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This Appendix is intended to supplement the paper and contains references to parts of it. Ref-

erences that start with “A” (e.g. Proposition A3 or Section A2) are in this Appendix, references

that do not start with “A” (e.g. Proposition 3 or Section 2) are in the paper. This Appendix

contains the proofs of results of Sections 5 and 6 along with supporting results.

A1 Proofs — Infinite horizon results common to both discounted

cost and average cost criteria

Proof of Lemma 5.1

For any given initial state (s, z, y) for a subproblem, the number of possible future states is finite;

this is because y and z cannot increase. Therefore, general results for finite-state Markov decision

problems apply. When α < 1, the convergence of Ĵ∗
T (s, z, y) to Ĵ∗

∞(s, z, y) is immediate. When

α = 1, we have a “stochastic shortest path problem,” (Bertsekas 1995) and any “improper” policy

(that is, any policy that is not guaranteed to eventually deliver the unit to the customer) incurs

infinite cost, due to eternal backlogging. Under this condition, the claimed convergence is again

known to hold. �

Lemma A1.1. If u ∈ Û∗
t (s, z, y) for infinitely many choices of t, then u ∈ Û∗

∞(s, z, y).

Proof. The lemma is rather elementary and we only sketch the argument. The optimality of a

particular decision for a certain time horizon t can be expressed in terms of an associated Bellman

equation. By taking the limit in that Bellman equation as t goes to infinity, we recover a condition

that asserts optimality of the same decision for an infinite horizon problem.

Lemma A1.2. For every (s, z, y), with z ∈ A′, if Û∗
∞(s, z, y) = {1}, then 1 ∈ Û∗

∞(s, z, y′), for

every y′ < y.

Proof. If Û∗
∞(s, z, y) = {1}, Lemma A1.1 implies that there is a t′ > 0 such that Û∗

t (s, z, y) = {1}

for all t > t′. Then, by Lemma 4.1, we have 1 ∈ Û∗
t (s, z, y′) for every t > t′ and y′ < y. Hence, by

Lemma A1.1, 1 ∈ Û∗
∞(s, z, y′) for every y′ < y.
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Proof of Proposition 5.1

The argument is identical to the one in the proof of Prop.4.4, using Û∗
∞(s, z, y) in place of Û∗

k (s, z, y),

and by invoking Lemma A1.2 in place of Lemma 4.1. �

Lemma A1.3. There exists a scalar Cmax such that

Ĵ∗
T (s, N + 1, y) ≤ Ĵ µ̂∗

T (s, N + 1, y) ≤ Ĵ∗
∞(s, N + 1, y) ≤ Cmax,

for every (T, s, y), where µ̂∗ is the optimal subproblem policy from Prop. 5.1.

Proof. The first two inequalities are obvious, so we concentrate on the third. Note that the cost

incurred by a unit-customer pair in any given single period is bounded by b + hmax, where hmax =

maxi hi. Consider a policy where a unit is kept at location N + 1 until the customer arrives,

and then the unit is pushed through the system as quickly as possible (wait-push policy). Such a

policy will incur a positive cost only while the unit is in transit in the system, which is at most

N + 1 periods. Thus, the infinite horizon expected cost of the wait-push policy is bounded by

Cmax = (N + 1) · (b + hmax).

Proof of Lemma 5.2

Consider first the infinite horizon subproblem with α = 1. Once the unit leaves stage z, a holding

cost of at least ĥz−1 has to be incurred, at least until the customer arrives. Suppose that the

customer position is y. Let τ(s, y) be the number of periods until the customer’s arrival, given that

the state of the Markov chain is currently s, and let e(s, y) = E[τ(s, y)]. If the unit is released from

stage z, the expected remaining cost is at least e(s, y) · ĥz−1. If on the other hand, the unit is kept

at z until the customer arrives and then is pushed through the system as quickly as possible, then

the expected cost is at most e(s, y) · ĥz + Cmax.

Clearly, for every s, e(s, y) is nondecreasing in y, and diverges as y goes to infinity. Hence,

there is an integer Y z
max such that e(s, y) · ĥz−1 > e(s, y) · ĥz + Cmax for every y ≥ Y z

max and every

s. Therefore, any policy that releases the unit from stage z while the position of the customer is

greater than Y z
max cannot be optimal. The result follows with Ymax = maxz Y z

max.

Consider now the infinite horizon subproblem with α < 1. Let

e′(s, y) = E







τ(s,y)−1
∑

t=0

αt







,

and f(s, y) = E[ατ(s,y)]. If the unit is released from stage z, the expected remaining cost is at least

e′(s, y)·ĥz−1. If on the other hand, the unit is kept at z until the customer arrives and then is pushed

through the system as quickly as possible, then the expected cost is at most e′(s, y)·ĥz+f(s, y)·Cmax.

Clearly, for every s, f(s, y) converges to zero as y goes to infinity. Hence, there is an integer Y z
max

such that e′(s, y) · ĥz−1 > e′(s, y) · ĥz + f(s, y) · Cmax for every y ≥ Y z
max and every s. Therefore,
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any policy that releases the unit from stage z while the position of the customer is greater than

Y z
max cannot be optimal. The result follows with Ymax = maxz Y z

max.

We now consider the case of a finite horizon t. If the unit is released from location z, the

expected remaining cost is at least E[min{τ(s, y), t}] · ĥz−1. On the other hand, the wait-push

policy has a cost that is at most E[min{τ(s, y), t}] · ĥz + Cmax. The difference between these two

terms is E[min{τ(s, y), t}](ĥz−1 − ĥz) − Cmax. If for a given (s, z, y, t) this difference is positive,

then any policy that releases the unit at this state cannot be optimal for the subproblem. For any

y > Y z
max,

E[min{τ(s, y), t}] · (ĥz−1 − ĥz) − Cmax

≥ E[min{τ(s, Y z
max), t}] · (ĥz−1 − ĥz) − Cmax.

As t increases to infinity, the right-hand side of the above inequality converges to:

E[τ(s, Y z
max)] · (ĥz−1 − ĥz) − Cmax

= e(s, Y z
max) · (ĥz−1 − ĥz) − Cmax

> 0.

This implies that there exists some tzmax such that if y > Y z
max and t > tzmax, then the cost of

releasing the unit is larger than the cost under the wait-push policy, and therefore larger than the

optimal cost. This proves the result for t > tzmax.

Now, let us consider a horizon length t ≤ tzmax. The cost of a policy that keeps the unit at z will

be ĥz · t if the customer does not show up within the time horizon, and will be at most (b+ ĥz) · t if

the customer does show up within the time horizon. Let pt(y) be the probability that a customer

at position y will show up within t time periods. The expected cost of a policy that keeps the unit

at z throughout the time horizon is at most (1− pt(y)) · ĥz · t + pt(y) · (b + ĥz) · t. Now, consider a

policy that releases the unit from location z. The cost of such a policy is at least (1−pt(y)) ·t · ĥz−1.

Since for every t, pt(y) is non-increasing in y and goes to 0 as y goes to infinity, there exists some

Y z(t) such that (1 − pt(y)) · ĥz · t + pt(y) · (b + ĥz) · t < (1 − pt(y)) · ĥz−1 · t for every y > Y z(t).

This means that for any t, if y > Y z(t), then Û∗
t (s, z, y) = {0}.

The desired result follows by setting

Ymax = max
z∈A′

max
{

Y z
max, max

t<tzmax

Y z(t)
}

.

�

Proof of Proposition 5.2

By definition, µ∗ is decoupled. By Prop. 5.1, µ̂∗ is a monotonically nonincreasing function of y.

Since the index i of a unit is monotonic in the position y of the corresponding customer (i.e., i ≤ j

if and only if yi
t ≤ yj

t , for all t), policy µ∗ releases a unit no later than units with larger indices. It
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follows that µ∗ is a monotonic policy as well. The rest of the argument is identical to the proof of

Prop. 3.1. �

A2 Proofs — Discounted Cost

Proof of Theorem 5.1

For all monotonic states x, the policy µ∗ attains the lower bound and is therefore M-optimal. By

Proposition 5.2, there exists a state dependent echelon base stock policy that agrees with the mono-

tonic and decoupled policy µ∗ at every monotonic state. Therefore, this state dependent echelon

base stock policy is also M-optimal. By a similar argument as in Theorem 4.1, we establish that

state dependent echelon base stock policies are not only M-optimal, but optimal. �

A3 Proofs — Average Cost

Lemma A3.1. Consider the finite horizon subproblem. There exists an integer K such that if the

customer arrives K periods or more before the end of the horizon, then under any optimal policy

the unit will be given to the customer before the end of the horizon.

Proof. First, consider the infinite horizon subproblem where the customer has already arrived but

the unit is not given to the customer yet. In this case, moving the unit as quickly as possible is the

unique optimal control, since waiting at a certain location for one period does nothing but add one

extra period of holding and backorder cost. Hence, Û∗
∞(s, z, 1) = {1} for every s and z > 0. Now

fix some s and z > 0. By Lemma A1.2, we cannot have 0 ∈ Û∗
t (s, z, 1) for infinitely many choices

of t and therefore there exists some t′(s, z) such that Û∗
t (s, z, 1) = {1} for every t > t′(s, z). Let

K = N +2+maxs,z t′(s, z). Now, consider the T -horizon subproblem and suppose that a customer

arrives at time k where T − k ≥ K. In this case, the optimal decision is to move the unit through

the system as quickly as possible, and give it to the customer before the end of the horizon.

Lemma A3.2. Fix some ε > 0. For every s and for every y such that y ≤
(

d̄ − ε
)

· T , we have

∣

∣

∣
Ĵ∗

T (s, N + 1, y) − Ĵ∗
∞ (s, N + 1, y)

∣

∣

∣
≤ f (T, s)

for some f : N × S 7→ R such that lim
T→∞

f (T, s) = 0.

Proof. Note that Ĵ∗
T (s, N + 1, y) ≤ Ĵ∗

∞ (s, N + 1, y), since having more time periods can only in-

crease the costs. We will next establish an inequality in the reverse direction.

Given a time horizon, consider the following non-stationary policy for the infinite horizon sub-

problem with initial state (s, N + 1, y): in the first T periods, employ an optimal policy for the

T -horizon problem, and then employ the wait-push policy. At the end of period T , the unit is
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either at location 0 (given to the customer), or at a location greater than 0 but less than N + 1 (in

the system), or at location N + 1 (at the supplier). If the unit is given to the customer, there is

no more cost. If the unit is in the system, then the position of the customer is at most Ymax, by

Lemma 5.2; hence, the remaining cost can be bounded by some v that does not depend on y. If the

unit is at the supplier, then the cost of the wait-push policy is bounded by Cmax, by Lemma A1.3.

Hence, the cost of this combined policy is bounded by

Ĵ∗
T (s, N + 1, y) + Prob {Unit not given to the customer by time T} · (Cmax + v).

Moreover, this cost has to be at least as large as the optimal infinite horizon cost. So, we have:

Ĵ∗
∞ (s, N + 1, y) − Ĵ∗

T (s, N + 1, y)

≤ Prob {Unit not given to the customer by time T} · (Cmax + v).

Let dT−K(s) be a random variable denoting the sum of the demands in T −K periods, starting

with a period where the Markov chain is in state s. If the unit is not given to the customer by time

T , then by Lemma A3.1, the customer has not arrived by time T − K, that is, dT−K(s) < y − 1.

Hence,

Ĵ∗
∞ (s, N + 1, y) − Ĵ∗

T (s, N + 1, y) ≤ Prob
{

dT−K(s) < (d̄ − ε)T
}

· (Cmax + v).

For T > K, let f(T, s) be the right hand side of the above inequality. It remains to show that

limT→∞ f(T, s) = 0.

Indeed,

Prob
{

dT−K(s) < (d̄ − ε)T
}

= Prob

{

dT−K(s)

T
< d̄ − ε

}

.

As T → ∞, by the law of large numbers for Markov reward processes, dT−K(s)/T converges to d̄

almost surely, and therefore, in probability. Therefore, the probability we are considering converges

to zero, and so does f(T, s).

Proof of Theorem 5.2

We first show that the policy µ∗ from Prop. 5.2 is M-optimal. Since µ∗ is a decoupled policy, we

have for every finite horizon T ,

V µ∗

T (x) =
∞

∑

i=1

Ĵ µ̂∗

T

(

s, zi, yi
)

.

Since µ∗ is also monotonic, Proposition 4.2(b) yields

Jµ∗

T (x) = V µ∗

T (x) =

∞
∑

i=1

Ĵ µ̂∗

T

(

s, zi, yi
)

,
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for every monotonic state x. Then, by the definition of the infinite horizon average cost,

λµ∗

(x) = lim sup
T→∞

1

T

∞
∑

i=1

Ĵ µ̂∗

T

(

s, zi, yi
)

,

for every monotonic state x.

Let us fix a monotonic initial state x =
{

s,
(

z1, y1
)

,
(

z2, y2
)

, . . .
}

. If there is an infinite number

of units in locations other than N + 1, the optimal average cost λ∗(x) is infinite, and there is

nothing to prove. We can therefore assume there there is a finite number k of units in locations

1, . . . , N . Let ` be the number of units whose corresponding customers have already arrived, so

that yi = i − l + 1 for i ≥ l. We have

λµ∗

(x) = lim sup
T→∞

1

T

∞
∑

i=1

Ĵ µ̂∗

T

(

s, zi, yi
)

= lim sup
T→∞

1

T

k+
∑̀

i=1

Ĵ µ̂∗

T

(

s, zi, yi
)

+ lim sup
T→∞

1

T

∞
∑

i=k+`+1

Ĵ µ̂∗

T (s, N + 1, i − ` + 1)

= lim sup
T→∞

1

T

∞
∑

i=1

Ĵ µ̂∗

T (s, N + 1, i) .

Let ε > 0 be a constant less than d̄/2. We decompose the above expression as follows:

lim sup
T→∞

1

T

∞
∑

i=1

Ĵ µ̂∗

T (s, N + 1, i)

= lim sup
T→∞

1

T

dε·T e
∑

i=1

Ĵ µ̂∗

T (s, N + 1, i) + lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ µ̂∗

T (s, N + 1, i)

+ lim sup
T→∞

1

T

d(d̄+ε)·Te
∑

i=d(d̄−ε)·Te+1

Ĵ µ̂∗

T (s, N + 1, i) + lim sup
T→∞

1

T

∞
∑

i=d(d̄+ε)·Te+1

Ĵ µ̂∗

T (s, N + 1, i) .

(A1)

We will show that the first and the third terms in the above sum go to zero as ε → 0, and that the

fourth term is equal to zero.

Using Lemma A1.3, the first term satisfies

lim sup
T→∞

1

T

dεT e
∑

i=1

Ĵ µ̂∗

T (s, N + 1, i) ≤ lim sup
T→∞

1

T
εTCmax −→

ε→0
0.
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Similarly, for the third term,

lim sup
T→∞

1

T

d(d̄+ε)·Te
∑

i=d(d̄−ε)·T+1e

Ĵ µ̂∗

T (s, N + 1, i) ≤ lim sup
T→∞

1

T
2εTCmax −→

ε→0
0.

To get the result for the fourth term, consider a unit i and its corresponding customer. After

an interval of T periods, the position of this customer will be
(

i − dT (s)
)+

+ 1, where dT (s) is

the random variable denoting the sum of demands in T periods, starting from a period with the

Markov chain in state s (assuming that the customer has not received the unit within the interval).

By Lemma 5.2, if
(

i − dT (s)
)+

+ 1 > Ymax, unit i will not be released from location N + 1 and this

unit-customer pair will have a cost of 0 during the T -step horizon. For any unit that is released

from location N + 1, the expected cost can be at most Cmax. Therefore,

lim sup
T→∞

1

T

∞
∑

i=d(d̄+ε)·Te+1

Ĵ µ̂∗

T (s, N + 1, i)

≤ lim sup
T→∞

1

T
· Cmax · E

{

(

dT (s) + Ymax −
⌈(

d̄ + ε
)

· T
⌉

− 1
)+

}

= 0,

using the law of large numbers. We have therefore established that only the second term in the

right hand side of Eq. (A1) remains positive as ε ↓ 0, and

λµ∗

(x) = lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ µ̂∗

T (s, N + 1, i) + f(ε)

≤ lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ µ̂∗

∞ (s, N + 1, i) + f(ε),

for some function f that satisfies limε↓0 f(ε) = 0.

We now use Eq. (2), to obtain

λ∗ (x) ≥ lim sup
T→∞

1

T

∞
∑

i=1

Ĵ∗
T

(

s, zi, yi
)

≥ lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ∗
T (s, N + 1, i)

≥ lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ∗
∞ (s, N + 1, i) − lim sup

T→∞

1

T
d̄Tf(T, s)

= lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ∗
∞ (s, N + 1, i) ,
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where the last inequality uses Lemma A3.2. By comparing the above two inequalities, and using

the fact Ĵ∗
∞ = Ĵ µ̂∗

∞ (optimality of µ̂∗ for the infinite horizon subproblem), we obtain

λµ∗

(x) ≤ λ∗(x) + f(ε).

By taking the limit as ε decreases to zero, we obtain λµ∗

(x) ≤ λ∗(x), which establishes the M-

optimality of µ∗.

By Prop. 5.2, µ∗ agrees with a state dependent echelon base stock policy at monotonic states,

establishing the M-optimality of state dependent echelon base stock policies. Following the ar-

gument in Theorem 4.1, state dependent echelon base stock policies are not only M-optimal, but

optimal. �

Proof of Proposition 5.3

a) Let Fs(r) be the probability mass function of the distribution of the demand when the Markov

chain is in state s. Let Pi,j = P(st+1 = j | st = i) be the transition probabilities of the

Markov chain st. By Lemma 5.2, there exists a positive number Ymax such that if y > Ymax,

the optimal decision is to not release the unit, i.e., u = 0. Thus, if y > Ymax, the dynamic

programming equation for the subproblem yields

Ĵ∗
∞ (s, N + 1, y) = ĝ (s, N + 1, y, 0) +

∑

j∈S

∞
∑

r=0

Ps,j · Fs(r) · Ĵ
∗
∞

(

j, N + 1, (y − 1 − r)+ + 1
)

.

This equation is in the form of a Markov renewal equation. Since the Markov chain st

is irreducible and aperiodic, and since the demand process dt is of the non-lattice type,

Prop. 4.17 in Chapter 10 of Cinlar (1975) applies and shows that the solution of the Markov

renewal equation converges as y goes to infinity, to a constant that does not depend on s.

b) The earlier outlined proof of Theorem 5.2 shows that

λ∗(x) = limε↓0






lim sup
T→∞

1

T

d(d̄−ε)·Te
∑

i=dε·T e+1

Ĵ∗
∞ (s, N + 1, i) + f(ε)







= limε↓0[(d̄ − 2ε)C + f(ε)]

= d̄C,

where the second equality follows from part (a). �

A4 Proofs — Algorithmic Issues

Proof of Proposition 6.1

a) By Lemma 5.2, if y > Ymax, then Û∗
t (s, z, y) = {0} for all s, z ∈ A′, and t. Therefore, all the

base stock levels will be determined at this point and the algorithm will terminate.

8



b) Fix some s, z ∈ A′, and t. First, note that y∗t (s, z) is the largest y for which Û∗
t (s, z, y) = {1},

if such a y exists, and is equal to −∞ if there is no y for which Û∗
t (s, z, y) = {1}. (Note that by

Lemma 5.2, Û∗
t (s, z, y) cannot be equal to {1} for infinitely many y.) Then, by the arguments

found in the proof of Prop. 4.4, a decoupled policy that uses a monotonic subproblem policy

for each unit-customer pair with threshold levels y∗
t (s, z) is M-optimal for the Main Model. By

Prop. 3.1, this policy agrees with a state dependent echelon base stock policy with base stock

levels S
v(z−1)
t (s) = y∗t (s, z) − 1 at every monotonic state. By the argument in Theorem 4.1,

this state dependent echelon base stock policy is not only M-optimal, but optimal.

c) Each calculation of the function Vt(s, z, y, u) takes O(min{Ymax, D} · |S|) time, because for

every state, the number of next possible states is of that order and there are only two possible

controls. This is performed for O(Ymax · T ·N · |S|) times, via the nested while and for loops.

Hence, the complexity of FHA is O
(

N · Ymax · min{Ymax, D} · |S|2 · T
)

. �

Definition A4.1. Consider an n-state Markov chain. Suppose that there is a cost for being at a

given state. In addition, suppose that there is a controller that has an option to stop the Markov

chain at any time, and that for each state there is a cost associated with stopping the Markov chain

at that state. After the Markov chain is stopped, no more costs are incurred. The optimal stopping

problem looks for a stopping policy that minimizes the total infinite horizon expected cost.

Lemma A4.1. An optimal stopping problem with n states can be solved in O(n3) time.

Proof. (Outline) Consider the policy iteration algorithm, starting with the policy that stops at

every state. We claim that the policy iteration algorithm (with ties broken in favor of stopping)

takes at most n iterations. Indeed, the cost-to-go of a state cannot increase in the course of the

policy iteration algorithm. Thus, if the cost-to-go of not stopping becomes smaller than the cost

of stopping at a given state, it remains smaller in subsequent iterations. Thus, with each policy

iteration, the policy is either the same (in which case, we have an optimal policy), or the number

of states at which the policy does not stop increases.

Let ki be the number of states at which the policy changes at the ith iteration. At each policy

iteration, there is a policy evaluation step in which we need to solve a new system of equations

with n unknowns. But the transition matrix differs from the previous one in only ki rows (the

ones where the policy changed). This is a rank ki modification. We can use the following fact from

numerical linear algebra. If A is n × n and A−1 is available, and if B − A has rank k, then we

can compute B−1 in O(n2 · k) time. (This is possible because of the Sherman-Morrison-Woodbury

formula in Golub & van Loan (1983)). Therefore, the total complexity is O(
∑

i ki · n
2) and since

∑

i ki · n
2 ≤ n3, the result follows.

Lemma A4.2. Fix a pair (z, y) consisting of a unit location z and a customer position y ≤ Ymax.

Suppose that Ĵ∗
∞ (s′, z′, y′) is available for every (s′, z′, y′) such that z′ ≤ z, y′ ≤ y, and (z′, y′) 6=

(z, y). Then, the values of Ĵ∗
∞ (s, z, y), for all s ∈ S, can be found in time O

(

min{Ymax, D} · |S|2
)

9



if z is an artificial stage (z /∈ A), and in time O
(

min{Ymax, D} · |S|2 + |S|3
)

if z is an actual stage

(z ∈ A).

Proof. Consider first the case where z is an artificial stage. Then, the location z ′ at the next time

is guaranteed to satisfy z′ < z. The Bellman equation for Ĵ∗
∞ (s, z, y) involves the known values

of Ĵ∗
∞ (s′, z′, y′) for the various possible next states (s′, z′, y′). For each s ∈ S, there are at most

2 · min{Ymax, D} · |S| possible next states, and the complexity estimate O
(

min{Ymax, D} · |S|2
)

follows.

Suppose now that z corresponds to an actual stage (z ∈ A), but z > 1. Given a current state

(s, z, y), the successor state is of the form (s′, z, y) as long as the demand is zero and the decision

is to not release the unit. We view a release decision as a stopping decision and a nonzero demand

as a forced stopping. When we write down the Bellman equation for the various states of the form

(s, z, y), for a fixed pair (z, y), it takes the form of the Bellman equation for an optimal stopping

problem for a Markov chain with |S| states. The transition probabilities, stopping, and continuation

costs for this optimal stopping problem can be computed in time O
(

min{Ymax, D} · |S|2
)

. (This is

because we have |S| states of the form (s, z, y) and for each such state at most 2 ·min{Ymax, D} · |S|

possible next states.) By Lemma A4.1, the corresponding optimal stopping problem can be solved

in O
(

|S|3
)

time. For the case when z = 1, there is no decision to release a unit, i.e., no stopping

decision, and stopping occurs only via the forced stopping of a nonzero demand. Nevertheless, the

same complexity of O
(

|S|3
)

applies. Hence, the claimed complexity estimate follows.

Proof of Proposition 6.2

(a-b) The proofs are similar to the proofs of the finite horizon versions (Proposition 6.1 parts (a)

and (b)).

c) For a given (z, y) pair, the complexity of computing Ĵ∗
∞(s, z, y) for all s is given by Lemma

A4.2. This is done every time the recursion gets to (*). There are O(N · Ymax) pairs (z, y) to

be considered, and O(M · Ymax) pairs for which z corresponds to an actual stage. The result

follows. �
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