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Max-Weight Scheduling in Queueing Networks
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Abstract—We consider the problem of scheduling in a single-hop
switched network with a mix of heavy-tailed and light-tailed traffic
and analyze the impact of heavy-tailed traffic on the performance
of Max-Weight scheduling. As a performance metric, we use the
delay stability of traffic flows: A traffic flow is delay-stable if its
expected steady-state delay is finite, and delay-unstable otherwise.
First, we show that a heavy-tailed traffic flow is delay-unstable
under any scheduling policy. Then, we focus on the celebrated
Max-Weight scheduling policy and show that a light-tailed flow
that conflicts with a heavy-tailed flow is also delay-unstable.
This is true irrespective of the rate or the tail distribution of
the light-tailed flow or other scheduling constraints in the net-
work. Surprisingly, we show that a light-tailed flow can become
delay-unstable, even when it does not conflict with heavy-tailed
traffic. Delay stability in this case may depend on the rate of the
light-tailed flow. Finally, we turn our attention to the class of
Max-Weight- scheduling policies. We show that if the -param-
eters are chosen suitably, then the sum of the -moments of the
steady-state queue lengths is finite. We provide an explicit upper
bound for the latter quantity, from which we derive results related
to the delay stability of traffic flows, and the scaling of moments of
steady-state queue lengths with traffic intensity.

Index Terms—heavy tails, Max-Weight policy, scheduling,
switched networks.

I. INTRODUCTION

W E CONSIDER a single-hop switched network, a
queueing system where the traffic of each flow is

buffered in a dedicated single-server queue, eventually gets
served, and then exits the system. This model has been used
to capture the dynamics and decisions in data communica-
tion networks (e.g., wireless networks [12], input-queued
switches [22]), flexible manufacturing systems [10], and cloud
computing facilities [18]. In all of these application areas, not
all queues can be served at the same time, e.g., due to wireless
interference constraints or due to matching constraints in a
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switch. Thus, only subsets of servers can be simultaneously
active, giving rise to a fundamental scheduling problem: which
subset of servers to activate, and at which point in time? Clearly,
the overall performance of the network depends critically on
the scheduling policy applied.
The focus of this paper is on a well-studied class of sched-

uling policies, commonly referred to as Max-Weight policies.
This class of policies was introduced in the seminal work
of Tassiulas and Ephremides [34], and since then, numerous
studies have analyzed the performance of such policies in
very general settings—e.g., see [1], [12], and the references
therein. A remarkable property of Max-Weight policies is their
throughput optimality, i.e., their ability to stabilize a queueing
network whenever this is possible, without any explicit infor-
mation on the arriving traffic. Moreover, it has been shown
that policies from this class achieve low, or even optimal,
average delay for specific network topologies under light-tailed
traffic, and are asymptotically delay-optimal in the heavy traffic
regime [11], [24], [29], [33], [35]. 1 However, the performance
of Max-Weight scheduling in the presence of heavy-tailed
traffic is not well understood.
We are motivated to study networks with heavy-tailed traffic

by empirical evidence that traffic in data communication net-
works exhibits strong correlations and statistical similarity
over different timescales. This observation was first made by
Leland et al. [17] through analysis of Ethernet traffic traces.
Subsequent empirical studies have documented this phe-
nomenon in other networks, while accompanying theoretical
studies have associated it with arrival processes that have
heavy tails; see [26] for an overview. Although the impact of
heavy tails has been analyzed extensively in single or multi-
server queues—e.g., see the survey papers [2] and [6]—the
related work for more complex queueing systems, with a mix
of heavy-tailed and light-tailed traffic, is rather limited. The
papers that come closer to our work are those by Borst et al. [3]
and by Jagannathan et al. [15]. Both consider a system with two
parallel queues, receiving heavy-tailed and light-tailed traffic,
respectively, while sharing a single server. They determine the
queue length asymptotics of the Generalized Processor Sharing
policy and of the Generalized Max-Weight policy, respectively.
In the same setting, the work by Nair et al. [23] analyzes
the role of intraqueue scheduling (i.e., the way that jobs are
served within each queue) on the queue length asymptotics of
the Generalized Max-Weight policy. Also related to our work
is the paper by Boxma et al. [5], which analyzes an M/G/2
queue with a heavy-tailed and a light-tailed server and shows a

1On the other hand, when Max-Weight scheduling is combined with Back-
Pressure routing in the context of multihop networks, there is evidence that delay
performance can be poor—e.g., see the discussion in [7].
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dependence of the queue length asymptotics on the arrival rate
to the queue. Similar connections are established in the work
of Borst et al. [4] in the context of two coupled queues.
This paper aims to fill a gap in the literature by analyzing

the performance of Max-Weight scheduling in the context of
a switched queueing network, with a mix of heavy-tailed and
light-tailed traffic. In particular, we study the delay stability
of traffic flows: A traffic flow is delay-stable if its expected
steady-state delay is finite, and delay-unstable otherwise. Rel-
ative to the existing literature, our main contributions are the
following: 1) We show that under the Max-Weight scheduling
policy, any light-tailed flow that conflicts with a heavy-tailed
flow is delay-unstable. 2) Surprisingly, we also show that for
certain admissible arrival rates, a light-tailed flow can be delay-
unstable even if it does not conflict with heavy-tailed traffic.
3) We analyze the Max-Weight- scheduling policy (the policy
that is also referred to as Generalized Max-Weight in related
works) and show that if the -parameters are chosen suitably,
then the -moments of the steady-state queue lengths is finite.
We use this result to prove that, by proper choice of the -pa-
rameters, all light-tailed flows are delay-stable. Moreover, we
show that Max-Weight- achieves the optimal scaling of higher
moments of steady-state queue lengths with traffic intensity.
The restof thepaper isorganizedas follows.Section II includes

a detailed presentation of the queueing model considered in this
paper, as well as formal definitions of heavy-tailed and light-
tailed traffic and of delay stability. In Section III, wemotivate the
subsequent development by presenting, informally and through
simple examples, themain results of the paper. In Section IV, we
analyze the performance of the celebrated Max-Weight sched-
ulingpolicy. SectionVcontains the analysis of theparameterized
Max-Weight- scheduling policy and of the performance that it
achieves, in termsof delay stability.This section also includes re-
sults about the scaling of moments of steady-state queue lengths
with the traffic intensity and the size of the network.We conclude
with a discussion of ourfindings and future research directions in
Section VI. The appendixes contain some background material
andmost of the proofs of our results.

II. MODEL AND PROBLEM FORMULATION

We start with a detailed presentation of the queueing model
considered in this paper, together with some necessary defini-
tions and notation.
We denote by , , and the sets of nonnegative reals,

nonnegative integers, and positive integers, respectively. The
cartesian products of copies of and are denoted by

and , respectively.
Weconsideradiscrete timeswitchedqueueingnetwork,where

arrivals occur at the end of each time-slot. Central to ourmodel is
the notion of a traffic flow , which is a long-lived
streamof traffic that arrives to the network according to a discrete
time stochastic arrival process .Weassume that
all arrival processes take values in and are independent and
identically distributed (i.i.d.) over time. Furthermore, different
arrival processes are mutually independent. We denote by

the rate of traffic flow and by
thevectorof the ratesof all trafficflows.

Definition 1 (Heavy Tails): A random variable is heavy-
tailed if is infinite, and is light-tailed otherwise. We de-
fine similarly a heavy/light-tailed i.i.d. traffic flow.

There are several definitions of heavy/light tails in the liter-
ature. In fact, a random variable is often defined as light-tailed
if it is of exponential type, and heavy-tailed otherwise. The def-
inition adopted in this paper has been used in the area of data
communication networks (e.g., see [26]).
In this paper, we consider single-hop traffic flows, i.e., the

traffic of flow is buffered in a dedicated single-server queue
(queue and server , henceforth), eventually gets served, and
then exits the system. Our modeling assumptions imply that the
set of traffic flows can be identified with the set of queues and
the set of servers of the network. The service discipline within
each queue is assumed to be “First Come, First Served.” The
stochastic process captures the evolution of
the length of queue . Since our main motivation comes from
data communication networks, will be interpreted as the
number of packets that queue receives at the end of time-
slot , and as the total number of packets in queue at
the beginning of time-slot . The arrivals and the lengths of the
various queues at time-slot are captured by the vectors

and ,
respectively.
In the context of data communication networks, a batch of

packets arriving to a queue at any given time-slot can be viewed
as a single entity, e.g., as a file that needs to be transmitted. We
define the end-to-end delay of a file of flow to be the number
of time-slots that the file spends in the network, starting from the
time-slot right after it arrives at queue until the time-slot that
its last packet gets served. For , we denote by the
end-to-end delay of the th file of queue . The vector

captures the end-to-end delay of the
th files of the different traffic flows.
In a switched network, not all servers can be simultaneously

active, e.g., due to interference in wireless networks or matching
constraints in a switch. Consequently, not all traffic flows can be
served simultaneously. A set of traffic flows that can be served
simultaneously is called a feasible schedule. We denote by
the set of all feasible schedules, which is assumed to be an ar-
bitrary subset of the powerset of . We also identify
elements of with vectors in . For simplicity, we as-
sume that all packets have the same size, and that the service
rate of all servers is equal to one packet per time-slot. We de-
note by the number of packets that are scheduled
for service from queue at time-slot . Note that this is not nec-
essarily equal to the number of packets that are actually served
because the queue may be empty. We use the vector notation

.
Using the notation above, the dynamics of queue take the

form

for all , where denotes the indicator function
of the event . The vector of initial queue lengths

is assumed to be an arbitrary element of .
Let us now define formally the notion of a scheduling policy.

The past history and present state of the system at time-slot
is captured by the vector

At time-slot 0, we have . A (causal) scheduling
policy is a sequence of functions
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, used to determine scheduling decisions, according
to .
We restrict our attention to scheduling policies that are re-

generative, i.e., policies under which the network starts afresh
probabilistically at certain time-slots. More precisely, under a
regenerative policy, there exists a sequence of stopping times

with the following properties.
1) The sequence is i.i.d.
2) Let , and consider the processes
that describe the “cycles” of the network, namely,

, and
, ; then, is an i.i.d.

sequence, independent of .
3) The (lattice) distribution of the cycle lengths, ,
has span equal to one and finite expectation.

Properties 1) and 2) imply that the switched network evolves
as a (possibly delayed) regenerative process. Property 3) states
that this process is aperiodic and positive recurrent. We note that
Max-Weight-type policies, which are the focus of this paper,
are regenerative (this will be made precise later). Moreover, a
number of other widely studied policies belong to this class, e.g.,
priority, round-robin, and randomized policies.
The following definition gives the precise notion of stability

that we use in this paper.
Definition 2 (Stability): The switched network described

above is stable under a specific scheduling policy if the
vector-valued sequences and
converge in distribution, and their limiting distributions do not
depend on the initial queue lengths .
Notice that our definition of stability is slightly different

than the commonly used definition (positive recurrence of the
Markov chain of queue lengths) since it includes the conver-
gence of the sequence of file delays . The
reason is that in this paper we study properties of the limiting
distribution of and, naturally, we need to
ensure that this limiting distribution exists.
Under a stabilizing scheduling policy, we denote by

and generic
random vectors distributed according to the limiting distribu-
tions of and , respectively.
The dependence of these limiting distributions on the sched-
uling policy has been suppressed from the notation, but will be
clear from the context. We refer to as the steady-state length
of queue . Similarly, we refer to as the steady-state delay of
a file of traffic flow . We note that under a regenerative policy
(if one exists), the queueing network is guaranteed to be stable.
This is because the sequences of queue lengths and file delays
are (possibly delayed) aperiodic and positive recurrent regener-
ative processes and, hence, converge in distribution; see [32].
The stability of the switched network depends on the arrival

rates of the various traffic flows relative to the service rates of the
servers and the scheduling constraints. This relation is captured
by the stability region of the network.
Definition 3 (Stability Region [34]): The stability region of

the queueing network described above, denoted by , is the set
of rate vectors

In other words, a rate vector belongs to if there exists a
convex combination of feasible schedules that covers the rates
of all traffic flows. If a rate vector is in the stability region of the
network, then the traffic corresponding to this vector is called
admissible, and there exists a scheduling policy under which
the network is stable.
Definition 4 (Traffic Intensity): The traffic intensity of a rate

vector is a real number defined as follows:

Clearly, arriving traffic with rate vector is admissible if and
only if . Throughout this paper, we assume that the
traffic is admissible.
Let us now define the property that we use to evaluate the

performance of scheduling policies, namely, the delay stability
of a traffic flow.
Definition 5 (Delay Stability): A traffic flow is delay-stable

under a specific scheduling policy if the switched network is
stable under that policy and is finite; otherwise, the traffic
flow is delay-unstable.
The following lemma relates the steady-state quantities

and and will help us prove delay-stability results.
Lemma 1: Consider the switched network described above

under a regenerative scheduling policy. Then

Proof: See Appendix I-A.
Theorem 1 (Delay Instability of Heavy Tails): Consider the

switched network described above under a regenerative sched-
uling policy. Every heavy-tailed traffic flow is delay-unstable.

Proof: See Appendix II.
Since there is little we can do about the delay stability of

heavy-tailed flows, we turn our attention to light-tailed traffic.
The Pollaczek–Khinchine formula for the expected delay in an

queue indicates that the intrinsic burstiness of light-
tailed traffic is not sufficient to cause delay instability. How-
ever, scheduling in a queueing network couples the statistics of
different traffic flows. We will see that this coupling can cause
light-tailed flows to become delay-unstable, giving rise to a form
of propagation of delay instability.
It should be noted that Lemma 1, Theorem 1, and all sub-

sequent results are proved under the assumption that the “First
Come, First Served” discipline is used within each queue. In-
deed, a heavy-tailed flow could be delay-stable under other in-
traqueue service disciplines, e.g., “Last Come, First Served” or
Processor-Sharing; see [6]. However, the focus of this paper is
on the impact of heavy-tailed traffic on light-tailed flows, under
Max-Weight-type scheduling. Since Max-Weight policies are
queue length-based, the main findings of this paper that charac-
terize this impact (Theorem 2, Propositions 1 and 2, Corollary 1)
remain true irrespective of the service discipline within each
queue.

III. OVERVIEW OF MAIN RESULTS

In this section, we introduce, informally and through simple
examples, the main results of the paper and the basic intuition
behind them.
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Fig. 1. Delay instability in parallel queues: The heavy-tailed flow 1 causes the
light-tailed flow 2 to become delay-unstable.

Fig. 2. Propagation of delay instability: The heavy-tailed flow 1 causes the
conflicting light-tailed flows 2 and 3 to become delay-unstable.

Let us start with the queueing system of Fig. 1, which con-
sists of two parallel queues and a single server. Traffic flow 1
is assumed to be heavy-tailed, whereas traffic flow 2 is light-
tailed. Service is allocated according to the Max-Weight sched-
uling policy, which is equivalent to “Serve the Longest Queue”
in this simple setting. Theorem 1 implies that traffic flow 1 is
delay-unstable. Our findings imply that traffic flow 2 is also
delay-unstable, even though it is light-tailed. The intuition be-
hind this result is that queue 1 is occasionally very long (infinite,
in steady-state expectation) because of its heavy-tailed arrivals.
When this happens, and under the Max-Weight policy, queue 2
has to build up to a similar length in order to receive service.
A very long queue then implies very large delays for the files
of that queue under “First Come, First Served,” which leads to
delay instability.
Systems of parallel queues have been analyzed extensively

in the literature. One of the main reasons is that their simple
dynamics often lead to elegant analysis and simple results. In
this paper, we go beyond parallel queues and analyze queueing
networks with a more complicated structure. An example is the
queueing network of Fig. 2, where traffic flow 1 is assumed to
be heavy-tailed, whereas traffic flows 2 and 3 are light-tailed.
The server can serve either queue 1 alone or queues 2 and 3 si-
multaneously. This example could represent a wireless network
with interference constraints. In this setting, the Max-Weight
policy compares the length of queue 1 to the sum of the lengths
of queues 2 and 3 and serves the “heavier” schedule.
The intuition from the previous example suggests that at least

one of the queues 2 and 3 has to build up to the order of magni-
tude of queue 1 in order for these two queues to receive service.
In other words, we expect that at least one of the traffic flows 2
and 3 will be delay-unstable under Max-Weight. Our findings
imply that, in fact, both traffic flows are delay-unstable. The
main idea behind this result is the following:With positive prob-
ability, the arrival processes to queues 2 and 3 exhibit their “av-
erage” behavior. In that case, the corresponding queues build up

Fig. 3. Propagation of delay instability: The heavy-tailed flow 1 may even
cause the nonconflicting light-tailed flow 2 to become delay-unstable.

slowly and together, which implies that when they finally claim
the server, they have both built up to the order of magnitude of
queue 1.
The simple networks of Figs. 1 and 2 illustrate special cases

of a general result: Every light-tailed flow that conflicts with a
heavy-tailed flow is delay-unstable. For more details, see The-
orem 2 in Section IV-A.
Going one step further, consider the queueing network of

Fig. 3. Traffic flow 1 is assumed to be heavy-tailed, whereas
traffic flows 2 and 3 are light-tailed. The server can serve either
queues 1 and 2 simultaneously or queue 3 alone. In this setting
the Max-Weight policy compares the length of queue 3 to the
sum of the lengths of queues 1 and 2 and serves the “heavier”
schedule. The intuition from the previous examples suggests
that traffic flow 3 is delay-unstable, but there is a nontrivial ques-
tion regarding the delay stability of traffic flow 2. One would
expect that this flow is delay-stable: It is light-tailed itself and
is served together with a heavy-tailed flow, which should result
in more service opportunities under Max-Weight. Surprisingly,
though, we show that there exist arrival rates within the sta-
bility region of this network, such that traffic flow 2 is delay-
unstable. The key observation here is that even though traffic
flow 2 does not conflict with heavy-tailed traffic, it does conflict
with traffic flow 3, which is delay-unstable because it conflicts
with heavy-tailed traffic. Conversely, we also show that traffic
flow 2 is delay-stable if its rate is sufficiently low. For more de-
tails, see Propositions 1 and 2 in Section IV-B.
The examples above suggest that in queueing networks

with heavy-tailed traffic, delay instability not only appears,
but propagates through the network under the Max-Weight
policy. Seeking a remedy to this situation, we turn to the more
general Max-Weight- scheduling policy. This policy assigns
a positive -parameter to each traffic flow, and instead of using
the queue lengths to calculate the weight of a schedule, it uses
the respective -powers of the queue lengths. Our findings
imply that in the network of Fig. 1, we can guarantee that traffic
flow 2 is delay-stable, provided the -parameter for traffic
flow 1 is sufficiently small. In other words, we can prevent the
propagation of delay instability. This is a special case of a gen-
eral result: If the -parameters of the Max-Weight- policy are
chosen suitably, then the sum of the -moments of steady-state
queue lengths is finite (see Theorem 3 in Section V-A).

IV. MAX-WEIGHT SCHEDULING

In this section, we evaluate the performance of the Max-
Weight scheduling policy in terms of the delay stability of traffic
flows. Informally speaking, the “weight” of a feasible schedule
is the sum of the lengths of all queues included in it. As its name
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suggests, the Max-Weight policy activates a feasible schedule
that has maximum weight at any given time-slot. More for-
mally, under the Max-Weight policy, the scheduling vector
satisfies

If the set on the right-hand side includes multiple feasible
schedules, then one of them is chosen uniformly at random. The
following lemma states that the network is stable under theMax-
Weight policy. Essentially, this result is well known—e.g., for
light-tailed traffic, see [34]; for more general arrivals, see [33].
A subtle point is that in this paper we adopt a somewhat different
definition for stability. Therefore, we need to ensure that, apart
from the sequences of queue lengths, the sequences of file delays
converge as well.
Lemma 2 (Stability Under Max-Weight): The switched net-

work described in Section II is stable under the Max-Weight
scheduling policy.

Proof: Consider the switched network of Section II under
the Max-Weight scheduling policy. It can be verified that the
sequence is a time-homogeneous, irreducible,
and aperiodic Markov chain on the countable state space .
[33, Proposition 2] implies that this Markov chain is also pos-
itive recurrent. Hence, converges in distri-
bution, and its limiting distribution does not depend on .
Based on this, it can be verified that the sequence

is a (possibly delayed) aperiodic and positive recurrent re-
generative process. Therefore, it also converges in distribution,
and its limiting distribution does not depend on ; see [32].

A. Conflicting With Heavy-Tailed Flows

Next, we state one of the main results of the paper, which gen-
eralizes our observations from the simple networks of Figs. 1
and 2. Before we give the result, let us define precisely the no-
tion of conflict between traffic flows.
Definition 6: Traffic flow conflicts with , and vice versa,

if there exists no schedule in that includes both and .
Theorem 2 (Conflicting with Heavy Tails): Consider the

switched network described in Section II under the Max-Weight
scheduling policy. Every light-tailed flow that conflicts with a
heavy-tailed flow is delay-unstable.

Proof: see Appendix III.
We emphasize the generality of this result. Namely, a light-

tailed flow that conflicts with heavy-tailed traffic is delay-un-
stable, irrespective of: 1) its arrival rate; 2) the tail asymptotics
of its arrivals; 3) whether it is scheduled alone or with other
traffic flows. Hence, we view Theorem 2 as capturing a uni-
versal phenomenon of instability propagation.

B. Nonconflicting With Heavy-Tailed Flows

So far, we have shown that: 1) a heavy-tailed traffic flow is
delay-unstable under any regenerative scheduling policy; and
2) a light-tailed traffic flow that conflicts with a heavy-tailed
flow is delay-unstable under the Max-Weight scheduling
policy. It seems reasonable to assume that a light-tailed flow
that does not conflict with heavy-tailed traffic is delay-stable.
Surprisingly, this is not always the case. We demonstrate this
by means of a simple example.

Let us come back to the queueing system of Fig. 3. The fea-
sible schedules of this system are {1, 2} and {3}, and all queues
are served at unit rate whenever the respective schedules are ac-
tivated. The rate vector is assumed admissible.
The following proposition shows that traffic flow 2 is delay-un-
stable if its rate is sufficiently high.
Proposition 1 (Rate-Dependent Delay Instability): Consider

the switched network of Fig. 3 under the Max-Weight sched-
uling policy. If the arriving traffic is admissible and the rates sat-
isfy , then traffic flow 2 is delay-unstable.

Proof (Sketch): Our approach is based on tracking the evo-
lution of the system on a particular set of “fluid” sample paths:
Assume that at time-slot 0, queue 1 receives a very large file,
consisting of packets. For a long period of time after that,
queue 3 does not receive service under the Max-Weight policy
and builds up. If the arrival processes of all traffic flows are close
to their “average behavior,” then at the time-slot when the ser-
vice switches from schedule {1, 2} to schedule {3}, the lengths
of both queues 1 and 3 are proportional to , whereas queue 2 is
still small. From that point on, the Max-Weight policy will drain
the weights of the two schedules at roughly the same rate, until
one of the weights becomes zero.
Let be the average departure rate from queue during the

latter period. For the weights of the two schedules to be drained
at the same rate, the departure rates have to satisfy

Moreover, the fact thatMax-Weight is a work-conserving policy
implies that

Finally, since queues 1 and 2 are served simultaneously, and
queue 2 may be empty during parts of the draining period, we
have that

The above equations and some simple algebra imply that

Now suppose that the arrival rates satisfy

Then

This implies that queue 2 builds up at a roughly constant rate
during a period of time whose duration is proportional to .
Thus, queue 2 eventually builds up to size , and the inte-
gral of over a busy period of the process becomes of order

. In that case, is infinite, because is drawn from
a heavy-tailed distribution (see Lemma 3 in Appendix I-B). Fi-
nally, Lemma 1 implies the delay instability of queue 2. A de-
tailed proof of Proposition 1 can be found in [20].
Now we establish that when , queue 2

is delay-stable, thus achieving an exact characterization of the
“delay stability region” of queue 2. In order to do that, we further
assume that light-tailed traffic has exponentially decaying tails.
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Formally, a nonnegative random variable is exponential-type
if there exists some such that is finite.
Proposition 2 (Rate-Dependent Delay Stability): Consider

the switched network of Fig. 3 under the Max-Weight sched-
uling policy, with admissible arriving traffic. Suppose that

and are exponential-type, and that there exists
some such that is finite. If the arrival rates
satisfy , then queue 2 is delay-stable, and
the steady-state length of queue 2 is exponential-type.

Proof (Sketch): The proof of Proposition 2 is based on drift
analysis of the following piecewise linear Lyapunov function,
which is nonincreasing in the length of the heavy-tailed queue,
and has a negative drift only when :

where stands for , the nonnegative part of a
scalar . In particular, we show that for sufficiently large (but
fixed) , there exist positive constants and , such that

where is the -algebra generated by
, , , and is a shorthand notation for

.
The above drift condition, and the fact that the arrivals to

queues 2 and 3 are exponential-type, imply that the (steady-
state) random variable

is exponential-type (see [13, Theorem 2.3]). A detailed proof of
Proposition 2 can be found in [20].

V. MAX-WEIGHT- SCHEDULING

The results of Section IV suggest that Max-Weight sched-
uling performs poorly in the presence of heavy-tailed traffic.
The reason is that by treating heavy-tailed and light-tailed
flows equally, there are very long stretches of time during
which heavy-tailed traffic dominates the service. This leads
some light-tailed flows to experience very large delays. In-
tuitively, by discriminating against heavy-tailed flows, one
should be able to improve the overall performance of the net-
work, namely to mitigate the propagation of delay instability.
One way to do this is by giving preemptive priority to the
light-tailed flows. However, priority-based scheduling policies
are undesirable because of fairness considerations, and also
because they can be unstable in many network settings—e.g.,
see [16] and [27].
Instead, we focus on the Max-Weight- scheduling policy:

Given constants , the scheduling
vector satisfies

If the set on the right-hand side includes multiple feasible
schedules, one of them is chosen uniformly at random. By
choosing smaller values for the -parameters of heavy-tailed
flows and larger values for light-tailed flows, we give a form of
partial priority to light-tailed traffic.

A. Main Result

Let us start with a preview of themain result of this section: If
the -parameters of theMax-Weight- policy are chosen so that

is finite, for all , then the network
is stable, and the steady-state queue lengths satisfy

An earlier work by Eryilmaz et al. has given a similar re-
sult for the case of parallel queues with a single server; see
[8, Theorem 1]. In this paper, we extend their result to a
single-hop switched network setting. Moreover, we provide
an explicit upper bound on the sum of the -moments of the
steady-state queue lengths. Before we do that, we need the
following definition.
Definition 7 (Covering Number of Feasible Schedules): The

covering number of the set of feasible schedules is defined
as the smallest number for which there exist
with .
Theorem 3 (Max-Weight- Scheduling): Consider

the switched network described in Section II under the
Max-Weight- scheduling policy. Let the intensity of the
arriving traffic be . If is finite, for all

, then the network is stable, and the steady-state
queue lengths satisfy

where

and .
Proof: See Appendix IV.

It is known that bounds derived from conventional Lyapunov
arguments are, in general, loose. The bound provided in The-
orem 3 is probably no exception to this rule—e.g., see Corollary
3 and the subsequent discussion in Section V-C. In this light, the
value of Theorem 3 lies on the following: 1) It gives a feel for
which structural parameters of the network and which charac-
teristics of the arriving traffic may affect the actual performance
of Max-Weight-type policies; 2) it provides the correct scaling
of higher-order queue length moments with traffic intensity (see
Corollary 2, Section V-B).

B. Traffic Burstiness and Delay Stability

A first corollary of Theorem 3 relates to the delay stability of
light-tailed flows.
Corollary 1 (Delay Stability Under Max-Weight- ): Con-

sider the switched network described in Section II under
the Max-Weight- scheduling policy. Suppose that there
exists some such that is finite, for all

. If the -parameters of all light-tailed flows
are equal to 1, and the -parameters of heavy-tailed flows are
sufficiently small, then all light-tailed flows are delay-stable.
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Proof: With the particular choice of -parameters, The-
orem 3 guarantees that the expected steady-state queue length
of all light-tailed flows is finite. Lemma 1 relates this result to
delay stability.
Combining this with Theorem 1, we conclude that when the
-parameters are chosen suitably, the Max-Weight- policy
delay-stabilizes a traffic flow whenever this is possible.
Max-Weight- turns out to perform well in terms of another

criterion as well. Theorem 3 implies that by choosing the -pa-
rameters so that is finite, for all ,
the steady-state queue-length moment is finite, for all

. The following result suggests that for traffic
flows with polynomially decaying tails, this is the best we can
do under any regenerative scheduling policy.
Theorem 4: Consider the switched network described in

Section II under a regenerative scheduling policy. If, for any
given and , the moment is
infinite, then is infinite.

Proof: This result is well known in the context of an
queue; e.g., see [6, Section 3.2]. It can be proved

similarly to Theorem 1.
Thus, when the -parameters are chosen suitably, the Max-

Weight- policy guarantees the finiteness of the highest possible
moments for flows with polynomially decaying tails.

C. Scaling Results Under Light-Tailed Traffic

Although this paper focuses on heavy-tailed traffic and its
consequences, some implications of Theorem 3 are of general
interest. In this section, we assume that all traffic flows in the
network are light-tailed and analyze how the sum of the -mo-
ments of steady-state queue lengths scales with traffic intensity
and the size of the network.
Corollary 2 (Scaling With Traffic Intensity): Let us fix a

switched network and constants and . The
Max-Weight- scheduling policy is applied with , for
all . Assume that the traffic arriving to the
network is admissible, and that , for all .
Then

where is a constant that depends only on , ,
and . Moreover, under any stabilizing scheduling policy

where is a constant that depends only on .
Proof: The first part of the result follows directly fromThe-

orem 3. Regarding the second part, [30, Theorem 2.1] implies
that, under any stabilizing scheduling policy, there exists an ab-
solute constant , such that

Using Jensen’s inequality, we have

Consequently, there exists a constant that depends only
on , such that

under any stabilizing scheduling policy.
Similar scaling results appear in queueing theory, mostly in

the context of single-server queues; e.g., see [14, Ch. 3]. More
recently, results of this flavor have been shown for particular
queueing networks, such as input-queued switches [28], [30].
All related work, though, concerns the scaling of first moments.
Corollary 2 gives the precise scaling of higher-order steady-
state queue-length moments with traffic intensity and shows that
Max-Weight- achieves the optimal scaling of the -moments.
Finally, we turn our attention to the performance of the Max-

Weight scheduling policy under Bernoulli traffic, i.e., when each
of the arrival processes is an independent
Bernoulli process with parameter . We denote by
the maximum number of traffic flows that any feasible schedule

can serve.
The following bound characterizes the performance of Max-

Weight in terms of structural parameters of the network and the
traffic intensity.
Corollary 3 (Scaling Under Bernoulli Traffic): Consider the

switched network described in Section II under the Max-Weight
scheduling policy. Assume that the traffic arriving to the net-
work is Bernoulli, with traffic intensity . Then

Proof: If all traffic flows are light-tailed and all -param-
eters are equal to one, a more careful accounting in the proof of
Theorem 3 provides the following tighter upper bound:

If the traffic arriving to the network is Bernoulli, then
, for all . Moreover, the fact

that the arriving traffic has intensity implies the existence of
nonnegative real numbers , for , such that

with . Consequently

and the result follows.
Example: ( Input-Queued Switch): Consider an
input-queued switch. The arriving traffic is assumed to be

Bernoulli, with traffic intensity . In this case,
and . Corollary 3 implies that under the Max-Weight
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scheduling policy, the sum of the steady-state queue lengths is
bounded from above as follows:

In the context of an input-queued switch, the joint scaling pro-
vided by Corollary 3, in terms of both the traffic intensity and the
size of the network, is the tightest currently known. However, it
should be noted that the correct scaling under Max-Weight as
goes to one, and as becomes large, is an open problem [28].
On a related note, a different scheduling policy has been recently
shown to achieve the optimal joint scaling [31].

VI. DISCUSSION

The main conclusion of this paper is that the Max-Weight
scheduling policy performs poorly in the presence of
heavy-tailed traffic. More specifically, we show that the
phenomenon of delay instability not only arises, but can prop-
agate to a significant part of the network, possibly depending
on the arrival rates. However, from the sketches of the proofs
of Propositions 1 and 2, it becomes obvious that analyzing
rate-dependent delay (in)stability phenomena is somewhat
involved, even in simple queueing systems like the one in
Fig. 3. The analysis of more complex networks is the subject of
ongoing research and relies on fluid approximations, renewal
theory, and stochastic Lyapunov theory [21].
Another important conclusion is that the Max-Weight-

scheduling policy can be used to alleviate the effects of
heavy-tailed traffic and is order-optimal if its -parameters are
chosen suitably. However, for Max-Weight- to perform well,
some knowledge of higher-order statistics of the traffic flows is
required. If the -parameters are not chosen appropriately, then
in light of Theorem 4, this policy may also perform poorly.
An important direction for future research is to consider

queueing networks with correlated traffic, as opposed to the
i.i.d. arrivals that are assumed in this paper. As alluded to
earlier, evidence suggests that traffic in data communication
networks exhibits strong correlations in time, e.g., long-range
dependence. We believe that the shortcomings of Max-Weight
persist in the presence of correlated traffic. In particular, queues
that receive long-range-dependent (LRD) traffic are likely to
dominate the service for long periods of time, leading to large
delays at conflicting queues. For a related work in a more
abstract context, see also [25].

APPENDIX I
BACKGROUND MATERIAL

A. BASTA, Little’s Law, and Delay Stability

In this section, we state the steady-state versions of two im-
portant results in queueing theory, the “Bernoulli Arrivals See
Time Averages” property and Little’s Law, which we subse-
quently use to prove Lemma 1.
Consider the switched network described in Section II. Let
be the random time-slot of the arrival of the th file to

queue , . We assign two marks to this
file: 1) the vector of queue lengths upon its arrival

; and 2) its end-to-end delay .

Under a regenerative scheduling policy, and for a given
, the vector-valued sequences

and are (possibly delayed) aperiodic and posi-
tive recurrent regenerative processes. Therefore, they converge
in distribution, and their limiting distributions do not depend on

; see [32]. We denote by
and generic random vectors dis-
tributed according to these limiting distributions.
The arrival of files at queue constitutes a Bernoulli process

with parameter since all arrival processes
are i.i.d. The Bernoulli Arrivals See Time Averages (BASTA)
property relates the limiting distributions and .
Theorem 5: (BASTA): Consider the switched network de-

scribed in Section II under a regenerative scheduling policy. The
random vectors and are identically distributed, for all

.
Now let be the number of files in queue at time-slot ,

either in queue or in service. Under a regenerative scheduling
policy, the sequences and
are (possibly delayed) aperiodic and positive recurrent regener-
ative processes. Hence, they converge in distribution, and their
limiting distributions do not depend on ; see [32]. We de-
note by and generic random variables distributed ac-
cording to these limiting distributions. Little’s Law relates their
expected values.
Theorem 6: (Little’s Law): Consider the switched network

described in Section II under a regenerative scheduling policy.
Then

This holds even if the above expectations are infinite.
Theorems 5 and 6 can be proved by combining the rather

elementary time-average versions of BASTA and Little’s Law
(which can be found in [19] and [37], respectively), with well-
known ergodicity properties of regenerative stochastic systems.
We now use these results to prove Lemma 1. Let us start with

the implication

Fix a traffic flow and assume that is
finite. Since every file has at least one packet, then for all
, and for all

We have argued that under a regenerative scheduling policy,
the sequences and converge
in distribution. Thus, taking the limit as goes to infinity, we
have

which implies that

Combining this inequality with Little’s Law and the assumption
that is finite, we conclude that is finite.
Let us now prove the implication
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Fix a traffic flow and assume that is in-
finite. The end-to-end delay of a file is bounded from below by
the length of the respective queue upon its arrival, since the ser-
vice discipline within each queue is “First Come, First Served.”
Thus, for all , and for all

We have argued that under a regenerative scheduling policy,
the sequences and con-
verge in distribution. Therefore, taking the limit as goes to
infinity, we have

Combining this with the BASTA property, we get

which implies that

Finally, the assumption that is infinite implies that
is infinite as well.

B. Truncated Rewards

Consider the switched network described in Section II under
a regenerative scheduling policy. By definition, there exists a
sequence of stopping times , which constitutes a
(possibly delayed) renewal process, i.e., the sequence

is i.i.d. Moreover, the lattice distribution of cycle
lengths has span equal to one and finite expectation.
For , let be an instantaneous reward, which is

assumed to be an arbitrary scalar-valued function of . We
define the truncated reward as , where
is a positive integer. Under a regenerative scheduling policy,

the sequences and are (pos-
sibly delayed) aperiodic and positive recurrent regenerative pro-
cesses. Consequently, they converge in distribution, and their
limiting distributions do not depend on ; see [32]. Let
and be generic random variables distributed according to
these limiting distributions. We denote by the aggregate
reward, i.e., the reward accumulated over a regeneration cycle.
Similarly, represents the aggregate truncated reward.
Lemma 3: Consider the switched network described in

Section II under a regenerative scheduling policy. Suppose that
there exists a random variable with infinite expectation, and
a nondecreasing function , such that

and

(1)

Then, is infinite.
Proof: By definition, regeneration cycle lengths have finite

expectation, and is bounded from above by
. Then, the Renewal Reward theorem implies that

(2)

almost surely; see [9, Section 3.4]. The sequence
is a (possibly delayed) positive recurrent regenerative

process, which is also uniformly bounded by . Then, the
Ergodic theorem for regenerative processes implies that

(3)

almost surely; see [32]. Equations (1)–(3) give

By taking the limit as goes to infinity on both sides, and using
the Monotone Convergence theorem, we obtain

See [36, Section V-C]. Finally, the fact that is infinite im-
plies that is infinite as well.

C. “Average Behavior” of i.i.d. Processes

Lemma 4: Consider a sequence of i.i.d. random variables
, taking values in , with finite rate

. For any given , there exists a constant ,
such that

Proof: We define an event by

By the Strong Law of Large Numbers

Because the sequence of events is nondecreasing, the con-
tinuity property of probabilities implies that

Thus, let us therefore fix some , such that . Now
consider the event

We choose large enough so that and .
Notice that

Finally, note that when both and occur, then
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so that the latter event has positive probability, which is the de-
sired result.

APPENDIX II
PROOF OF THEOREM 1

Consider a heavy-tailed traffic flow . We will
show that is infinite under any regenerative scheduling
policy. Combined with Lemma 1, this will imply that traffic
flow is delay-unstable.
Consider a fictitious queue, denoted by , which has exactly

the same arrivals and initial length as queue , but is served at
unit rate whenever nonempty. We denote by the length of
queue at time-slot . Since the arriving traffic is assumed ad-
missible, the queue-length process converges
to a limiting distribution .
An easy inductive argument can show that the length of

queue dominates the length of queue at all time-slots, under
any regenerative scheduling policy. This implies that for all

, and for all

Taking the limit as goes to infinity, and using the fact that both
queue length processes converge in distribution, we have

Hence, in order to prove the desired result, it suffices to show
that is infinite.
Notice that the length of queue evolves as a positive re-

current Markov chain, and the empty state is recurrent. Hence,
the time-slots that initiate busy periods of queue constitute a
(possibly delayed) renewal process. We define an instantaneous
reward on this renewal process

where is some finite integer.
Without loss of generality, assume that a busy period starts at

time-slot 0, and let be the size of the file that initiates it. Since
queue is served at unit rate, its length is at least packets
over a time period of length at least time-slots. This implies
that the aggregate reward , i.e., the reward accumulated
over a renewal period, is bounded from below as follows:

Consequently, the expected aggregate reward is bounded from
below as follows:

Then, Lemma 3 (see Appendix I-B) applied to
, implies that is infinite. This, in turn,

implies that is infinite, which, combined with Lemma 1,
gives the desired result.

APPENDIX III
PROOF OF THEOREM 2

Consider a heavy-tailed traffic flow and a light-tailed flow
that conflicts with . We will show that, under the Max-Weight
scheduling policy, is infinite. Combined with Lemma 1,
this will imply that traffic flow is delay-unstable.
Notice that the vector of queue lengths evolves as a positive

recurrent Markov chain, and the empty state is recurrent. Hence,
the time-slots that initiate busy periods of the system constitute a
(possibly delayed) renewal process. We define an instantaneous
reward on this renewal process

where is a positive integer.
Without loss of generality, assume that a busy period of the

network starts at time-slot 0. Consider the set of sample paths
where at time-slot 0, queue receives a file of size packets, and
all other queues receive no traffic; we denote this set of sample
paths by . Since the arrival processes of different traffic
flows are mutually independent

This quantity is positive as long as is in the support of
because the rate vector is admissible (hence ) and

. For sample paths in , denote
by the first time-slot when the length of queue becomes
less than or equal to the sum of the lengths of all other queues

Under the Max-Weight scheduling policy, queue receives no
service until time-slot . Moreover, queue is served at unit
rate. Thus, for sample paths in

Lemma 4 implies that for every , there exists ,
such that the set of sample paths

has positive probability (see Appendix I-C for a proof of this
result.) We denote by the set of sample paths .
Due to the i.i.d. nature of the arriving traffic

For sample paths in , we have

Moreover
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Consequently, there exist positive constants and such that
for every , and any sample path in , we have

Since at most one packet from queue can be served at each
time-slot, the length of queue is at least over a time period
of length at least time-slots. This implies that the aggre-
gate reward , i.e., the reward accumulated over a renewal
period, satisfies the lower bound

Then, the expected aggregate reward satisfies

Hence, there exists a positive constant , such that

Lemma 3 (see Appendix I-B) applied to
, implies that is infinite. Then, Lemma 1 gives

the desired result.
APPENDIX IV

PROOF OF THEOREM 3

The admissibility of the arriving traffic implies that we can
find a set of feasible schedules that
satisfies

By the definition of the intensity parameter , there
exist nonnegative numbers , adding up to 1, and
feasible schedules , such that

Notice that

where denotes the closure of the set . This is because we
have a convex combination of feasible schedules,
and the stability region is known to be a convex set; see
[12, Section 3.2]. Moreover

where denotes the -dimensional vector of ones.

A well-known monotonicity property of the stability region
is the following: If componentwise, and ,
then . Using this property, we have that

This, in turn, implies the existence of nonnegative numbers
, adding up to 1, and of feasible schedules

, such that

(4)

Under the Max-Weight- scheduling policy, the sequence
is a time-homogeneous, irreducible, and ape-

riodic Markov chain on the countable state space . In order
to establish positive recurrence, we use the convex Lyapunov
function

We have

where

and is the -algebra generated by
. Throughout the proof, we use the shorthand

notation

We consider the conditional expectation of the terms ,
distinguishing between two cases.
1) : Consider the zeroth order Taylor expansion

around (i.e., the mean value theorem)

for some .
Thus

and
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Consider the event and its comple-
ment. We have

(5)

Since , and are non-
negative numbers and , it can be verified that

(6)

Moreover, because they are also integers, it can be verified that

(7)
Equations (5)–(7) imply that

If , which is the event , then . Also,
if , which is the event , then ,

so that . Consequently

Finally, the fact that the random variables are
i.i.d. gives

The inequality above implies trivially that

(8)

2) : Consider the first order Taylor expansion around

for some .
Then

(9)

Since and , the last term can be
bounded from above as follows:

(10)

Moreover, it is easy to verify that for

(11)
and also that

(12)

Equations (10)–(12) imply that

(13)

where . Then, (9) and (13)
imply that

(14)

Our goal is to bound from above the last term on the right-
hand side of (14). Relaxing the constraint that has to be
an integer, we have

(15)
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It can be verified that the optimization problem on the right-hand
side has the unique solution .
The corresponding optimal value is

(16)

Equations (15) and (16) imply that for all

(17)
Finally, (14) and (17) give

(18)

Summarizing our findings from cases 1) and 2), (8) and (18)
imply that

for all , where

and . Summing over all
, gives

Taking into account (4), we have

By definition of the Max-Weight- policy, the last term is non-
positive. Thus

Then, the Foster–Lyapunov stability criterion and moment
bound (e.g., see [14, Corollary 2.1.5]) implies that the sequence

converges in distribution. Moreover, its lim-
iting distribution does not depend on
and satisfies

Based on this, it can be verified that the sequence
is a (possibly delayed) aperiodic and positive recurrent re-

generative process. Hence, it also converges in distribution, and
its limiting distribution does not depend on ; see [32].
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