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Efficiency Loss in a Network Resource Allocation
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Abstract—We consider a resource allocation problem where in-
dividual users wish to send data across a network to maximize their
utility, and a cost is incurred at each link that depends on the total
rate sent through the link. It is known that as long as users do not
anticipate the effect of their actions on prices, a simple propor-
tional pricing mechanism can maximize the sum of users’ utilities
minus the cost (called aggregate surplus). Continuing previous ef-
forts to quantify the effects of selfish behavior in network pricing
mechanisms, we consider the possibility that users anticipate the
effect of their actions on link prices. Under the assumption that the
links’ marginal cost functions are convex, we establish existence of
a Nash equilibrium. We show that the aggregate surplus at a Nash
equilibrium is no worse than a factor of 4 2 5 times the optimal
aggregate surplus; thus, the efficiency loss when users are selfish is
no more than approximately 34%.

Index Terms—Congestion pricing, network resource allocation.

THE current Internet is used by a widely heterogeneous
population of users; not only are different types of traffic

sharing the same network, but different end users place different
values on their perceived network performance. This has led to
a surge of interest in congestion pricing, where the network is
treated as a market, and prices are set to mediate demand and
supply of network resources; see, e.g., [1] and [2].

We investigate a specific price mechanism considered by
Kelly et al. in [3] (motivated by the proposal made in [4]).
For simplicity, let us first consider the special case of a single
link; in this case the mechanism works as follows. Each user
submits a bid, or total willingness-to-pay, to the link manager.
This represents the total amount the user expects to pay. The
link manager then chooses a total rate and price such that the
product of price and rate is equal to the sum of the bids, and
the price is equal to marginal cost; note, in particular, that the
supply of the link is elastic, i.e., it is not fixed in advance.
Finally, each user receives a fraction of the allocated rate in
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proportion to their bid. It is shown in [3] that if users do not
anticipate the effect of their bid on the price, such a scheme
maximizes the sum of users’ utilities minus the cost of the total
allocated rate, known as the aggregate surplus (see [5, Ch. 10]).

The pricing mechanism of [3] takes as input the bids of the
users, and produces as output the price of the link, and the re-
sulting rate allocation to the users. Kelly et al. [3] continue
on to discuss distributed algorithms for implementation of this
market-clearing process: given the bids of the users, the authors
present two algorithms which converge to the market-clearing
price and rate allocation. Indeed, much of the interest in this
market mechanism stems from its desirable properties as a de-
centralized system, including both stability and scalability. For
details, we refer the reader to [6]–[9].

One important interpretation of the price given to users in
the algorithms of [3] is that it can provide early notification
of congestion. Building on the explicit congestion notification
(ECN) proposal [10], this interpretation suggests that the net-
work might charge users proactively, in hopes of avoiding con-
gestion later. From an implementation standpoint, such a shift
implies that rather than a hard capacity constraint (i.e., a link
is overloaded when the rate through it exceeds the capacity of
the link), the link has an elastic capacity (i.e., the link gradu-
ally begins to signal a buildup of congestion before the link’s
true capacity is actually met). Many proposals have been made
for “active queue management” (AQM) to achieve good per-
formance with ECN; see, e.g., [11]–[14]. This issue is of sec-
ondary importance to our discussion, as we do not concern our-
selves with the specific interpretation of the cost function at the
link. (An insightful discussion of the relationship between ac-
tive queue management and the cost function of the link may be
found in [15].)

In this paper, we investigate the robustness of the market
mechanism of [3] when users attempt to manipulate the market.
Formally, we consider a model where users anticipate the ef-
fects of their actions on the link prices. This makes the model
a game, and we ask two fundamental questions. First, does a
Nash equilibrium exist for this game? And second, how ineffi-
cient is such an equilibrium relative to the maximal aggregate
surplus? We show that Nash equilibria exist, and that the effi-
ciency loss is no more than a factor of the maximal
aggregate surplus (approximately 34%) when users are price
anticipating.

Such an investigation forms part of a broader body of work on
quantifying efficiency loss in environments where participants
are selfish. Results have been obtained for routing [16]–[18],
traffic networks [19], [20] and network design problems [21],
[22]. Our work is most closely related to that of [23], where the
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same market mechanism as in this paper was considered for the
case where the supply of a link is fixed, or inelastic; this was
the mechanism first presented in [4]. Johari and Tsitsiklis show
the efficiency loss when users are price anticipating is no worse
than 25% [23].

The outline of the remainder of the paper is as follows. We
consider a single link in isolation; extensions to general net-
works are discussed in [24]. In Section I, we describe the market
mechanism for a single link, and recapitulate the results of Kelly
et al. [3]. In Section II, we describe a game where users are
price anticipating, and establish the existence of a Nash equi-
librium. We also establish necessary and sufficient conditions
for a strategy vector to be a Nash equilibrium. These conditions
are used in Section III to prove the main result of the paper for
a single link: That when users are price anticipating, the effi-
ciency loss—that is, the loss in aggregate surplus relative to the
maximum—is no more than 34%.

In Section IV, we compare the settings of inelastic and elastic
supply. In particular, we consider a limit of cost functions which
approach a hard capacity constraint. We show that if these cost
functions are monomials and we let the exponent tend to in-
finity, then the efficiency loss approaches 25%, which is con-
sistent with the result of [23]. Some conclusions are offered in
Section V.

I. BACKGROUND

Suppose users share a single communication link. Let
denote the rate allocated to user . We assume that user re-

ceives a utility equal to if the allocated rate is . In ad-
dition, we let denote the total rate allocated at the
link, and let denote the cost incurred at the link when the
total allocated rate is . We will assume that both and

are measured in the same monetary units. A natural interpre-
tation is that is the monetary value to user of a rate
allocation , and is a monetary cost for congestion at the
link when the total allocated rate is .

We make the following assumptions regarding and .
Assumption 1: For each , over the domain the utility

function is concave, strictly increasing, and continu-
ously differentiable, and the right directional derivative at 0, de-
noted , is finite.

Assumption 2: There exists a continuous, convex, strictly in-
creasing function over with , such that for

:

Thus, is strictly convex and strictly increasing.
Concavity in Assumption 1 corresponds to elastic traffic, as

defined by Shenker [25]; such traffic includes file transfers such
as FTP connections and peer-to-peer connections. Note that As-
sumption 2 does not require the price function to be differen-
tiable. Indeed, assuming smoothness of would simplify some
of the technical arguments in the paper. However, we later re-
quire the use of nondifferentiable price functions in our proof of
Theorem 8.

Given complete knowledge and centralized control of the
system, a natural problem for the network manager to try to
solve is the following [4]:

SYSTEM

maximize (1)

subject to (2)

Since the objective function (1) is continuous, and increases
at most linearly while increases superlinearly, an optimal so-
lution exists for (1), (2); since the feasible
region is convex and is strictly convex, if the functions are
strictly concave, then the optimal solution is unique. We refer to
the objective function (1) as the aggregate surplus; this is the net
monetary benefit to the economy consisting of the users and the
single link [5]. For convenience, we define a function surplus
which gives the aggregate surplus at an allocation

surplus (3)

Due to the decentralized nature of the system, the resource
manager may not have an exact specification of the utility func-
tions [4]. As a result, we consider the following pricing scheme
for rate allocation. Each user makes a payment (also called
a bid) of to the resource manager. Given the vector

, the resource manager chooses a rate allocation
. We assume the manager treats

all users alike—in other words, the network manager does not
price differentiate. Thus the network manager sets a single price

; we assume that if for all , and
otherwise. All users are then charged the same price

, leading to

if
if

Associated with this choice of price is an aggregate rate function
, defined by

if

if
(4)

We will assume that is measured in the same monetary
units as both and . In this case, given a price , user
acts to maximize the following payoff function over :

(5)

The first term represents the utility to user of receiving a rate
allocation equal to ; the second term is the payment
made to the manager. Observe that since utility is measured in
monetary units, the payoff is quasilinear in money, a typical
assumption in modeling market mechanisms [5].

Notice that as formulated before, the payoff function as-
sumes that user acts as a price taker; that is, user does not an-
ticipate the effect of his choice of on the price and, hence,
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on his resulting rate allocation . Informally, we expect that
in such a situation the aggregate surplus will be maximized if the
network manager sets a price equal to marginal cost, i.e., if the
price function satisfies

(6)

According to the following proposition a joint solution to (4)
and (6) can always be found; the proof is straightforward, and
details may be found in [24]. This proposition is then used to
show that when users optimize (5) and the price is set to satisfy
(6), aggregate surplus is maximized.

Proposition 1: Suppose Assumption 2 holds. Given
any vector of bids , there exists a unique pair

satisfying (4) and (6), and in this case
is the unique solution to:

(7)

Furthermore, has the following properties: 1) ; 2)
is continuous for ; 3) is a strictly increasing

and strictly concave function of ; and 4) as
.

Observe that we can view (7) as a market-clearing process.
Given the total revenue from the users, the link manager
chooses an aggregate rate so that the revenue is exactly
equal to the aggregate charge . Due to Assump-
tion 2, this market-clearing aggregate rate is uniquely deter-
mined. Kelly et al. present two algorithms in [3] which amount
to dynamic processes of market-clearing; as a result, a key mo-
tivation for the mechanism we study in this paper is that it repre-
sents the equilibrium behavior of the algorithms in [3]. Kelly et
al. show in [3] that when users are nonanticipating, and the net-
work sets the price according to (4) and (6), the resulting
allocation solves SYSTEM. This is formalized in the following
theorem, adapted from [3].

Theorem 2 (Kelly et al., [3]): Suppose Assumptions 1 and 2
hold. For any , let be the unique solution
to (4) and (6). Then there exists a vector such that ,
and

(8)
For any such vector , the vector solves

. If the functions are strictly concave, such a
vector is unique.

Theorem 2 shows that with an appropriate choice of price
function (as determined by (4) and (6)), and under the assump-
tion that the users behave as price takers, there exists a bid vector

where all users have optimally chosen their bids , with re-
spect to the given price ; and the aggregate surplus is max-
imized at this “equilibrium.” However, when the price taking
assumption is violated, the model changes into a game and the
guarantee of Theorem 2 is no longer valid. We investigate this
game in the following section.

II. SINGLE LINK GAME

We now consider an alternative model where the users of a
single link are price anticipating, rather than price taking, and
play a game to acquire a share of the link. Throughout the re-
mainder of this section and the next, we will assume that the link
manager sets the price according to the unique choice pre-
scribed by Proposition 1, as follows.

Assumption 3: For any , the aggregate rate is
the solution to (7): . Furthermore, for
each , is given by

if
if (9)

Note that we have and if
and, hence, is always well defined.

We adopt the notation to denote the vector
of all bids by users other than , i.e.,

. Given , each user
chooses to maximize

(10)

over nonnegative . The payoff function is similar to the
payoff function , except that the user now anticipates that
the network will set the price according to Assumption 3, as
captured by the allocated rate . A Nash equilibrium of
the game defined by is a vector such that
for all

for all (11)

In the next section, we show that a Nash equilibrium always
exists, and give necessary and sufficient conditions for a vector

to be a Nash equilibrium. In Section II-B, we outline a class
of price functions for which the Nash equilibrium is unique.

A. Existence of Nash Equilibrium

In this section, we establish that a Nash equilibrium exists
for the game defined by . We start by establishing
certain properties of in the following proposition.

Proposition 3: Suppose that Assumptions 1–3 hold. Then:
1) is a continuous function of ; and 2) for any

, is strictly increasing and concave in , and
as .

Proof: We first show 1): that is a continuous func-
tion of . Recall from Proposition 1 that is a continuous
function of , and . Now at any vector such that

, we have , so ;
thus continuity of at follows by continuity of and . Sup-
pose instead that , and consider a sequence such that

as . Then, as
, from parts 1) and 2) of Proposition 1; since

for all , we must have as , as
required.
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We now show 2): that is concave and strictly in-
creasing in , with as . From
Assumption 3, we can rewrite the definition of as

if
if (12)

From this expression and Proposition 1, it follows that is
strictly increasing in . To show as , we
only need that as , a fact that was shown
in Proposition 1.

It remains to be shown that for fixed , is a concave
function of . Since we have already shown that is
continuous, we may assume without loss of generality that

. We will only consider the case where is twice differentiable;
the extension to general uses a simple limiting argument, and
details can be found in [24]. When is twice differentiable,
it follows from (7) that is twice differentiable in . Since

, we can differentiate (12) twice to find

From Proposition 1, is a strictly concave function of ;
thus the last term in the sum above is nonpositive. To show that

is concave in , therefore, it suffices to show that the sum
of the first two terms is negative, i.e.,

(13)

By differentiating both sides of (7), we find that

From (7), we have

Substituting these relations, and noting that
since is strictly increasing, we conclude that (13) holds, as
required. Thus is concave in , as long as is twice
differentiable.

The previous proposition establishes concavity and conti-
nuity of ; this guarantees existence of a Nash equilibrium, as
the following proposition shows. The proof is an application of
Rosen’s existence theorem [26]; details may be found in [24].

Proposition 4: Suppose that Assumptions 1–3 hold. Then
there exists a Nash equilibrium for the game defined by

.
In the remainder of this section, we establish necessary and

sufficient conditions for a vector to be a Nash equilibrium.
Because the price function may not be differentiable, we will
use subgradients to describe necessary local conditions for a

vector to be a Nash equilibrium. Since the payoff of user is
concave, these necessary conditions will in fact be sufficient for

to be a Nash equilibrium.
We begin with some concepts from convex analysis [27],

[28]. An extended real-valued function is a function
; such a function is called proper if for

all , and for at least one . We say that a scalar is
a subgradient of an extended real-valued function at if for
all , we have . The subdifferential
of at , denoted , is the set of all subgradients of at

. Finally, given an extended real-valued function , we denote
the right directional derivative of at by and left
directional derivative of at by (if they exist). If

is convex, then , provided
the directional derivatives exist.

For the remainder of this paper, we view any price function
as an extended real-valued convex function, by defining

for . Our first step is a lemma identifying the directional
derivatives of as a function of ; for notational convenience,
we introduce the following definitions of and , for

:

(14)

Note that under Assumption 2, we have
for .

Lemma 5: Suppose Assumptions 1–3 hold. Then, for all
with , is directionally differentiable with re-
spect to . These directional derivatives are given by

(15)

(16)

Furthermore, , and if then
.

Proof: Existence of the directional derivatives is obtained
because is a concave function of (from Proposition
3). Fix a vector of bids, such that . Since is an
increasing concave function of , and the convex function is
directionally differentiable at (see [28, Th. 23.1]), we can
apply the chain rule to compute the right directional derivative
of (7) with respect to

Thus, as long as , exists, and is given
by
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We conclude from (9) that the right directional derivative of
with respect to is given by

Simplifying, this reduces to (15). Note that since
and , we have

. A similar analysis follows for the left directional derivative.
For notational convenience, we make the following defini-

tions for :

(17)

Under Assumption 2, we have for
.

The next proposition is the central result of this section: It
provides simple local conditions that are necessary and suffi-
cient for a vector to be a Nash equilibrium.

Proposition 6: Suppose that Assumptions 1–3 hold. Then,
is a Nash equilibrium of the game defined by , if
and only if , and with , , the
following two conditions hold for all :

(18)

if (19)

Conversely, if and satisfy (18), (19), and
, then the vector is a Nash equilibrium with

and .
Proof: We first show that if is a Nash equilibrium,

then we must have . Suppose not; then for
all . Fix a user ; for , we have

, which approaches in-
finity as . Thus, , and thus we have

In particular, an infinitesimal increase of strictly increases
the payoff of user , so cannot be a Nash equilibrium.
Thus, if is a Nash equilibrium, then .

Now, let be a Nash equilibrium. We established in Lemma
5 that is directionally differentiable in for each , as long
as . Thus, from (11), if is a Nash equilibrium, then
the following two conditions must hold:

if

We may substitute using Lemma 5 to find that if is a Nash
equilibrium, then

if

Since the condition is identical to the condition
, this establishes the conditions in the proposition.

Conversely, if and the preceding two conditions
hold, then we may reverse the argument: since the payoff
function of user is a concave function of for each (from
Proposition 3), (18), (19) are sufficient for to be a Nash
equilibrium.

Finally, suppose that and satisfy (18), (19), with
. Then let . We then have

(since ); and , so that . Since
, we have , so that
. Thus, is a Nash equilibrium, as required.

Note that the preceding proposition identifies a Nash equilib-
rium entirely in terms of the allocation made; and conversely, if
we find a pair which satisfies (18), (19) with and

, then there exists a Nash equilibrium which yields
that allocation. In particular, the set of allocations which can
arise at Nash equilibria coincides with those vectors such that

, and (18), (19) are satisfied.

B. Nondecreasing Elasticity Price Functions: Uniqueness of
Nash Equilibrium

In this section, we demonstrate that for a certain class of dif-
ferentiable price functions, there exists a unique Nash equilib-
rium of the game defined by . We consider price
functions which satisfy the following additional assumption.

Assumption 4: The price function is differentiable, and ex-
hibits nondecreasing elasticity: For , there holds

To gain some intuition for the concept of nondecreasing elas-
ticity, consider a price function satisfying Assumption 2. The
quantity is known as the elasticity of a price func-
tion [5]. Note that the elasticity of is the derivative of

with respect to . From this viewpoint, we see that
nondecreasing elasticity is equivalent to the requirement that

is a convex function in . (Note that this is not equiv-
alent to the requirement that is a convex function of .)

Nondecreasing elasticity can also be interpreted by consid-
ering the price function as the inverse of the supply function

; the supply function gives the amount of rate
the provider is willing to supply at a given price [5]. In this
case, nondecreasing elasticity of the price function is equivalent
to nonincreasing elasticity of the supply function.

Nondecreasing elasticity captures a wide range of price func-
tions; we give two common examples that follow.

Example 1 (The M/M/1 Queue): Consider the cost function
, where and are constants;
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then the cost is proportional to the steady-state queue size in
an M/M/1 queue with service rate and arrival rate . (Note
that we must view as an extended real-valued function, with

for ; this does not affect any of the analysis
of this paper.) It is straightforward to check that, as long as

, we have

which is a strictly increasing function of . Thus, satisfies
Assumption 4.

Example 2 (M/M/1 Overflow Probability): Consider the
function , where , , and
is an integer. Then, the price is set proportional to the proba-
bility that an M/M/1 queue exceeds a buffer level , when the
service rate is and the arrival rate is . In this case we have

, so that satisfies Assumption 4.
We now prove the key property of differentiable nonde-

creasing elasticity price functions in the current development:
For such functions, there exists a unique Nash equilibrium of
the game defined by .

Proposition 7: Suppose Assumptions 1–3 hold. If in addi-
tion is differentiable and exhibits nondecreasing elasticity (As-
sumption 4 holds), then there exists a unique Nash equilibrium
for the game defined by .

Proof: We use the expressions (18), (19) to show that the
Nash equilibrium is unique under Assumption 4. Observe that
in this case, from (17), we may define
for , and conclude that is a Nash equilibrium if and only
if and the following optimality conditions hold:

if (20)

if (21)

Suppose we have two Nash equilibria , , with
; then , and

. Note that is nonincreasing as
increases; and is nondecreasing as increases (from

Assumption 4) and, therefore, . Further-
more, if , then from (20) we have ;
thus , so as well [from (21)].

Now note that the right-hand side of (20) is strictly larger at
than at ; thus the left hand side must be strictly larger at
than at as well. This is only possible if

for each user , since we have shown in the
preceding paragraph that ; is nonin-
creasing as increases; and . Since

, we have

which is a contradiction. Thus, at the two Nash equilibria, we
must have , so we can let

, , and . Then, all Nash equilibria
satisfy

if (22)

if (23)

However, now we observe that the left hand side of (22) is
strictly decreasing in , so given , there exists at most
one solution to (22). Since , this implies
the Nash equilibrium must be unique.

We observe that uniqueness of the Nash equilibrium implies
an additional desirable property in the case of symmetric users.
If two users share the same utility function, and the price func-
tion is differentiable, we conclude from Proposition 7 that
at the unique Nash equilibrium, these users submit exactly the
same bid (and, hence, receive exactly the same rate allocation).

We also note that in general, Nash equilibria need not be
unique. As an example, consider a case with two users, where

, for . Let the price function be
for , and for . Then,
it is straightforward to verify that any pair such that

for , and , satisfies
(18), (19) with ; thus, by Proposition 6, there exist Nash
equilibria that correspond to each of these . Note, how-
ever, that the price function is not differentiable; it is not clear
whether, in general, differentiability of suffices to guarantee a
unique Nash equilibrium.

III. EFFICIENCY LOSS: THE SINGLE LINK CASE

We let denote an optimal solution to SYSTEM, defined
in (1), (2), and let denote any Nash equilibrium of the game
defined by . We now investigate the efficiency
loss of this system; that is, how much aggregate surplus is
lost because the users attempt to “game” the system? To an-
swer this question, we must compare the aggregate surplus

obtained when the users
fully evaluate the effect of their actions on the price, and
the aggregate surplus obtained by
choosing an allocation which maximizes aggregate surplus.
The following theorem is the main result of this paper: It states
that the efficiency loss is no more than approximately 34%, and
that this bound is essentially tight.

Theorem 8: Suppose that Assumptions 1–3 hold. Suppose
also that for all . Let be any solution to

, and let be any Nash equilibrium of the game
defined by . Then, we have the following bound:

surplus surplus (24)

where surplus is defined in (3). In other words, there is no
more than approximately a 34% efficiency loss when users are
price anticipating.

Furthermore, this bound is tight: For every , there exists
a choice of , a choice of (linear) utility functions ,

, and a (piecewise linear) price function such that a
Nash equilibrium and a solution to SYSTEM exist with

surplus surplus (25)
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Proof: The proof of (24) consists of a sequence of steps.

1) We show that the worst case ratio occurs when the utility
function of each user is linear.

2) We restrict attention to games where the total allocated
Nash equilibrium rate is .

3) We compute the worst case choice of linear utility func-
tions, for a fixed price function and total Nash equi-
librium rate .

4) We prove that it suffices to consider a special class of
piecewise linear price functions.

5) Combining steps 1)–3), we compute the worst case effi-
ciency loss by minimizing the ratio of Nash equilibrium
aggregate surplus to maximal aggregate surplus, over the
worst case choice of games with linear utility functions
[from step 2)] and our restricted class of piecewise linear
price functions [from step 3)].

Step 1: Show that we may assume without loss of generality
that is linear for each user , i.e., without loss of generality
we may assume , where and
for . The proof of this claim is similar to the proof of
[23, Lemma 4]. Let denote any solution to , and
let denote a Nash equilibrium, for an arbitrary collection of
utility functions satisfying the assumptions of the
theorem. We let denote the allocation vector at
the Nash equilibrium. For each user , we define a new utility
function , where ; we know that

by Assumption 1. Then, observe that if we replace the
utility functions with the linear utility functions

, the vector remains a Nash equilibrium; this
follows from the necessary and sufficient conditions of Propo-
sition 6.

We first show that . To see this, note
from (19) that for all such that . Thus,

for such a user , so
, by convexity (Assumption 2).

Next, we note that . This follows
since is strictly increasing and nonnegative, while

; thus if is sufficiently small for all , we will have
, which implies

(since is a solution to SYSTEM).

Using concavity, we have for each that
. Defining and expanding the

definition of surplus , we have

surplus
surplus

(Note that all denominators are positive, since we have shown
that .) Since we assumed

, we have by concavity; and

since ,
we have the inequality

Now, observe that the right hand side of the previous expres-
sion is the ratio of the Nash equilibrium aggregate surplus to
the maximal aggregate surplus, when the utility functions are

; since this ratio is no larger than the same ratio
for the original utility functions , we can restrict
attention to games where the utility function of each user is
linear. Finally, by replacing by , and the cost
function by , we may assume without loss
of generality that . Thus, by relabeling the users
if necessary, we assume for the remainder of the proof that

for all , where and
for .

Before continuing, we observe that under these conditions,
we have the following relation:

To see this, note that at any fixed value of , the
left hand side is maximized by allocating the entire rate to
user 1. Thus, the ratio of Nash equilibrium aggregate surplus to
maximal aggregate surplus becomes

(26)

Note that the denominator is positive, since ;
and further, the optimal solution in the denominator occurs at
the unique value of such that .

Step 2: Show that we may restrict attention to games where
the total allocated rate at the Nash equilibrium is . Fix
a cost function satisfying Assumption 2. Let be a Nash
equilibrium, and let be the resulting allocation. Let

be the total allocated rate at the Nash equilibrium;
note that by Proposition 6. We now define a new price
function according to , and a new cost function

; note that . Then, it is
straightforward to check that satisfies Assumption 2. We will
use hats to denote the corresponding functions when the price
function is : , , , , etc.

Define . Then we claim that is a Nash equilib-
rium when the price function is . First observe that

; thus . Furthermore,
.

Finally, note that
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from which we conclude that , and similarly
. Recall that is a Nash equilibrium for the

price function ; thus, if we combine the preceding conclusions
and apply Proposition 6, we have that is a Nash equilibrium
when the price function is , with total allocated rate and
allocation .

To complete the proof of this step, we note the following chain
of equalities:

where we make the substitution . But now note that the
right hand side is the ratio of Nash equilibrium aggregate surplus
to maximal aggregate surplus for a game where the total allo-
cated rate at the Nash equilibrium is equal to 1. Consequently,
in computing the worst case efficiency loss, we may restrict our
attention to games where the Nash equilibrium allocated rate is
equal to 1.

Step 3: For a fixed price function , determine the instance
of linear utility functions that minimizes Nash equilibrium ag-
gregate surplus, for a fixed Nash equilibrium allocated rate

. Note that fixing the price function fixes the
optimal aggregate surplus; thus minimizing the aggregate sur-
plus at Nash equilibrium also yields the worst case efficiency
loss.

We will optimize over the set of all games where users have
linear utility functions [satisfying the conditions of step 1)], and
where the total Nash equilibrium rate is . We use the
necessary and sufficient conditions of Proposition 6. Note that
by fixing the price function and the total rate , the Nash
equilibrium price is fixed, , and and are fixed
as well [from the definition (17)]; for notational convenience,
we abbreviate , , , and

for the duration of this step. Since , for a fixed
value of the game with linear utility functions that minimizes
aggregate surplus is given by solving the following optimization
problem (with unknowns ):

minimize (27)

subject to (28)

if

(29)

(30)

(31)

(32)

(Note that we have applied Proposition 6: if we solve the pre-
ceding problem and find an allocation and coefficients , then

there exists a Nash equilibrium with .) The objec-
tive function is the aggregate surplus given a Nash equilibrium
allocation . Conditions (28) and (29) are equivalent to the Nash
equilibrium conditions established in Proposition 6. The con-
straint (30) ensures that the total allocation made is equal to 1,
and the constraint (31) follows from Step 1. The constraint (32)
ensures the rate allocated to each user is nonnegative.

We solve this problem through a sequence of reductions. We
first show we may assume without loss of generality that the
constraint (29) holds with equality for all users .
The resulting problem is symmetric in the users ;
we next show that a feasible solution exists if and only if

and is sufficiently large, and we conclude using
a convexity argument that at an optimal
solution. Finally, we show the worst-case occurs in the limit
where , and calculate the resulting Nash equilibrium
aggregate surplus.

We first show that it suffices to optimize over all such
that (29) holds with equality for . Note that if

is a feasible solution to (27)–(32), then from (29)–(32),
and the fact that , we conclude that . Now, if

for some , but the corresponding constraint
in (29) does not hold with equality, we can reduce until the
constraint in (29) does hold with equality; by this process, we
obtain a smaller value for the objective function (27). On the
other hand, if for some , we can set

; since , this preserves feasibility, but does not impact
the term in the objective function (27). Therefore, we can
restrict attention to feasible solutions for which

(33)

Having done so, observe that the constraint (31) that
may be written as

Finally, the constraint (31) that becomes redundant, as
it is guaranteed by the fact that [from (30)], (by
definition), and (33).

We now use the preceding observations to simplify the opti-
mization problem (27)–(32) as follows:

minimize (34)

subject to (35)

(36)

(37)

(38)

The objective function (34) equals (27) upon substitution for
for , from (33). We know that when

[from (28) and (29)]; thus the constraint (35) is equivalent
to the constraints (28) and (29) for user 1 with . The
constraint (28) for is redundant and eliminated, since (29)
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holds with equality for . The constraint (36) is equivalent
to the allocation constraint (30); and the constraint (37) ensures

, as required in (31).
We first note that for a feasible solution to (34)–(38) to exist,

we must have . We have already shown that
we must have if a feasible solution exists. Furthermore,
from (35) we observe that the smallest feasible value of is

. We require from (36) and (38), so
we must have , which yields the restriction that

. Thus, there only exist Nash equilibria with total
rate 1 and price if:

(39)

We will assume for the remainder of this step that (39) is satis-
fied.

We note that if is a feasible solution to
(34)–(38) with users, then letting , the vector

is a feasible solution to (34)–(38) with
users, and with the same objective function value (34) as .
Thus, the minimal objective function value cannot increase as

increases, so the worst case efficiency loss occurs in the limit
where .

We now solve (34)–(38) for a fixed feasible value of . From
the constraints (36), (37), we observe that a feasible solution to
(34)–(38) exists if and only if the following condition holds in
addition to (39):

(40)

In this case, the following symmetric solution is feasible:

(41)

Furthermore, since the objective function is strictly convex and
symmetric in the variables , and the feasible region
is convex, the symmetric solution (41) must be optimal.

If we substitute the optimal solution (41) into the objective
function (34) and take the limit as , then the constraint
(40) is vacuously satisfied, and the objective function becomes

. Since we have shown that , the worst
case occurs at the smallest feasible value of ; from (35), this
value is

(42)

The resulting worst case Nash equilibrium aggregate surplus is

To complete the proof of the theorem, we will consider the
ratio of this Nash equilibrium aggregate surplus to the maximal
aggregate surplus; we denote this ratio by as a function of
the price function

(43)

Note that henceforth, the scalar used throughout step 3) will
be denoted , and we return to denoting the price function by

. Thus, as defined in (43) is a function of the entire price
function .

For completeness, we summarize in the following lemma an
intermediate tightness result which will be necessary to prove
the tightness of the bound in the theorem.

Lemma 9: Suppose that assumptions 2) and 3) are satisfied.
Then, there exists and a choice of linear utility functions

, where , with total Nash
equilibrium rate 1, if and only if (39) is satisfied, i.e.,

(44)

In this case, given , there exists and a collection
of users where user has utility function ,
such that is a Nash equilibrium allocation with ,
and

(45)

Proof of Lemma: The proof follows from step 3). We have
shown that if there exists a Nash equilibrium with total rate 1,
then (44) must be satisfied. Conversely, if (44) is satisfied, we
proceed as follows: Define according to (42); choose large
enough that (40) is satisfied; define according to (41); and
then define according to (33) with . Then, it follows
that is a feasible solution to (27)–(32), which (by Propo-
sition 6) guarantees there exists a Nash equilibrium whose total
allocated rate equals 1. The bound in (45) then follows by the
proof of step 3).

The remainder of the proof amounts to minimizing the worst
case ratio of Nash equilibrium aggregate surplus to maximal ag-
gregate surplus, over all valid choices of . A valid choice of
is any price function such that at least one choice of linear
utility functions satisfying the conditions of step 1) leads to a
Nash equilibrium with total allocated rate 1. By Lemma 9, all
such functions are characterized by the constraint (44). We
will minimize , given by (43), over all choices of satis-
fying (44).

Step 4: Show that in minimizing over satisfying (44),
we may restrict attention to functions satisfying the following
conditions:

(46)

(47)

(48)

Observe that as defined in (46)–(48) is a convex, strictly in-
creasing, piecewise linear function with two parts: an initial seg-
ment which increases at slope , and a second segment
which increases at slope . In particular, such a function
satisfies Assumption 2. Furthermore, we have ,
so that . This implies ; thus,
multiplying through (48) by yields (44).
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Fig. 1. Proof of Theorem 8, step 4): Given a price function p (solid line)
and Nash equilibrium rate 1, a new price function p (dashed line) is defined
according to (49).

To verify the claim of step 4), we consider any function such
that (44) holds. We define a new price function as follows:

(49)

(See Fig. 1 for an illustration.) Let , and let
. Then ; and since , we

have by convexity of , so that .
Furthermore, since from (44), we have .
Finally, we have

where the equality follows from the definition of and
the inequality follows from (44). Thus, satisfies (46)–(48).
Observe also that , and ,
and thus .

We now show that . As an intermediate step, we
define a new price function as follows:

Of course, and
, so that (44) is satisfied for . Let

denote the cost function associated with . Observe that
(by convexity of ), we have for all that , so that

. Thus

Furthermore, so that .
Next, we let denote the cost function

associated with . By convexity of , we know

for ; thus in that region. We let
. Then, we have the following relationship:

The last equality follows by observing that since
, the solution to occurs at where

; and at all points , we have the relationship
. Combining the preceding results, we have

, as required.
Step 5: The minimum value of over all satisfying

(46)–(48) is . We first show that given satisfying
(46)–(48), is given by

(50)

The numerator results by simplifying the numerator of (43),
when takes the form described by (46)–(48). To arrive at the
denominator, we note that the solution to
occurs at satisfying . Since , we must have

and . Simplifying, we find

(51)

The expression , upon simplification, becomes the
denominator of (50), as required.

Fix and such that , and ,
and define as in (46). We note here that the constraints

and may be equivalently rewritten

as , and . Define ;
from (50), note that for a fixed , is a ratio of two affine
functions of , and thus the minimal value of is achieved
either when or as . Define

, and . Then

if

if

(52)

(53)

We now minimize and over . Over
, the minimum value of is 2/3, achieved

as . Over , the minimum value of
is 20/27, achieved at . Finally, over , the
minimum value of is , achieved at .
Since , we conclude
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that the minimal value of over all satisfying (46)–(48) is
equal to . This completes the proof of (24), the lower
bound in the theorem.

We now show that this lower bound is tight. Fix . The
preceding argument shows that the worst case occurs for price
functions satisfying (46)–(48), where and .
For fixed , let be the associated price function
defined according to (46). Then, we have established that

From Lemma 9, we know there exists such that
, and where is the ratio of Nash equilibrium aggregate

surplus to maximal aggregate surplus for some game with price
function and total allocated rate 1 at the Nash equilibrium.
We thus have

Thus, for sufficiently large, we will have ,
establishing (25).

Theorem 8 shows that in the worst case, aggregate surplus
falls by no more than approximately 34% when users are able
to anticipate the effects of their actions on the price of the link.
Furthermore, this bound is essentially tight. In fact, from the
proof of the theorem we see that this ratio is achieved via a
sequence of games where the following hold true.

1) The price function has the form given by (46)–(48), with
, , and .

2) The number of users becomes large .
3) User 1 has linear utility with , and all users

have linear utility with , where
(for ). The last item follows by

substituting the solution (41) in (33), and taking the limit
as . (Note that formally, the limits of and

should be taken in the correct order; in particular,
in the proof we first have , and then .)

Note that the price function used to achieve the worst case
efficiency loss is not differentiable. As discussed in Section I,
this is the main reason that we allow nondifferentiable price
functions in Assumption 2. Indeed, some of the results of Sec-
tion II-A can be simplified if we restrict attention only to dif-
ferentiable price functions. Nevertheless, we note that even if
we only consider differentiable price functions, the worst case
efficiency loss remains approximately 34%. This result can be
established by approximating the piecewise linear price func-
tions described in (46)–(48) by differentiable price functions.

It is interesting to note that the worst case is obtained by
considering instances where the price function is becoming
steeper and steeper at the Nash equilibrium rate 1, since

. This forces the optimal rate at the solution to
SYSTEM to approach the Nash equilibrium rate , as
we observe from (51); nevertheless, the shortfall between the
Nash equilibrium aggregate surplus and the maximal aggregate
surplus approaches 34%.

IV. INELASTIC SUPPLY VERSUS ELASTIC SUPPLY

In this section, we briefly compare the model of this paper
(allocation of a resource in elastic supply) with the model of [23]
(allocation of a resource in inelastic supply). In [23], a model is
considered with a single link having exactly units of rate
available to allocate among the users. As in the model of this
paper, user submits a bid . The link manager then sets a
price ; and user receives an allocation
given by

if
if

As in this paper, the payoff to user is . It is shown
in [23] that when users are price anticipating and the link supply
is inelastic, the efficiency loss is at most 25% of the maximal
aggregate utility.

Intuitively, we would like to model a system with an inelastic
supply by a cost function which is zero for

, and infinite for . Formally, we show in this
section that if the price function is given by for

and , then as the worst case efficiency
loss approaches 25%—the same value obtained in [23]. While
this does not formally establish the result in [23], the limit is
intuitively plausible, because as the exponent increases, the
price function and associated cost function begin to resemble
an inelastic capacity constraint with : For ,

as ; and for , as .
Theorem 10: Suppose that Assumptions 1–3 hold. Suppose

also that for all , and that for
and . Define the function by

(54)

If is any solution to , and is any Nash equilib-
rium of the game defined by , then

surplus surplus (55)

where surplus is defined in (3). Furthermore, is strictly
increasing, with as ; and the bound (55)
is tight: for fixed , for every , there exists a choice
of and a choice of (linear) utility functions , ,
such that a Nash equilibrium a solution to SYSTEM exist
with

surplus surplus (56)

Proof: We follow the proof of Theorem 8. Steps 1)–4)
follow as in that proof, provided we can show that two scalings
of the function do not affect our result—in step 1), where
we replace by , and in step 2), where we re-
place by , where is the Nash equilibrium rate. In-
deed, both these scalings remain valid, since the rescaled price
function is still a monomial with the same exponent as , but
a different constant coefficient. In particular, we may continue
to restrict attention to the special case where ,
with , and where the total Nash equilibrium
allocated rate is 1.
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From steps 1)–4) of the proof of Theorem 8, we must mini-
mize , defined in (43), for all choices of such that (44) is
satisfied, i.e., such that . For ,
we have and, thus, we require

(57)

Note that at the maximal aggregate surplus,
implies that . Furthermore,

for . Thus, is
given by

From (43), we conclude that is given by

We now minimize over the set of satisfying (57). We
begin by differentiating with respect to , and setting the
derivative to zero; simplifying, this yields the following equa-
tion:

This equation is quadratic in , and has two solutions and :
, and . Both solutions

satisfy (57). Let , and . We have

To minimize over satisfying (57), we need also to
check the endpoint where . If , we find

; since from the definition of , the
minimum value is achieved at either or .

For , we define , and .
We need the following technical lemma.

Lemma 11: The functions and are strictly in-
creasing for . Furthermore, for ,
while .

Proof: We begin by noting that . Let
; it suffices to show that is strictly increasing

for . Differentiating yields

It suffices to check that , where
. We have ;

; and . This implies
for all , so is strictly increasing for .

Next, we consider . Note first that . Fur-
thermore, as , , and

. Thus,
as .

Finally, let ; it suffices to show is
strictly increasing for . Differentiating yields

As before, it suffices to check that , where
. We have

; ; and
. Thus, for all

, which implies is strictly increasing for .
From the previous lemma, we conclude that the minimum

value of over satisfying (57) is given by ;
this establishes (55). As in Theorem 8, by construction this
bound is tight, so (56) holds as well.

The preceding theorem shows that for a particular sequence
of price functions which approach an inelastic supply constraint,
the efficiency loss gradually decreases from 7/27 (at ) to
1/4 (as ). In the limit as , we recover the same
efficiency loss as in the earlier work of [23]. However, while
we have demonstrated such a limit holds as long as the price
functions are monomials, there remains an open question: If the
price functions “converge” (in an appropriate sense) to a fixed
capacity constraint, under what conditions does the efficiency
loss also converge to 1/4? It is straightforward to check that such
a limit cannot always hold. For example, consider price func-
tions of the form specified in (46)–(48). Using the expression
for given in (50), it is possible to show that by first taking

, and then taking , the worst case efficiency loss
approaches zero; see (53).

V. CONCLUSION

This paper considers a pricing mechanism where the available
resources in a network are in elastic supply. For a game where
users’ strategies are the payments they are willing to make, we
showed that the efficiency loss is no more than 34% when users
are price anticipating, for the setting of a single link (Theorem 8).

This result can be extended to general networks, using the
same approach as in [23]. We consider a standard multicom-
modity flow model, where each user has multiple paths avail-
able, and each path uses a subset of links in the network. The
utility to a user depends on the maximum rate at which he can
send through the network. We study a game where users submit
individual bids to each link in the network; it is straightforward
to establish existence of a Nash equilibrium for such a game.
Using techniques similar to the results proven in a network con-
text in [23], it can be shown that the efficiency loss is no more
than 34% when users are price anticipating, matching the result
of Section III. For details of this network extension, the reader
is referred to [24] and [29].

Important questions remain regarding an extension of this
work to a dynamic context. While our results suggest that ma-
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nipulation of the market in a static game setting cannot lead to
arbitrarily high efficiency loss, such a result does not necessarily
imply users will not be able to manipulate an algorithmic imple-
mentation of this mechanism (such as those proposed in [3]).
Investigation of this point is an open research topic.

Critical to any investigation of dynamics is the nature of the
information available to the players of the pricing game. In order
to compute an optimal strategic decision users need to know not
only the current price level , but also the total allocated
rate and the derivative of the price (where we
have assumed for simplicity that is differentiable). We postu-
late that the overhead of actually collecting such detailed infor-
mation in a large scale communication network is quite high; in
fact, in general users do not have knowledge of either the total
allocated rate or the derivative of the price at the resource. This
raises an important question of information availability when
users respond to price signals: users may not react optimally,
so what are the users’ conjectures about how their strategies af-
fect the price? Developing more detailed models for the users’
response to available price information from the network is a
research direction for the future.
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