > 1. Let gn be a mod-

ular architecture with average degree dn 6 (⇢/2)n. Then,

there exists �n 2⇤n(un) such that �n <R(gn).
However, if we are willing to settle for a weaker

result on the capacity region, the next theorem states
that with the random modular architecture, any given
arrival rate vector �n has high probability (with respect
to the random choice of the partition �n) of belonging
to the capacity region, if the fluctuation parameter, un ,
is of order O(dn/ln n), but no more than that. Intuitively,
this is because the randomization in the connectivity
structure makes it unlikely that many large compo-
nents of �n reside in the same subnetwork. The proof
is given in the online Appendix A.4.
Theorem 3.6 (Capacity Region of Random Modular Ar-

chitectures). Let �n be drawn uniformly at random from the

set of all partitions, and let Gn be the resulting random mod-

ular architecture. Let ⇣Gn
be the probability measure that

describes the distribution of Gn . Fix a constant c1 > 0, and

suppose that dn > c1 ln n. Then, there exist positive con-

stants c2 and c3, such that�

(a) If un 6 c2dn/ln n, then

lim
n!1

inf
�n2⇤n (un )

⇣Gn
(�n 2 R(Gn))⇤ 1. (5)

(b) Conversely, if un > c3dn/ln n and dn 6 n0.3
, then

lim
n!1

inf
�n2⇤n (un )

⇣Gn
(�n 2 R(Gn))⇤ 0. (6)

We can use Theorem 3.6 to obtain a statement about
“most” arrival rate vectors in ⇤n(un), as follows. Sup-
pose that �n is drawn from an arbitrary distribu-
tion µn over ⇤n(un), independently from the random-
ness in Gn . Let ⇣Gn

⇥ µn be the product measure that
describes the joint distribution of Gn and �n . Using
Fubini’s theorem, Equation (5) implies that

lim
n!1

(⇣Gn
⇥ µn)(�n 2 R(Gn))⇤ 1. (7)

A further application of Fubini’s theorem and an ele-
mentary argument6 implies that there exists a se-
quence �0n that converges to zero, such that the event

µn
�
�n 2 R(Gn) | Gn

�
> 1� �0n (8)

has “high probability,” with respect to the measure ⇣Gn
.

That is, there is high probability that the random mod-
ular architecture includes “most” arrival vectors �n
in ⇤n(un).
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We now turn to delay. The next theorem states that
in a modular architecture, delay is vanishingly small
for all arrival rate vectors in the capacity region that are
not too close to its outer boundary. The proof is given
in the online Appendix A.5.

We need some notation. For any set S and scalar �,
we let �S ⇤ {�x: x 2 S}.
Theorem 3.7 (Delay of Modular Architectures). Fix some

� 2 (0, 1), and consider a Modular architecture gn for each n.

There exists a constant c > 0, independent of n and the

sequence {gn}, so that

⇧(W |�n) . exp(�c · dn), (9)

for every �n 2 �R(gn).
3.3.1. Expanded Modular Architectures. There is a
further variant of the modular architecture that we call
the expanded modular architecture, which combines the
features of a modular architecture and an expander
graph via a graph product. By construction, it uses
part of the system flexibility to achieve a large capac-
ity region and part to achieve low delay. As a result,
the expanded modular architecture admits a smaller
capacity region compared to that of an expander archi-
tecture. Another drawback is that the available per-
formance guarantees involve policies that require the
knowledge of the arrival rates �i . On the positive
side, it guarantees an asymptotically vanishing delay
for all arrival rates, uniformly across the capacity
region, and can be operated by a scheduling policy
that is arguably simpler than in the expander architec-
ture. The construction and a scheduling policy for the
expanded modular architecture is given in the online
Appendix B, along with a statement of its performance
guarantees (Theorem B.1). The technical details can be
found in Xu (2014).

4. Analysis of the Expander Architecture
In this section, we introduce a policy for the expander
architecture, based on batching and virtual queues,
which will then be used to prove Theorem 3.4. We
begin by describing the basic idea at a high level.

4.1. The Main Idea
Our policy proceeds by collecting a fair number of
arriving jobs to form batches. Batches are thought of
as being stored in a virtual queue, with each batch
treated as a single entity. By choosing the batch size
large enough, one expects to see certain statistical reg-
ularities that can be exploited to efficiently handle the
jobs within a batch. We now provide an outline of the
operation of the policy, for a special case.

Let us fix n and consider the case where �i ⇤� < 1 for
all i. Suppose that at time t, all servers are busy serv-
ing some job. Let us also fix some �n such that �n ⌧ 1,

while n�n is large. During the time interval [t , t + �n),
“roughly” �n�n new jobs will arrive and n�n servers
will become available. Let � be the set of queues that
received any job and let � be the set of servers that
became available during this interval. Since �n�n ⌧ n,
these incoming jobs are likely to be spread out across
different queues, so that most queues receive at most
one job. Assuming that this is indeed the case, we focus
on gn |�[�, that is, the connectivity graph gn , restricted
to �[�. The key observation is that this is a subgraph
sampled uniformly at random among all subgraphs
of gn with approximately �n�n left nodes and n�n
right nodes. When n�n is sufficiently large, and gn
is well connected (as in an expander with appropri-
ate expansion properties), we expect that, with high
probability, gn |�[� admits a matching that includes the
entire set � (i.e., a one-to-one mapping from � to �). In
this case, we can ensure that all of the roughly �n�n
jobs can start receiving service at the end of the inter-
val, by assigning them to the available servers in �
according to this particular matching. Note that the
resulting queueing delay will be comparable to �n ,
which has been assumed to be small.

The above described scenario corresponds to the nor-
mal course of events. However, with a small proba-
bility, the above scenario may not materialize, due to
statistical fluctuations, such as:

1. Arrivals may be concentrated on a small number
of queues.

2. The servers that become available may be located
in a subset of gn that is not well connected to the queues
with arrivals.

In such cases, it may be impossible to assign the jobs
in � to servers in�. These exceptional cases will be han-
dled by the policy in a different manner. However, if we
can guarantee that the probability of such cases is low,
we can then argue that their impact on performance is
negligible.

Whether or not the above-mentioned exceptions will
have low probability of occurring depends on whether
the underlying connectivity graph, gn , has the follow-
ing property: with high probability, a randomly sam-
pled sublinear (but still sufficiently large) subgraph
of gn admits a large set of “flows.” This property will
be used to guarantee that, with high probability, the
jobs in � can indeed be assigned to distinct servers in
the set �. We will show that an expander graph with
appropriate expansion does possess this property.

4.2. An Additional Assumption
Before proceeding, we introduce an additional assum-
ption on the arrival rates, which will remain in effect
throughout this section, and which will simplify some
of the arguments. Online Appendix A.6 explains why
this assumption can be made without loss of generality.
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Assumption 4.1. (Lower Bound on the Total Arrival Rate).

We have that ⇢ 2 (1/2, 1), and the total arrival rate satisfies

the lower bound

nX
i⇤1
�i > (1� ⇢)n. (10)

4.3. The Policy
We now describe in detail the scheduling policy. Be-
sides n, the scheduling policy uses the following
inputs:

1. ⇢, the traffic intensity introduced in Condition 2.1,
in Section 2.2,

2. ✏, a positive constant such that ⇢+ ✏ < 1.
3. bn , a batch size parameter,
4. gn , the connectivity graph.

Notice that the arrival rates, �i , and the fluctuation
parameter, un , are not inputs to the scheduling policy.

At this point, it is useful to make a clarification regard-
ing the . notation. Recall that the relation f (n) . g(n)
means that f (n) 6 c g(n), for all n, where c is a positive
constant. Whenever we use this notation, we require
that the constant c cannot depend on any parameters
other than ⇢ and ✏. Because we view ⇢ and ✏ as fixed
throughout, this makes c an absolute constant.
4.3.1. Arrivals of Batches. Arriving jobs are organized
in batches of cardinality ⇢ bn , where bn is a design
parameter, to be specified later.7 Let TB

0 ⇤ 0. For k > 1,
let TB

k be the time of the (k⇢bn)th arrival to the system,
which we also view as the arrival time of the kth batch.
For k > 1, the kth batch consists of the ⇢bn jobs that
arrive during the time interval (TB

k�1 ,T
B
k ]. The length

Ak ⇤ TB
k � TB

k�1 of this interval will be called the kth

interarrival time. We record, in the next lemma, some
immediate statistical properties of the batch interar-
rival times.

Lemma 4.2. The batch interarrival times, {Ak}k>1, are

i.i.d., with
bn

n
6 ⇧(Ak) 6

⇢

1� ⇢ · bn

n
,

and Var(Ak) . bn/n2
.

Proof. The batch interarrival times are i.i.d., due to our
independence assumptions on the job arrivals. By def-
inition, Ak is equal in distribution to the time until a
Poisson process records ⇢bn arrivals. This Poisson pro-
cess has rate r ⇤

Pn
i⇤1 �i , and using also Assumption 4.1

in the first inequality below, we have

(1� ⇢)n 6
nX

i⇤1
�i⇤ r 6 ⇢n.

The random variables Ak are Erlang (sum of ⇢bn expo-
nentials with rate r). Therefore,

⇧(Ak)⇤ ⇢bn ·
1
r
> ⇢bn ·

1
⇢n

⇤
bn

n
.

Similarly,

⇧(Ak)⇤ ⇢bn ·
1
r
6 ⇢bn ·

1
(1� ⇢)n .

Finally,

Var(Ak)⇤ ⇢bn ·
1
r2 6 ⇢bn ·

1
(1� ⇢)2n2 .

bn

n2 . Q.E.D

4.3.2. The Virtual Queue. On arrival, batches are pla-
ced in what we refer to as a virtual queue. The virtual
queue is a GI/G/1 queue, which is operated in FIFO
fashion. That is, a batch waits in queue until all pre-
vious batches are served and then starts being served
by a virtual queueing system. The service of a batch by
the virtual queueing system lasts until a certain time by
which all jobs in the batch have already been assigned
to, and have started receiving service from, one of the
physical servers, at which point the service of the batch
is completed and the batch departs from the virtual
queue. The time elapsed from the initiation of service
of batch until its departure is called the service time of
the batch. As a consequence, the queueing delay of a
job in the actual (physical) system is bounded above by
the sum of:

(a) the time from the arrival of the job until the ar-
rival time of the batch to which the job belongs;

(b) the time that the batch waits in the virtual queue;
(c) the service time of the batch.

Service slots. The service of the batches at the virtual
queue is organized along consecutive time intervals
that we refer to as service slots. The service slots are
intervals of the form (ls , (l + 1)s], where l is a nonneg-
ative integer, whose length is8

s ⇤ (⇢+ ✏) · bn

n
.

We will arrange matters so that batches can complete
service and depart only at the end of a service slot; that
is, at times of the form ls. Furthermore, we assume that
the physical servers are operated as follows. If either
a batch completes service at time ls or if there are no
batches present at the virtual queue at that time, we
assign to every idle server a dummy job whose dura-
tion is an independent exponential random variable,
with mean one. This ensures that the state of the n
servers is the same (all of them are busy) at certain
special times, thus facilitating further analysis, albeit at
the cost of some inefficiency.
4.3.3. The Service Time of a Batch. The specification
of the service time of a batch depends on whether the
batch, on arrival, finds an empty or nonempty virtual
queue.

Suppose that a batch arrives during the service slot
(ls , (l + 1)s] and finds an empty virtual queue; that is,
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Figure 4. An Illustration of the Service Slot Dynamics

Batch assignment
succeeds

Assign jobs
in a new batch
to idle servers

Batch assignment
fails

Batch departs

Batch remains

Clear the current
batch greedily

Note. An arrow indicates the transition from the end of one service
slot to the next.

all previous batches have departed by time ls. Accord-
ing to what was mentioned earlier, at time ls, all phys-
ical servers are busy, serving either real or dummy
jobs. Up until the end of the service slot, any server
that completes service is not assigned a new (real or
dummy) job and remains idle, available to be assigned
a job at the very end of the service slot. Let � be the
set of servers that are idle at time (l + 1)s, the end of
the service slot. At that time, we focus on the jobs in
the batch under consideration. We wish to assign each
job i in this batch to a distinct server j 2�, subject to the
constraint that (i , j) 2 E. We shall refer to such a job-to-
server assignment as a batch assignment. There are two
possibilities (cf. Figure 4):

(1) If a batch assignment can be found, each job
in the batch is assigned to a server according to that
assignment, and the batch departs at time (l + 1)s. In
this case, we say that the service time of the batch
was short.

(2) If a batch assignment cannot be found, we start
assigning the jobs in the batch to physical servers in
some arbitrary greedy manner: Whenever a server j
becomes available, we assign to it a job from the batch
under consideration, and from some queue i with
(i , j) 2 E, as long as such a job exists. (Ties are bro-
ken arbitrarily.) As long as every queue is connected
to at least one server, all jobs in the associated batch
will be eventually assigned. The last of the jobs in the
batch gets assigned during a subsequent service inter-
val (l0s , (l0+ 1)s], where l0 > l, and we define (l0+ 1)s as
the departure time of the batch.

If the kth batch did indeed find an empty virtual
queue on arrival, its service time, denoted by Sk , is the
time elapsed from its arrival until its departure.

Suppose now that a batch arrives during a service
slot (ls , (l + 1)s] and finds a nonempty virtual queue;
that is, there are one or more batches that arrived ear-
lier and which have not departed by time ls. In this
case, the batch waits in the virtual queue until some
time of the form l0s, with l0 > l, when the last of the pre-
vious batches departs. Recall that, as specified earlier,
at time l0s all servers are made to be busy (perhaps by
giving them dummy jobs), and we are faced with a sit-
uation identical to the one considered in the previous

case, as if the batch under consideration just arrived
at time l0s; in particular, the same service policy can
be applied. For this case, where the kth batch arrives
to find a nonempty virtual queue, its service time, Sk ,
extends from the time of the departure of the (k � 1)st
batch until the departure of the kth batch.

4.4. Bounding the Virtual Queue by a
GI/GI/1 Queue

Having defined the interarrival and service times of
the batches, the virtual queue is a fully specified, work-
conserving, FIFO single-server queueing system.

We note, however, one complication. The service
times of the different batches depend on the arrival
times. To see this, suppose, for example, that a batch
on arrival sees an empty virtual queue and that its
service time is “short.” Then, its service time will be
equal to the remaining time until the end of the cur-
rent service slot and therefore dependent on the batch’s
arrival time. Furthermore, the service times of different
batches are dependent: if the service time of the previ-
ous batch happens to be too long, then the next batch
is likely to on arrival see a nonempty virtual queue,
which then implies that its own service time will be an
integer multiple of s.

To get around these complications, and to be able to
use results on GI/GI/1 queues, we define the modified

service time, S0
k , of the kth service batch to be equal to Sk ,

rounded above to the nearest integer multiple of s:

S0
k ⇤min{ls: ls > Sk , l ⇤ 1, 2, . . .}.

Clearly, we have Sk 6 S0
k .

We now consider a modified (but again FIFO and
work-conserving) virtual queueing system in which
the arrival times are the same as before but the service
times are the S0

k . A simple coupling argument, based on
Lindley’s recursion, shows that for every sample path,
the time that the batch spends waiting in the queue
of the original virtual queueing system is less than or
equal to the time spent waiting in the queue of the
modified virtual queueing system. It therefore suffices
to upper bound the expected time spent in the queue
of the modified virtual queueing system.

We now argue that the modified virtual queue-
ing system is a GI/GI/1 queue; i.e., that the service
times S0

k are i.i.d. and independent from the arrival pro-
cess. For a batch whose service starts during the service
slot [ls , (l+1)s), the modified service time is equal to s,
whenever the batch service time is short. Whether the
batch service time will be short or not is determined
by the composition of the jobs in this batch and by the
identities of the servers who complete service during
the service slot [ls , (l +1)s). Because the servers start at
the same “state” (all busy) at each service slot, it fol-
lows that the events that determine whether a batch
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service time will be short or not are independent across
batches, and with the same associated probabilities.

Similarly, if a batch service time is not short, the addi-
tional time to serve the jobs in the batch is affected only
by the composition of jobs in the batch and the service
completions at the physical servers after time ls, and
these are again independent from the interarrival times
and the modified service times S0

m of other batches m.
Finally, the same considerations show the indepen-
dence of the S0

k from the batch arrival process.
It should now be clear from the above discussion

that the modified service time of a batch is of the form

S0
k ⇤ s +Xk · Ŝk , (11)

where:
(a) Xk is a Bernoulli random variable which is equal

to one if and only if the kth batch service time is not
short; i.e., it takes more than a single service slot.

(b) Ŝk is a random variable which (assuming that
every queue is connected to at least one server) is
stochastically dominated by the sum of ⇢bn indepen-
dent exponential random variables with mean one,
rounded up to the nearest multiple of s. (This dominat-
ing random variable corresponds to the extreme case
where all of the ⇢bn jobs in the batch are to be served
in sequence, by the same physical server.)

(c) The pairs (Xk , Ŝk) are i.i.d.

4.5. Bounds on the Modified Service Times
For the remainder of Section 4, we will assume that

gn is a (�/�n , �n)-expander, (12)

where � and �n are defined as in the statement of The-
orem 3.4.

The main idea behind the rest of the proof is as fol-
lows. We will upper bound the expected time spent in
the modified virtual queueing system using Kingman’s
bound (Kingman 1962) for GI/GI/1 queues. Indeed,
the combination of a batching policy with Kingman’s
bound is a fairly standard technique for deriving delay
upper bounds (see, e.g., Shah and Tsitsiklis 2008). We
already have bounds on the mean and variance of
the interarrival times. To apply Kingman’s bound, it
remains to obtain bounds on the mean and variance of
the service times S0

k of the modified virtual queueing
system.

We now introduce an important quantity associated
with a graph gn , by defining

q(gn)⇤ ⇣(Xk ⇤ 1 | gn);

because of the i.i.d. properties of the batch service
times, this quantity does not depend on k. In words,
for a given connectivity graph gn , the quantity q(gn)
stands for the probability that we cannot find a batch

assignment, between the jobs in a batch and the servers
that become idle during a period of length s.

We begin with the following lemma, which provides
bounds on the mean and variance of S0

k .
Lemma 4.3. There exists a sequence, {cn}n2�, with cn . bn ,

such that for all n > 1,

s 6 ⇧(S0
k | gn) 6 s + q(gn)cn

and

Var(S0
k | gn) . q(gn)c2

n .

Proof. The fact that ⇧(S0
k | gn) > s follows from the def-

inition of S0
k in Equation (11) and the nonnegativity of

XkŜk . The definition of an expander ensures that every
queue is connected to at least one server through gn .
Recall that Ŝk is zero if Xk ⇤ 0; on the other hand, if
Xk ⇤ 1, and as long as every queue is connected to some
server, then Ŝk is upper bounded by the sum of ⇢bn
exponential random variables with mean one, rounded
up to an integer multiple of s. Therefore,

⇧(S0
k | gn)⇤ s + ⇧(XkŜk | gn)⇤ s +⇣(Xk ⇤ 1 | gn)

· ⇧(Ŝk | Xk ⇤ 1, gn) 6 s + q(gn)(⇢bn + s),
which leads to the first bound in the statement of the
lemma, with cn ⇤ bn + s. Since s is proportional to bn/n,
we also have cn . bn , as claimed. Furthermore,

Var(S0
k | gn)⇤Var(XkŜk | gn) 6 ⇧(X2

k Ŝ2
k | gn)

. q(gn)(bn + s)2 ⇤ q(gn)c2
n . Q.E.D

We now need to obtain bounds on q(gn). This is non-
trivial and forms the core of the proof of the theorem.
In what follows, we will show that with appropriate
assumptions on the various parameters, and for any
� 2 ⇤(un), an Erdős–Rényi random graph has a very
small q(gn), with high probability.

4.6. Assumptions on the Various Parameters
From now on, we focus on a specific batch size param-
eter of the form

bn ⇤
320

(1� ⇢)2 · n ln n
�n
. (13)

We shall also set
✏ ⇤

1� ⇢
2 . (14)

We assume, as in the statement of Theorem 3.4, that
dn ⌧ n, and that

�n & dn� ln n. (15)
Under these choices of bn and dn , we have

bn .
n

dn/ln n
⌧ n; (16)

that is, the batch size is vanishingly small compared to n.
Finally, we will only consider arrival rate vectors that
belong to the set ⇤n(un) (cf. Condition 2.1), where, as
in the statement of Theorem 3.4,

un 6
1� ⇢

2 �n . (17)
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4.7. The Probability of a Short Batch Service Time
We now come to the core of the proof, aiming to show
that if the connectivity graph gn is an expander graph
with a sufficiently large expansion factor, then q(gn) is
small. More precisely, we aim to show that a typical
batch will have high probability of having a short ser-
vice time. A concrete statement is given in the result
that follows, and the rest of this subsection will be
devoted to its proof.

Proposition 4.4. Fix n > 1. We have that

q(gn) 6
1
n2 . (18)

Let us focus on a particular batch, and let us examine
what it takes for its service time to be short. There are
two sources of randomness:

1. A total of ⇢bn jobs arrive to the queues. Let Ai
be the number of jobs that arrive at the ith queue, let
A ⇤ (A1 , . . . ,An), and let � be the set of queues that
receive at least one job. In particular, we have

nX
i⇤1

Ai ⇤
X
i2�

Ai ⇤ ⇢bn .

2. During the time slot at which the service of the
batch starts, each server starts busy (with a real or
dummy job). With some probability, and indepen-
dently from other servers or from the arrival process, a
server becomes idle by the end of the service time slot.
Let � be the set of servers that become idle.
Recalling the definition of Xk as the indicator random
variable of the event that the service time of the kth
batch is not short, we see that Xk is completely deter-
mined by the graph gn together with A and �. For
the remainder of this subsection, we suppress the sub-
script k, since we are focusing on a particular batch. We
therefore have a dependence of the form

X ⇤ f (gn ,A,�),

for some function f , and we emphasize the fact that A
and � are independent.

Recall that ✏ ⇤ (1 � ⇢)/2, and from the statement of
Theorem 3.4 that

⇢̂ ⇤
1

1+ (1� ⇢)/8 ⇤
1

1+ ✏/4 . (19)

Clearly, ⇢̂ < 1, and with some elementary algebra, it is
not difficult to show that, for any given ⇢ 2 (0, 1),

⇢̂ > ⇢.

Let
mn ⇤

⇢

⇢̂
bn ,

so that
⇢̂mn ⇤ ⇢bn . (20)

Finally, let
ûn ⇤ �n

mn

n
.

We will say that A is nice if there exists a set �̂ � � of
cardinality mn , such that Ai ⇤ 0 whenever i < �̂, and

Ai<ûn , 8 i 2 �̂.

We now establish that A is nice, with high proba-
bility. The main idea is simple: A is not nice only if
one out of a finite collection of binomial variables with
large means takes a value which is away from its mean
by a certain multiplicative factor. Using the Chernoff
bound, this probability can be shown to decay at least
as fast as 1/n3. The details of this argument are given
in the proof of Lemma 4.5, in the online Appendix A.7.

Lemma 4.5. For all sufficiently large n, we have that

⇣(A is not nice) 6 1
n3 .

We now wish to establish that when A is nice, there
is high probability (with respect to �) that the batch
service time will be short. Having a short batch ser-
vice time is, by definition, equivalent to the existence
of a batch assignment, which in turn is equivalent to
the existence of a certain flow in a subgraph of gn .
The lemma that follows deals with the latter existence
problem for the original graph but will be later applied
to subgraphs. Let R̄(g) be the closure of the capacity
region, R(g), of g.

Lemma 4.6. Fix n , n0 2 �, ⇢ 2 (0, 1), and � > ⇢. Suppose

that an n ⇥ n0
bipartite graph, gn , is a (�/�n , �n)-expander,

where �n > un . Then ⇤n(un) ⇢ R̄(gn).
Proof. The claim follows directly from Lemma 3.2, by
noting that R̄(gn) � R(gn). Q.E.D

The next lemma is the key technical result of this
subsection. It states that if gn is an expander, then, for
any given �̂, the random subgraph gn |�̂[� will be an
expander graph with high probability (with respect
to �). The lemma is stated as a stand-alone result,
though we will use a notation that is consistent with
the rest of the section. The proof relies on a delicate
application of the Chernoff bound, and is given in the
online Appendix A.8.

Lemma 4.7. Fix n > 1, � 2 (0, 1), and ⇢ 2 [1/2, 1). Let gn ⇤

(I [ J,E) be an n ⇥ n bipartite graph that is a (�/�n , �n)-
expander, where �n � ln n. Define the following quantities�

✏ ⇤
1� ⇢

2 ,

⇢̂ ⇤
1

1+ ✏/4 ,

bn ⇤
320

(1� ⇢)2 · n ln n
�n

⇤
80
✏2 · n ln n

�n
, (21)
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mn ⇤
⇢

⇢̂
bn ,

ûn ⇤ �n
mn

n
.

Let �̂ be an arbitrary subset of the left vertices, I, such that

|�̂| ⇤ mn , (22)

and let � be a random subset of the right vertices, J, where

each vertex belongs to � independently and with the same

probability, where

⇣( j 2 �) > (⇢+ 3✏/4) bn

n
, 8 j 2 J, (23)

for all n sufficiently large. Denote by Ĝ the random subgraph

gn |�̂[�. Then

⇣(Ĝ is not a (�/ûn , ûn)-expander) 6 1
n3 , (24)

for all n sufficiently large, where the probability is measured

with respect to the randomness in �.

To invoke Lemma 4.7, note that the conditions in
Equation (21) are identical to the definitions for the
corresponding quantities in this section. We next ver-
ify that Equation (23) is satisfied by the random sub-
set, �, consisting of the idle servers at the end of a
service slot. Recall that the length of a service slot is
(bn/n)(⇢ + ✏), and hence the probability that a given
server, j, becomes idle by the end of a service slot is

⇣( j 2 �)⇤ 1� exp
✓
� bn

n
(⇢+ ✏)

◆
⇠ (⇢+ ✏) bn

n
, (25)

as n !1. Therefore, for all n sufficiently large, we have
that ⇣( j 2 �) > (⇢ + 3✏/4)(bn/n). We will now apply
Lemmas 4.6 and 4.7 to the random subgraph with left
(respectively, right) nodes �̂ (respectively �), and with
the demands Ai , for i 2 �̂, playing the role of �.
Lemma 4.8. If n is large enough, and if the value a of A is

nice, then

⇣(X ⇤ 1 |A⇤ a) 6 1
n3 ,

where the probability is with respect to the randomness in �.

Proof. We fix some a, assumed to be nice. Recall that

ûn ⇤ �n
mn

n
,

and from the statement of Theorem 3.4 that

� ⇤
p
⇢̂ > ⇢̂.

We apply Lemma 4.6 to the randomly sampled sub-
graph Ĝ, with left nodes �̂, |�̂| ⇤ mn and right nodes �.
We have the following correspondence: the parame-
ters n and ⇢, in Lemma 4.6 become, in the current
context, mn and ⇢̂, respectively, and the parameters �n
and un both become ûn . Thus, by Lemma 4.6,

if Ĝ is a (�/ûn , ûn)-expander,
then ⇤mn

(ûn) ⇢ R̄(Ĝ). (26)

Let Â be the vector of job arrival numbers A,
restricted to the set of nodes in �̂, and let â be the real-
ization of Â. Note that we haveX

i2�̂
â i ⇤

nX
i⇤1

Ai ⇤ ⇢bn ⇤ ⇢̂mn ,

because of Equation (20). Furthermore, for any i 2 �̂, the
fact that a is nice implies that âi < ûn . Thus, â 2⇤mn

(ûn).
By Equation (26), this further implies that

if Ĝ is a (�/ûn , ûn)-expander, then â 2 R̄(Ĝ). (27)

By Lemma 4.7, the graph Ĝ is a (�/ûn , ûn)-expander
with probability at least 1 � n�3. Combining this fact
with Equation (27), we have thus verified that â belongs
to R̄(Ĝ), with probability at least

1� 1
n3 .

With R̄(Ĝ) having been defined as the closure of the
capacity region, R(Ĝ) (cf. Definition 2.2), the fact that
the vector â belongs to R̄(Ĝ) is a statement about the
existence of a feasible flow, { f̂i j : (i , j) 2 Ê} (where Ê is
the set of edges in Ĝ), in a linear network flow model
of the form

âi ⇤
X

j: (i , j)2Ê

fi j , 8 i 2 �̂,
X

i: (i , j)2Ê

fi j 6 1, 8 j 2 �,

fi j > 0, 8 (i , j) 2 Ê.

Because the “supplies” âi in this network flow model,
as well as the unit capacities of the right nodes are inte-
ger, it is well known that there also exists an integer
flow. That is, we can find f̂i j 2 {0, 1} such thatP j f̂i j ⇤ âi ,
for all i, and P

i f̂i j 6 1, for all j. But this is the same as
the statement that there exists a feasible batch assign-
ment over Ĝ. Thus, for large enough n and for any
given nice a, the conditional probability that a batch
assignment does not exist is upper bounded by n�3, as
claimed. Q.E.D

We can now complete the proof of Proposition 4.4.
By considering unconditional probabilities where A is
random, and for n large enough, we have that

⇣(X ⇤ 1) 6⇣(A is not nice)
+
X
a nice

⇣(X ⇤ 1 |A⇤ a) · ⇣(A⇤ a)
(a)
6

1
n3 +

X
a nice

⇣(X ⇤ 1 |A⇤ a) · ⇣(A⇤ a)
(b)
6

1
n3 +

X
a nice

1
n3 · ⇣(A⇤ a)

6
2
n3

6
1
n2 , (28)
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where steps (a) and (b) follow from Lemmas 4.5 and 4.8,
respectively. This concludes the proof of Proposi-
tion 4.4.

4.8. Service and Waiting Time Bounds for the
Virtual Queue

4.8.1. Service Time Bounds. We will now use Lemma
4.3 and Proposition 4.4 to bound the mean and variance
of the service times in the modified virtual queue.

Lemma 4.9. The modified batch service times, S0
k , are i.i.d.,

with

⇧(S0
k | gn)⇠ (⇢+ ✏) · bn

n
, and Var(S0

k | gn) .
b2

n

n2 .

Proof. We use the fact from Lemma 4.3 that s 6
⇧(S0

k | gn) 6 s + q(gn)cn , where cn . bn . We recall that
s ⇤ (⇢ + ✏)bn/n and use the fact q(gn)6n�2, as guar-
anteed by Proposition 4.4. The term q(gn)cn satisfies
q(gn)cn . bn/n2, which is of lower order than bn/n and
hence negligible compared to s. This proves the first
part of the lemma.

For the second part, we use Lemma 4.3 in the first
inequality below, and the fact that q(gn)6n�2 in the
second, to obtain

Var(S0
k | gn) . q(gn)c2

n .
b2

n

n2 . Q.E.D

4.8.2. Waiting Time Bounds. Fix n and the graph gn .
Let WB be a random variable whose distribution is the
same as the steady-state distribution of the time that a
batch spends waiting in the queue of the virtual queue-
ing system introduced in Section 4.3.2.

Proposition 4.10. We have that

⇧(WB | gn) .
bn

n
. (29)

Proof. As discussed in Section 4.4, the waiting time
of a batch, in the virtual queueing system, is domi-
nated by the waiting time in a modified virtual queue-
ing system, which is a GI/GI/1 queue, with indepen-
dent interarrival times Ak (defined in Section 4.3.1) and
independent service times S0

k . Let W 0 be a random vari-
able whose distribution is the same as the steady-state
distribution of the time that a batch spends waiting in
the queue of the modified virtual queueing system.

According to Kingman’s bound Kingman (1962), W 0

satisfies
⇧(W 0 | gn) 6 �̃

�2
a + �

2
s

2(1� ⇢̃) ,

where �̃ is the arrival rate, ⇢̃ is the traffic intensity,
and �2

a and �2
s are the variances of the interarrival times

and service times, respectively, that are associated with
the modified virtual queueing system.

From Lemma 4.2, we have

�̃ ⇤
1

⇧(Ak)
6

n
bn

and
�2

a ⇤Var(Ak) .
bn

n2 .

We now bound
⇢̃ ⇤

⇧(S0
k | gn)

⇧(Ak)
.

From the first part of Lemma 4.9, we have ⇧(S0
k | gn) ⇠

(⇢ + ✏)bn/n. Together with the bound 1/⇧(Ak) 6 n/bn ,
we obtain that as n ! 1, ⇢̃ is upper bounded by a
number strictly less than one. We also have, from the
second part of Lemma 4.9,

�2
s ⇤Var(S0

k | gn) .
b2

n

n2 .

Using these inequalities in Kingman’s bound, we
obtain

⇧(WB | gn) 6 ⇧(W 0 | gn) .
n
bn

· b2
n

n2 ⇤
bn

n
. Q.E.D

4.9. Completing the Proof of Theorem 3.4
Proof. As discussed in Section 4.3.2, the expected wait-
ing time of a job is upper bounded by the sum of three
quantities:

(1) The expected time from the arrival of the job
until the arrival time of the batch to which the job
belongs. This is bounded above by the expected time
until there are ⇢bn subsequent arrivals, which is equal
to ⇧(A1). By Lemma 4.2, this is bounded above by
c1bn/n, for some constant c1.

(2) The expected time that the batch waits in the
virtual queue. This is also upper bounded by c2bn/n,
by Proposition 4.10, for some constant c2.

(3) The service time of the batch, which (by Lem-
ma 4.9) again admits an upper bound of the form
c3bn/n, for some constant c3.

Furthermore, in the results that give these upper
bounds, c1, c2, and c3, are absolute constants that do
not depend on �n or gn .

By our assumptions on the choice of bn in Section 4.6,
we have bn ⇤ (320/(1�⇢)2) · (n ln n/�n), and �n is propor-
tional to dn . We conclude that there exists a constant c
such that for large enough n, we have ⇧(W | gn ,�n) 6
c ln n/dn , for any given �n 2 ⇤n(un), which is an upper
bound of the desired form. This establishes part 1 of the
theorem. Finally, part 2 follows from the way that the
policy was constructed. Q.E.D

4.10. On Practical Policies
Figure 5 provides simulation results for the average
delay under the virtual-queue–based scheduling policy
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Figure 5. (Color online) Simulations of the
Virtual-Queue–Based Policy Given in Section 4.3, with
dn ⇤ n2/3, bn ⇤ n ln(n)/dn , and �i ⇤ 0.5 for all i ⇤ 1, . . . , n
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Notes. The boxplot contains the average delay from 50 runs of simu-
lations where the job size distribution is assumed to be exponential
with mean one. Each run is performed on a random dn-regular graph
over 104 service slots and a 1,000-slot burn-in period. The center line
of a box represents the median, and the upper and lower edges of the
box represent the 25th and 75th percentiles, respectively. The dashed
line depicts the median average waiting times when the job sizes are
distributed according to a log-normal distribution with mean one
and variance 10.

used in proving Theorem 3.4. The main role of the pol-
icy is to demonstrate the fundamental potential of the
expander architecture in jointly achieving a small delay
and large capacity region when the system size is large.
In smaller systems, however, there could be other poli-
cies that yield better performance. For instance, simu-
lations suggest that a seemingly naive greedy heuristic
can achieve a smaller delay in moderately sized sys-
tems, which is practically zero in the range of param-
eters in Figure 5. Under the greedy heuristic, an avail-
able server simply fetches a job from a longest con-
nected queue, and a job is immediately sent to a con-
nected idle server on arrival if possible. Intuitively, the
greedy policy can provide a better delay because it
avoids the overhead of holding jobs in queues while
forming a batch. Unfortunately, it appears challenging
to establish rigorous delay or capacity guarantees for
the greedy heuristic and other similar policies.

In some applications, such as call centers, the ser-
vice times or job sizes may not be exponentially dis-
tributed (Brown et al. 2005). In Figure 5, we also
include the scenario where the job sizes are drawn
from a log-normal distribution (Brown et al. 2005) with
an increased variance. Interestingly, the average delay
appears to be somewhat insensitive to the change in
job size distribution.

5. Summary and Future Research
The main message of this paper is that the two objec-
tives of a large capacity region and an asymptotically
vanishing delay can be simultaneously achieved even
if the level of processing flexibility of each server is

small compared to the system size. Our main results
show that, as far as these objectives are concerned,
the family of expander architectures is essentially opti-
mal: it admits a capacity region whose size is within a
constant factor of the maximum possible, while ensur-
ing an asymptotically vanishing queueing delay for all
arrival rate vectors in the capacity region.

An alternative design, the random modular archi-
tecture, guarantees small delays for “many” arrival
rates, by means of a simple greedy scheduling policy.
However, for any given modular architecture, there are
always many arrival rate vectors in ⇤n(un) that result
in an unstable system, even if the maximum arrival rate
across the queues is of constant order. Nevertheless,
the simplicity of the modular architectures can still be
appealing in some practical settings.

Our result for the expander architecture leaves open
three questions:

1. Is it possible to lower the requirement on the aver-
age degree from dn � ln n to dn � 1?

2. Without sacrificing the size of the capacity region,
is it possible to achieve a queueing delay which
approaches zero exponentially fast as a function of dn?
The delay scaling in Theorem 3.4 is O(ln n/dn).

3. Is it possible to obtain delay and stability guaran-
tees under simpler policies, such as the greedy heuris-
tic mentioned in Section 4.10? The techniques devel-
oped in Visschers et al. (2012) for analyzing first-come,
first-served scheduling rules in a multiclass queueing
network similar to ours could be a useful starting point.

Finally, the scaling regime considered in this paper
assumes that the traffic intensity is fixed as n increases,
which fails to capture system performance in the
heavy-traffic regime (⇢ ⇡ 1). It would be interesting
to consider a scaling regime in which ⇢ and n scale
simultaneously (e.g., as in the celebrated Halfin–Whitt
regime Halfin and Whitt 1981), but it is unclear at this
stage what the most appropriate formulations and ana-
lytical techniques are.
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Endnotes
1 A work-conserving policy mandates that a server be always busy
whenever there is at least one job in some queue to which it is con-
nected.
2 The fact that the expected waiting time vanishes asymptotically
follows from the bounded expected total number of jobs in steady
state, the assumption that the total arrival rate is ⇢n, which goes to
infinity as n !1, and Little’s law.
3 For simplicity of notation, we omit the dependence of E, I, and
J on n.
4 While we restrict to binding and nonpreemptive scheduling poli-
cies, other common architectures where (a) a server can serve mul-
tiple jobs concurrently (processor sharing); (b) a job can be served
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by multiple servers concurrently; or (c) job sizes are revealed upon
entering the system, are clearly more powerful than the current set-
ting, and are therefore capable of implementing the scheduling poli-
cies considered in this paper. As a result, the performance upper
bounds developed in this paper also apply to these more powerful
variations.
5 Note that ⇧(W |�) captures a worst-case expected waiting time across
all jobs in the long run and is always well defined, even under
scheduling policies that do not induce a steady-state distribution.
6 We are using here the following elementary lemma. Let A be an
event with ⇣(A) > 1� ✏, and let X be a random variable. Then, there
exists a set B with ⇣(B)> 1�p

✏ such that ⇣(A | X)> 1�p
✏, whenever

X 2 B. The lemma is applied by letting A be the event {�n 2 R(Gn)}
and letting X ⇤ Gn .
7 In a slight departure from the earlier informal description, we
define batches by keeping track of the number of arriving jobs as
opposed to keeping track of time.
8 To see how the length of the service slot was chosen, recall that
the size of each batch is equal to ⇢bn . The length of the service slot
hence ensures that (⇢ + ✏)bn , the expected number of servers that
will become available (and can therefore be assigned to jobs) during
a single service slot, is greater than the size of a batch, so that there is
hope of assigning all of these jobs to available servers within a single
service slot. At the same time, since ⇢+ ✏ < 1, service slots are shorter
than the expected batch interarrival time, which is needed for the
stability of the virtual queue.
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