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Simulation-Based Optimization of
Markov Reward Processes

Peter Marbach and John N. Tsitsiklis, Fellow, IEEE

Abstract—This paper proposes a simulation-based algorithm
for optimizing the average reward in a finite-state Markov reward
process that depends on a set of parameters. As a special case, the
method applies to Markov decision processes where optimization
takes place within a parametrized set of policies. The algorithm re-
lies on the regenerative structure of finite-state Markov processes,
involves the simulation of a single sample path, and can be imple-
mented online. A convergence result (with probability 1) is pro-
vided.

Index Terms—Markov reward processes, simulation-based opti-
mization, stochastic approximation.

I. INTRODUCTION

M ARKOV decision processes, and the associated dy-
namic programming (DP) methodology [1], [25],

provide a general framework for posing and analyzing prob-
lems of sequential decision making under uncertainty. DP
methods rely on a suitably defined value function that has to
be computed for every state in the state space. However, many
interesting problems involve very large state spaces (“curse of
dimensionality”). In addition, DP assumes the availability of
an exact model, in the form of transition probabilities. In many
practical situations, such a model is not available and one must
resort to simulation or experimentation with an actual system.
For all of these reasons, dynamic programming in its pure form,
may be inapplicable.

The efforts to overcome the aforementioned difficulties in-
volve the following two main ideas:

1) the use of simulation to estimate quantities of interest,
thus avoiding model-based computations;

2) the use of parametric representations to overcome the
curse of dimensionality.

Parametric representations, and the associated algorithms,
can be broadly classified into three main categories.

1) Parametrized Value Functions:Instead of associating
a value with each state, one uses a parametric
form , where is a vector of tunable parameters
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(weights), and is a so-called approximation archi-
tecture. For example, could be the output of a
multilayer perceptron with weights, when the input
is . Other representations are possible, e.g., involving
polynomials, linear combinations of feature vectors,
state aggregation, etc. When the main ideas from DP are
combined with such parametric representations, one ob-
tains methods that go under the names of “reinforcement
learning” or “neuro-dynamic programming” (see [5] and
[26] for textbook expositions, as well as the references
therein). A key characteristic is that policy optimization
is carried out in an indirect fashion; one tries to obtain
a good approximation of the optimal value function of
dynamic programming, and uses it to construct policies
that are close to optimal. Such methods are reasonably
well, though not fully, understood, and there have been
some notable practical successes (see [5] and [26] for
an overview), including the world-class backgammon
player by Tesauro [28].

2) Parametrized Policies:In an alternative approach, which
is the one considered in this paper, the tuning of a parame-
trized value function is bypassed. Instead, one considers a
class of policies described in terms of a parameter vector
. Simulation is employed to estimate the gradient of the

performance metric with respect to, and the policy is
improved by updating in a gradient direction. In some
cases, the required gradient can be estimated using infin-
itesimal perturbation analysis (IPA) (see, e.g., [17], [12],
[8], and the references therein). For general Markov pro-
cesses, and in the absence of special structure, IPA is in-
applicable, but gradient estimation is still possible using
“likelihood-ratio” methods [14], [15], [13], [21], and [16].

3) Actor–Critic Methods:A third approach, which is a com-
bination of the first two, includes parameterizations of
the policy (actor) and of the value function (critic) [4].
While such methods seem particularly promising, theo-
retical understanding has been limited to the impractical
case of lookup representations (one parameter per state)
[19].

This paper concentrates on methods based on policy parame-
terization and (approximate) gradient improvement, in the spirit
of item 2) above. While we are primarily interested in the case
of Markov decision processes, almost everything applies to the
more general case of Markov reward processes that depend on a
parameter vector, and we proceed within this broader context.

We start with a formula for the gradient of the performance
metric that has been presented in different forms and for various
contexts in [15], [7], [11], [18], [29], and [9]. We then suggest a
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method for estimating the terms that appear in that formula. This
leads to a simulation-based method that updates the parameter
vector at every regeneration time, in an approximate gradient
direction. Furthermore, we show how to construct an online
method that updates the parameter vector at each time step. The
resulting method has some conceptual similarities with those
described in [8] (that reference assumes, however, the avail-
ability of an IPA estimator, with certain guaranteed properties
that are absent in our context) and in [18] (which, however, does
not contain convergence results).

The method that we propose only keeps in memory and up-
dates numbers, where is the dimension of . Other
than itself, this includes a vector similar to the “eligibility
trace” in Sutton’s temporal difference methods, and (as in [18])
an estimate of the average reward under the current value of
. If that estimate was accurate, our method would be a standard

stochastic gradient algorithm. However, askeeps changing,
is generally a biased estimate of the true average reward, and the
mathematical structure of our method is more complex than that
of stochastic gradient algorithms. For reasons that will become
clearer later, standard approaches (e.g., martingale arguments or
the ODE approach) do not seem to suffice for establishing con-
vergence, and a more elaborate proof is necessary.

Our gradient estimator can also be derived or interpreted in
terms of likelihood ratios [15], [13]. An alternative simulation-
based stochastic gradient method, again based on a likelihood
ratio formula, has been provided in [14], and uses the simula-
tion of tworegenerative cycles to construct an unbiased estimate
of the gradient. We note some of the differences with the latter
work. First, the methods in [14] involve a larger number of aux-
iliary quantities that are propagated in the course of a regenera-
tive cycle. Second, our method admits a modification (see Sec-
tions IV and V) that can make it applicable even if the time until
the next regeneration is excessive (in which case, likelihood
ratio-based methods suffer from excessive variance). Third, our
estimate of the average reward is obtained as a (weighted)
average of all past rewards (not just over the last regenerative
cycle). In contrast, an approach such as the one in [14] would
construct an independent estimate ofduring each regenera-
tive cycle, which should result in higher variance. Finally, our
method brings forth and makes crucial use of the value (differ-
ential reward) function of dynamic programming. This is impor-
tant because it paves the way for actor–critic methods in which
the variance associated with the estimates of the differential re-
wards is potentially reduced by means of “learning” (value func-
tion approximation). Indeed, subsequent to the first writing of
this paper, this latter approach has been pursued in [20], [27].

In summary, the main contributions of this paper are as fol-
lows.

1) We introduce a new algorithm for updating the parame-
ters of a Markov reward process, on the basis of a single
sample path. The parameter updates can take place either
during visits to a certain recurrent state, or at every time
step. We also specialize the method to Markov decision
processes with parametrically represented policies. In this
case, the method does not require the transition probabil-
ities to be known.

2) We establish that the gradient (with respect to the param-
eter vector) of the performance metric converges to zero,

with probability 1, which is the strongest possible result
for gradient-related stochastic approximation algorithms.

3) The method admits approximate variants with reduced
variance, such as the one described in Section V, or var-
ious types of actor–critic methods.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce our framework and assumptions, and state
some background results, including a formula for the gradient of
the performance metric. In Section III, we present an algorithm
that performs updates during visits to a certain recurrent state,
present our main convergence result, and provide a heuristic ar-
gument. Sections IV and V deal with variants of the algorithm
that perform updates at every time step. In Section VI, we spe-
cialize our methods to the case of Markov decision processes
that are optimized within a possibly restricted set of parametri-
cally represented randomized policies. We present some numer-
ical results in Section VII, and conclude in Section VIII. The
lengthy proof of our main results is developed in Appendices I
and II.

II. M ARKOV REWARD PROCESSESDEPENDING ON A

PARAMETER

In this section, we present our general framework, make a few
assumptions, and state some basic results that will be needed
later.

We consider a discrete-time, finite-state Markov chain
with state space , whose transition probabili-
ties depend on a parameter vector , and are denoted by

Whenever the state is equal to, we receive a one-stage reward,
that also depends on, and is denoted by .

For every , let be the stochastic matrix with
entries . Let be the set of all such
matrices, and let be its closure. Note that every element of
is also a stochastic matrix and, therefore, defines a Markov chain
on the same state space. We make the following assumptions.

Assumption 1:The Markov chain corresponding to every
is aperiodic. Furthermore, there exists a statewhich

is recurrent for every such Markov chain.
We will often refer to the times that the stateis visited as

regeneration times.
Assumption 2:For every , the functions and

are bounded, twice differentiable, and have bounded first
and second derivatives.

The performance metric that we use to compare different poli-
cies is the average reward criterion , defined by

Here, is the state at time, and the notation indicates
that the expectation is taken with respect to the distribution of
the Markov chain with transition probabilities . Under As-
sumption 1, the average reward is well defined for every ,
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and does not depend on the initial state. Furthermore, the bal-
ance equations

(1)

(2)

have a unique solution , with
being the steady-state probability of stateunder that particular
value of , and the average reward is equal to

(3)

We observe that the balance equations (1) and (2) are of the
form

where is a fixed vector and is an matrix.
(Throughout the paper, all vectors are treated as column
vectors.) Using the fact that depends smoothly on, we
have the following result.

Lemma 1: Let Assumptions 1 and 2 hold. Then, and
are twice differentiable, and have bounded first and second

derivatives.
Proof: The balance equations are of the form

, where the entries of have bounded second derivatives
(Assumption 2). Since the balance equations have a unique so-
lution, the matrix is always invertible, and Cramer’s rule
yields

(4)

where is a vector whose entries are polynomial func-
tions of the entries of . Using Assumption 2, and

are twice differentiable and have bounded first and
second derivatives.

More generally, suppose that , i.e., is the limit of
the stochastic matrices along some sequence. The cor-
responding balance equations are again of the form
, where is a matrix depending on . Under Assump-

tion 1, these balance equations have again a unique solution,
which implies that is strictly positive. Note that

is a continuous function of , and lies in the set
, which is closed and bounded. It follows that is

bounded below by a positive constant. Since every be-
longs to , it follows that , for every .
This fact, together with (4), implies that is twice differen-
tiable and has bounded first and second derivatives. The same
property holds true for , as can be seen by twice differenti-
ating the formula (3).

A. The Gradient of

For any and , we define the differential reward
of state by

(5)

where is the state at time, and is
the first future time that state is visited. With this definition,
it is well known that , and that the vector

is a solution to the Poisson equation

where and is equal to the all-one
vector .

The following proposition gives an expression for the gra-
dient of the average reward , with respect to . A related
expression (in a somewhat different context) was given in [18],
and a proof can be found in [7]. (The latter reference does not
consider the case where depends on , but the extension
is immediate). Given the importance of this result, and because
existing proofs are somewhat involved, we provide a concise
self-contained proof, for the benefit of the reader.

Proposition 1: Let Assumptions 1 and 2 hold. Then,

Proof: We carry out the proof using vector notation, and
using the superscript to denote vector transposition. All gra-
dients are taken with respect to, but to unclutter notation, the
dependence on is suppressed.

We start with the Poisson equation , and
left-multiply both sides with , to obtain

(6)

Note that , which yields . Using the balance
equation , we obtain

We right-multiply both sides by, and use the resulting relation
to rewrite the right-hand side of (6), leading to

Thus,

which is the desired result.
Equation (3) for suggests that could involve

terms of the form , but the expression given by Proposi-
tion 1 involves no such terms. This property is very helpful in
producing simulation-based estimates of .

B. An Idealized Gradient Algorithm

Given that our goal is to maximize the average reward ,
it is natural to consider gradient-type methods. If the gradient of

could be computed exactly, we would consider a gradient
algorithm of the form

Based on the fact that has bounded second derivatives, and
under suitable conditions on the stepsizes, it would follow
that and that converges [2].

Alternatively, if we could use simulation to produce an un-
biased estimate of , we could then employ the sto-
chastic gradient iteration
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The convergence of such a method can be established if we use
a diminishing stepsize sequence and make suitable assumptions
on the estimation errors. While one can construct unbiased es-
timates of the gradient [14], it does not appear possible to use
them in an algorithm which updates the parameter vectorat
every time step—which is a desirable property, as discussed in
Section III-D. This difficulty is bypassed by the method devel-
oped in Section III

III. T HE SIMULATION -BASED METHOD

In this section, we develop a simulation-based algorithm in
which the gradient is replaced with a biased estimate,
obtained by simulating a single sample path. We will eventually
show that the bias asymptotically vanishes, which will then lead
to a convergence result. For technical reasons, we make the fol-
lowing assumption on the transition probabilities .

Assumption 3:For every and , there exists a bounded func-
tion such that

Note that when , we have

which can be interpreted as a likelihood ratio derivative term
[21]. Assumption 3 holds automatically if there exists a positive
scalar , such that for every , we have

either or

A. Estimation of

Throughout this subsection, we assume that the parameter
vector is fixed to some value. Let be a sample path of the
corresponding Markov chain, possibly obtained through simu-
lation. Let be the time of the th visit at the recurrent state

. We refer to the sequence as the th
regenerative cycle, and we define itslength by

For a fixed , the random variables are independent identi-
cally distributed, and have a (common) finite mean, denoted by

.
Our first step is to rewrite the formula for in the form

Estimating the term through simulation is straight-
forward, assuming that we are able to compute for any
given and . The other term can be viewed as the expecta-
tion of , with respect to the steady-state probability

of transitions from to . Furthermore, the defini-
tion (5) of , suggests that if , and

, we can use

(7)

to estimate , where is some estimate of . Note that
and does not need to be estimated. For this reason,

we let

if

By accumulating the above described estimates over a regen-
erative cycle, we are finally led to an estimate of the direction
of given by

(8)
The random variables are independent and identically
distributed for different values of , because the transitions
during distinct regenerative cycles are independent.

We define to be the expected value of ,
namely

(9)

The following proposition confirms that the expectation of
is aligned with , to the extent that is close

to .
Proposition 2: We have

where

(10)

Proof: Note that for , we have

Therefore,

where

(11)

We consider separately the expectations of the three sums above.
Using the definition of , the expectation of the second sum
is equal to . We then consider the third sum. As
is well known, the expected sum of rewards over a regenera-
tive cycle is equal to the steady-state expected reward times the
expected length of the regenerative cycle. Therefore, the expec-
tation of the third sum is

(12)



MARBACH AND TSITSIKLIS: SIMULATION-BASED OPTIMIZATION OF MARKOV REWARD PROCESSES 195

We now focus on the expectation of the first sum. For
, let

Let stand for the history of the process
up to time . By comparing the definition (11) of with the
definition (5) of , we obtain

(13)

It follows that
Let if , and , otherwise. For any

, we have

We then have

(The interchange of the summation and the expectation can be
justified by appealing to the dominated convergence theorem.)

Therefore, we have

The right-hand side can be viewed as the total reward over a
regenerative cycle of a Markov reward process, where the re-
ward associated with a transition fromto is . Re-
calling that any particular transition has steady-state probability

of being from to , we obtain

(14)

By combining (12) and (14), and comparing with the formula
for , we see that the desired result has been proved.

B. An Algorithm that Updates at Visits to the Recurrent State

We now use the approximate gradient direction provided by
Proposition 2, and propose a simulation-based algorithm that
performs updates at visits to the recurrent state. We use the
variable to index the times when the recurrent stateis vis-
ited, and the corresponding updates. The form of the algorithm
is the following. At the time that state is visited for the

th time, we have available a current vector and an average
reward estimate . We then simulate the process according to

the transition probabilities until the next time that
is visited, and update according to

(15)

(16)

where is a positive stepsize sequence (cf. Assumption 4) and
allows to scale the stepsize for updatingby a positive

constant. To see the rationale behind (16), note that the expected
update direction for is

(17)

which moves closer to .
Assumption 4:The stepsizes are nonnegative and satisfy

Assumption 4 is satisfied, for example, if we let .
It can be shown that if is held fixed, but keeps being up-
dated according to (16), thenconverges to . However, if

is also updated according to (15), then the estimatecan
“lag behind” . As a consequence, the expected update di-
rection for will not be aligned with the gradient .

An alternative approach that we do not pursue is to use dif-
ferent stepsizes for updatingand . If the stepsize used to up-
date is, in the limit, much smaller than the stepsize used to up-
date , the algorithm exhibits a two-time scale behavior of the
form studied in [3]. In the limit, is an increasingly accurate
estimate of , and the algorithm is effectively a stochastic
gradient algorithm. However, such a method would make slower
progress, as far asis concerned. Our convergence results indi-
cate that this alternative approach is not necessary.

We can now state our main result, which is proved in Ap-
pendix I.

Proposition 3: Let Assumptions 1–4 hold, and let be
the sequence of parameter vectors generated by the above de-
scribed algorithm. Then, converges and

with probability 1.

C. A Heuristic Argument

In this subsection, we approximate the algorithm by a suitable
ODE (as in [22]), and establish the convergence properties of
the ODE. While this argument does not constitute a proof, it
illustrates the rationale behind our convergence result.

We replace the update directions by their expectations under
the current value of. The resulting deterministic update equa-
tions take the form
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where is given by Proposition 2, and where and
are the deterministic counterparts of and , respectively.
With an asymptotically vanishing stepsize, and after rescaling
time, this deterministic iteration behaves similar to the following
system of differential equations:

(18)

(19)

Note that and are bounded functions since the one-stage
reward is finite-valued and, therefore, bounded. We will
now argue that converges.

We first consider the case where the initial conditions satisfy
. We then claim that

(20)

Indeed, suppose that at some timewe have . If
, then we are at an equilibrium point of the dif-

ferential equations, and we have for all subsequent
times. Otherwise, if , then , and

. At the same time, we have , and this im-
plies that for slightly larger than . The validity
of the claim (20) follows. As long as , is nonde-
creasing and since it is bounded, it must converge.

Suppose now that the initial conditions satisfy .
As long as this condition remains true, is nonincreasing.
There are two possibilities. If this condition remains true for
all times, then converges. If not, then there exists a time
such that , which takes us back to the previously
considered case.

Having concluded that converges, we can use (19) to argue
that must also converge to the same limit. Then, in the
limit, evolves according to , from which it fol-
lows that must go to zero.

We now comment on the nature of a rigorous proof. There
are two common approaches for proving the convergence of sto-
chastic approximation methods. One method relies on the exis-
tence of a suitable Lyapunov function and a martingale argu-
ment. In our context, could play such a role. However,
as long as , our method cannot be expressed as
a stochastic gradient algorithm and this approach does not go
through. (Furthermore, it is unclear whether another Lyapunov
function would do.) The second proof method, the so-called
ODE approach, shows that the trajectories followed by the al-
gorithm converge to the trajectories of a corresponding deter-
ministic ODE, e.g., the ODE given by (18) and (19). This line
of analysis generally requires the iterates to be bounded func-
tions of time. In our case, such a boundedness property is not
guaranteed to hold. For example, ifstands for the weights of
a neural network, it is certainly possible that certain “neurons”
asymptotically saturate, and the corresponding weights drift to
infinity. We therefore need a line of argument specially tailored
to our particular algorithm. In rough terms, it proceeds along the
same lines as the above provided deterministic analysis, except
that we must also ensure that the stochastic terms are not signif-
icant.

D. Implementation Issues

For systems involving a large state space, as is the case in
many applications, the interval between visits to the statecan
be large. Consequently,

1) the parameter vectorgets updated only infrequently;
2) the estimate can have a large variance.
In the following, we will address these two issues and propose

two modified versions: one which updatesat every time step,
and one which reduces the variance of the updates.

IV. A N ALGORITHM THAT UPDATES AT EVERYTIME STEP

In this section, we develop an algorithm which updates the
parameter vector at every time step. We start by indicating an
economical way of computing the update direction .
This will allow us to break into a sum of incremental
updates carried out at each time step.

Taking into account that , (8) becomes

where, for ,

is a vector (of the same dimension as) that becomes available
at time . It can be updated recursively, with

(21)

and

(22)

We note that is the likelihood ratio derivative that commonly
arises in likelihood ratio gradient estimation [15], [13].

The preceding formulas suggest the following algorithm
which updates at every time step. At a typical time, the
state is , and the values of , , and are available from
the previous iteration. We updateand according to



MARBACH AND TSITSIKLIS: SIMULATION-BASED OPTIMIZATION OF MARKOV REWARD PROCESSES 197

We then simulate a transition to the next state according
to the transition probabilities , and finally update by
letting

if
otherwise.

In order to implement the algorithm, on the basis of the above
equations, we only need to maintain in memory scalars,
namely , and the vectors, .

To prove convergence of this version of the algorithm, we
have to strengthen Assumption 1 of Section II. Assumption 1
states that for every fixed parameter, we will eventually reach
the state . Here, we need to make sure that this will remain so,
even if keeps changing; see [23] for further discussion of this
assumption.

Assumption 5:There exist a state and a positive in-
teger , such that, for every state and every collection

of matrices in the set , we have

We also impose an additional condition on the stepsizes.
Assumption 6:The stepsizes are nonincreasing. Further-

more, there exists a positive integerand a positive scalar
such that

Assumption 6 is satisfied, for example, if we let .
With this choice, and if we initialize to zero, it is easily verified
that is equal to the average reward obtained in the first
transitions.

We have the following convergence result, which is proved in
Appendix II.

Proposition 4: Let Assumptions 1–6 hold, and let be
the sequence of parameter vectors generated by the above de-
scribed algorithm. Then, converges and

with probability 1.
The algorithm of this section is similar to the algorithm of

the preceding one, except thatis continually updated in the
course of a regenerative cycle. Because of the diminishing step-
size, these incremental updates are asymptotically negligible,
and the difference between the two algorithms is inconsequen-
tial. Given that the algorithm of the preceding section converges,
Proposition 4 is hardly surprising. The technique in our conver-
gence proof use is similar to the one in [8]. However, mapped
into the context of parametrized Markov reward processes, [8]
assumes that the transition probabilities are independent
of [the one-stage rewards can still depend on]. The sit-
uation here is more general, and a separate proof is needed.

V. AN ALGORITHM THAT MAY REDUCE THEVARIANCE

When the length of a regeneration cycle is large, the vector
will also become large before it is reset to zero, resulting

in high variance for the updates. (This is a generic difficulty

associated with likelihood ratio methods.) For this reason, it may
be preferable to introduce a forgetting factor and
update according to

if
otherwise.

This modification, which resembles the algorithm introduced in
[18], can reduce the variance of a typical update, but introduces
a new bias in the update direction. Given that gradient-type
methods are fairly robust with respect to small biases, this mod-
ification may result in improved practical performance; see the
numerical results in Section VII.

Similar to [18], this modified algorithm can be justified if we
approximate the differential reward with

where (which is increasingly accu-
rate as ), use the estimate

instead of (7), and then argue similar to Section III. The analysis
of this algorithm is carried out in [23] and, with less detail, in
[24].

VI. M ARKOV DECISION PROCESSES

In this section, we indicate how to apply our methodology
to Markov decision processes. An important feature, which is
evident from the formulas provided at the end of this section, is
that the algorithm is “model-free”: as long as the process can be
simulated or is available for observation, explicit knowledge of
the transition probabilities is not needed.

We consider a Markov decision processes [1], [25] with fi-
nite state space and finite action space

. At any state, the choice of a control action
determines the probability that the next state is. The im-
mediate reward at each time step is of the form , where
and is the current state and action, respectively.

A (randomized) policy is defined as a mapping

with components such that

Under a policy , and whenever the state is equal to, action
is chosen with probability , independent of everything

else. If for every state there exists a single for which
is positive (and, therefore, unity), we say that we have apure
policy.

For problems involving very large state spaces, it is impos-
sible to even describe an arbitrary pure policy, since this re-
quires a listing of the actions corresponding to each state. This
leads us to consider policies described in terms of a param-
eter vector , whose dimension is tractable
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small. We are interested in a method that performs small incre-
mental updates of the parameter. A method of this type can
work only if the policy has a smooth dependence on, and this
is the main reason why we choose to work with randomized
policies.

We allow to be an arbitrary element of . With every
, we associate a randomized policy , which at any

given state chooses action with probability . Nat-
urally, we require that every be nonnegative and that

. Note that the resulting transition proba-
bilities are given by

(23)

and the expected reward per stage is given by

The objective is to maximize the average reward under policy
, which is denoted by . This is a special case of the

framework of Section II. We now discuss the various assump-
tions introduced in earlier sections.

In order to satisfy Assumption 1, it suffices to assume that
there exists a state which is recurrent under every pure policy,
a property which is satisfied in many interesting problems. In
order to satisfy Assumption 2, it suffices to assume that the
policy has a smooth dependence on; in particular, that
is twice differentiable (in ) and has bounded first and second
derivatives. Finally, Assumption 3 is implied by the following
condition.

Assumption 7:For every and , there exists a bounded
function such that

This assumption can be satisfied in any of the following ways.

1) Consider a smoothly parametrized function that
maps state-action pairs to real numbers, and sup-
pose that

Assumption 7 is satisfied once we assume that
has bounded first and second derivatives. This particular
form is common in the neural network literature: the

are the outputs of a neural network with input
and internal weights, and an action is selected

by a randomized “soft maximum.”
2) We may artificially restrict to policies for which there

exists some such that

Such policies introduce a minimal amount of “ex-
ploration,” and ensure that every action will be tried
infinitely often. This can be beneficial because the
available experience with simulation-based methods for
Markov decision processes indicates that performance
can substantially degrade in the absence of exploration:

a method may stall within a poor set of policies for the
simple reason that the actions corresponding to better
policies have not been sufficiently explored.

Since for every , we have
, and

Furthermore,

Using these relations in the formula for provided by
Proposition 1, and after some rearranging, we obtain

where

and where and is the state and control at time. Thus,
is the differential reward if control action is first ap-

plied in state , and policy is followed thereafter. It is the
same as Watkins’ -factor [30], suitably modified for the av-
erage reward case.

From here on, we can proceed as in Section III and obtain an
algorithm that updates at the times that state is visited.
The form of the algorithm is

where

and

Similar to Section IV, an on-line version of the algorithm is also
possible. The convergence results of Sections III and IV remain
valid, with only notation changes in the proof.

VII. EXPERIMENTAL RESULTS FOR ANADMISSION CONTROL

PROBLEM

In this section, we describe some numerical experiments with
a call admission control problem. This problem arises when
a service provider with limited resources (bandwidth) has to
accept or reject incoming calls of several types, while taking
into account current congestion. The objective is to maximize
long-term average revenue. More details on the experiments re-
ported here can be found in [23].
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A. Problem Formulation

Consider a communication link with a total bandwidth of
units, which supports a finite set of different
service types. Each service type is characterized by its band-
width requirement , its call arrival rate , and its av-
erage holding time , where we assume that the calls
(customers) arrive according to independent Poisson processes,
and that the holding times are exponentially (and independently)
distributed. When a new customer requests a connection, we can
decide to reject, or, if enough bandwidth is available, to accept
the customer. Once accepted, a customer of classseizes
units of bandwidth for the duration of the call. Whenever a call
of service type gets accepted, we receive an immediate re-
ward of units. The reward can be interpreted as the
price customers of service type are paying for using
units of bandwidth of the link for the duration of the call. The
goal of the link provider is to exercise call admission control in
a way that maximizes the long term revenue.

Using uniformization, the problem is easily transformed into
a discrete-time Markov decision process. The state can be taken
to be of the form , where de-
notes the number of active calls of type, and indicates the
type of event that triggers the next transition (a departure or ar-
rival of a call, together with the type of the call). Ifindicates an
arrival of a call of class and if there is enough free bandwidth
to accommodate it, there are two available decisions, namely,

(accept) or (reject).
We consider randomized policies of the following form. If

there is an arrival of a call of class, we accept it with proba-
bility

Here, is the currently occupied band-
width and , the th component of , is a policy parameter.
Note that

if and only if

Thus, can be interpreted as a “fuzzy” threshold on system
occupancy, which determines whether typecalls are to be
admitted or rejected.

In our experiments, we consider a link with a total band-
width of 10 units, and three different call types. The detailed
parameters are given in Table I and correspond to a moder-
ately-to-heavily loaded system. (If all calls were accepted, the
link utilization would be 77.5%). The number of link configu-
rations (i.e., possible choices ofthat do not violate the link
capacity constraint) turns out to be 286.

Any state in which and corresponds
to an arrival of a new call, is recurrent under any policy, and can
therefore play the role of .

B. Results

1) Optimal Policy: Since the state space is relatively small,
an optimal policy can be obtained using standard dynamic pro-
gramming methods [1]. The optimal average reward is equal to

TABLE I
CALL TYPES

Fig. 1. Parameter vectors and average rewards (computed exactly) of the
corresponding admission control policies, obtained by the idealized gradient
algorithm. The solid, dashed, and dash-dot line correspond to the threshold
values� , � , and� , associated with service types 1, 2, and 3, respectively.

0.8868. (Of course, the optimal average reward within the re-
stricted class of randomized policies that we have introduced
earlier will have to be less than that.) Under an optimal policy,
customers of type 2 and 3 are accepted whenever there is avail-
able bandwidth. Customers of type 1 are accepted only if the
currently used bandwidth does not exceed 7.

2) Idealized Gradient Algorithm:For such a small example,
we can numerically calculate , for any given , which
allows us to implement the idealized algorithm

of Section II-B. The evolution of this algorithm, starting with
, is shown in Fig. 1. After 100 iterations, we have

, and the corresponding av-
erage reward is equal to 0.8808, which is very close to optimal.
The probabilities of accepting a new call are given in Fig. 2.

3) Simulation-Based Algorithm that Updates at Every Time
Step: We implemented a streamlined version of the algorithm
given Section IV, where we reset the vectornot only at visits
to the recurrent state , but at visits to all states
for which . A justification of this modifica-
tion, which does not change the mean direction of the update
or the convergence properties, is given in [23]. In this version,
the vector gets updated roughly every 10 000 time steps. We
started with the same initial parameter , and the
initial estimate of the average reward was set to 0.78. The
scaling factor in the update equation was chosen to be .
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Fig. 2. Probabilities of accepting a new call, as a function of the already
occupied bandwidth, under the control policy associated with the parameter
vector (7.5459, 11.7511, 12.8339) obtained by the idealized gradient algorithm.

Fig. 3. Parameter vectors, and estimates of the average reward, obtained by
the simulation-based algorithm. The scaling factor for the iteration steps is10 .

The corresponding trajectories of the parameter vectors and av-
erage reward are given in Fig. 3. We have the following obser-
vations.

1) The algorithm makes rapid progress in the beginning, im-
proving the average reward from 0.78 to 0.87 within the
first iteration steps.

2) After iterations, the algorithm makes only slow
progress obtaining after iterations the parameter
vector

which corresponds to an admission control policy with
an average reward of 0.8789. This average reward still
slightly below the average reward of 0.8808 obtained by
the idealized gradient algorithm.

Fig. 4. Probabilities of accepting a new call, given as a function of the used
bandwidth on the link, under the control policy associated with the parameter
vector (7.3540, 10.6850, 11.7713) obtained by the simulation-based algorithm.

Fig. 5. Parameter vectors, and estimates of the average reward, obtained by
modified simulation-based algorithm using a discount factor� = 0:99. The
scaling factor for the iteration steps is10 .

3) The fluctuations in the estimate of the average reward
remain small and the performance of the control policies
never deteriorates.

This behavior is not unlike the idealized algorithm (see
Fig. 1), where the average reward improves rapidly in the
beginning, but only slowly in the later iterations.

The probabilities of accepting a new call under the control
policy obtained with the simulation-based algorithm are given
in Fig. 4.

Modified Simulation-Based Algorithm:We finally consider
the modified algorithm of Section V, using a forgetting factor of

. [Again, we reset the vector at visits to all states
for which .] As expected, it makes

much faster progress; see Fig. 5.
After iterations, we obtain a parameter vector of

and an average reward of 0.8785,
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which is essentially the same as for the unmodified algorithm
after iterations. Thus, the use of a forgetting factor speeds
up convergence by an order of magnitude, while introducing a
negligible bias.

VIII. C ONCLUSION

We have presented a simulation-based method for optimizing
a Markov reward process whose transition probabilities depend
on a parameter vector, or a Markov decision process in which
we restrict to a parametric set of randomized policies. The
method involves simulation of a single sample path. Updates
can be carried out either when the recurrent stateis visited,
or at every time step. In either case, the original method is
expected to work well mostly when the regenerative cycles
are not too long. We have also proposed a modified, possibly
more practical method, and have provided some encouraging
numerical results.

Regarding further research, there is a need for more compu-
tational experiments in order to delineate the class of practical
problems for which this methodology is useful. In particular,
further analysis and experimentation is needed for the modified
on-line algorithm of Section V. In addition, the possibility of
combining such methods with “learning” (function approxima-
tion) of the differential reward function needs to be explored.
On the technical side, it may be possible to extend the results to
the case of an infinite state space, and to relate the speed of con-
vergence to the mixing time of the underlying Markov chains.

APPENDIX I
PROOF OFPROPOSITION3

In this appendix, we prove convergence of the algorithm

where

and

For notational convenience, we define the augmented parameter
vector , and write the update equations in the
form

where

(24)

Let

stand for the history of the algorithm up to and including time
. Using Proposition 2 and (17), we have

where

We then rewrite the algorithm in the form

(25)

where

and note that

The proof rests on the fact that is “small,” in a sense to be
made precise, which will then allow us to mimic the heuristic
argument of Section III-C.

A. Preliminaries

In this subsection, we establish a few useful bounds and char-
acterize the behavior of .

Lemma 2:

1) There exist constants and such that

where the subscriptindicates that we are considering the
distribution of the length of the regeneration cycle

under a particular choice of. In particular,
and are bounded functions of.

2) The function is well defined and bounded.
3) The sequence is bounded, with probability 1.
4) The sequence is bounded, with probability 1.

Proof:

1) For any transition probability matrix , and because
of Assumption 1, the probability of reachingin steps
is bounded below by some positive , for every ini-
tial state. Furthermore, can be taken to be a con-
tinuous function of . Using the compactness of, we
have , and the result follows with

.
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2) Note that

where is a bound on (cf. Assumption 3). The
right-hand side is bounded by the result of part a). It fol-
lows that the expectation defining exists and is a
bounded function of .

3) Using Assumption 4 and part a) of this lemma, we obtain

which implies that converges to zero, with
probability 1. Note that

where is an upper bound on . For large
enough , we have , and

, from which it follows that
the sequence is bounded above. By a similar argu-
ment, the sequence is also bounded below.

4) Consider the formula that defines . Parts a) and b)
show that and are bounded. Also,
is bounded since the are bounded (Assumption 2).
Furthermore, is bounded, by Lemma 1. Using
also part c) of this lemma, the result follows.

Lemma 3: There exists a constant (which is random but
finite with probability 1) such that

and the series converges with probability 1.
Proof: Recall that and are bounded with

probability 1 [Assumption 2 and Lemma 2c)]. Thus, for
, we have ,

for some constant . Using this bound in the definition of
, we see that for almost all sample paths, we have

for some new constant . Using Lemma 2a), the conditional
variance of , given , is bounded. Similar ar-
guments also apply to the last component of . Since

, the first statement
follows.

Fix a positive integer and consider the sequence

where is the first time such that .
The sequence is a martingale with bounded second moment,
and therefore converges with probability 1. This is true for every
positive integer . For (almost) every sample path, there exists
some such that . After discarding a countable union
of sets of measure zero (for each, the set of sample paths for
which does not converge), it follows that for (almost) every
sample path, converges.

We observe the following consequences of Lemma 3. First,
converges to zero with probability 1. Since also con-

verges to zero and the sequence is bounded, we conclude
that

and

with probability 1.

B. Convergence of and

In this subsection, we prove that and converge to
a common limit. The flow of the proof is similar to the heuristic
argument of III-C

We will be using a few different Lyapunov functions to an-
alyze the behavior of the algorithm in different “regions.” The
lemma below involves a generic Lyapunov functionand char-
acterizes the changes in caused by the updates

Let . We are interested in
Lyapunov functions that are twice differentiable and for which

, , and are bounded on for every . Let be the
set of all such Lyapunov functions. For any , we define

where for any two vectors, , we use to denote their inner
product.

Lemma 4: If , then the series converges
with probability 1.

Proof: Consider a sample path of the random sequence
. Using part 3) of Lemma 2, and after discarding a set of

zero probability, there exists somesuch that for all
. We use the Taylor expansion of at , and obtain

where is a constant related to the bound on the second deriva-
tives of on the set . A symmetric argument also yields

Using the boundedness of on the set , the same mar-
tingale argument as in the proof of Lemma 3 shows that the se-
ries converges with probability 1. Note that

, which yields

The sequence is bounded (Lemma 2) and is sum-
mable (Assumption 4). Furthermore, it is an easy consequence
of Lemma 3 that is also square summable. We conclude that

is square summable, and the result follows.
From now on, we will concentrate on a single sample path

for which the sequences and (for the Lyapunov func-
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tions to be considered) are summable. Accordingly, we will be
omitting the “with probability 1” qualification.

The next lemma shows that if the error in esti-
mating the average reward is positive but small, then it tends to
decrease. The proof uses as a Lyapunov function.

Lemma 5: Let be such that for all , and let

We have . Furthermore, if , then

Proof: The fact that is a consequence of Lemma 1.
We now have

Using the inequality , to bound the last
term, and the fact , we obtain

which is nonpositive as long as .
In the next two lemmas, we establish that if

remains small during a certain time interval, then cannot
decrease by much. We first introduce a Lyapunov function that
captures the behavior of the algorithm when .

Lemma 6: As in Lemma 5, let be such that .
Let also

We have . Furthermore, if , then

Proof: The fact that is a consequence of Lemma 1.
We have

and

Therefore, assuming that , and using the
Schwartz inequality, we obtain

Lemma 7: Consider the same functionas in Lemma 6, and
the same constant. Let be some positive scalar smaller than

. Suppose that for some integersand , with ,
we have

and

Then,

Proof: Using Lemma 6, we have

Therefore, for , we have

and

(26)

Note that , and
. Using these inequalities in (26), we obtain the

desired result.
Lemma 8: We have .

Proof: Suppose that the result is not true, and we will de-
rive a contradiction. Since and
converge to zero, there exists a scalar and an integer ,
such that either , or , for
all . Without loss of generality, let us consider the first
possibility.

Recall that the update equation foris of the form

where is the last component of the vector , which is sum-
mable by Lemma 3. Given that stays above, the
sequence sums to infinity. As is sum-
mable, we conclude that converges to infinity, which con-
tradicts the fact that it is bounded.

The next lemma shows that the condition is
satisfied, in the limit.

Lemma 9: We have .
Proof: Suppose the contrary. Then, there exists some

such that the inequality

holds infinitely often. Let , where is the
constant of Lemma 5. Using Lemma 8, we conclude that

crosses infinitely often from a value smaller than
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to a value larger than . In particular, there exist infinitely
many pairs , with , such that

and

We use the Lyapunov function

and note that

(27)

For , we have
. Lemma 5 applies and shows that .

Therefore,

By Lemma 4, converges, which implies that
becomes arbitrarily small. This contradicts (27)

and completes the proof.
We now continue with the central step in the proof, which

consists of showing that .
Using Lemma 9, it suffices to show that we cannot have

. The main idea is the fol-
lowing. Whenever becomes significantly larger than

, then is bound to increase significantly. On the other
hand, by Lemma 7, whenever is approximately equal to

, then cannot decrease by much. Since is bounded,
this will imply that can become significantly larger than

only a finite number of times.
Lemma 10: We have .

Proof: We will assume the contrary and derive a contra-
diction. By Lemma 9, we have

So if the desired result is not true, we must have
, which we will assume

to be the case. In particular, there is some such that
, infinitely often. Without loss of generality,

we assume that , where is the constant of
Lemmas 5 and 6. Let be some small constant (with

), to be specified later. Using Lemma 9, we have
for all large enough . In addition, by

Lemma 8, the condition holds infinitely
often. Thus, the algorithm can be broken down into a sequence
of cycles, where in the beginning and at the end of each cycle we
have , while the condition
holds at some intermediate time in the cycle.

We describe the stages of such a cycle more precisely. A typ-
ical cycle starts at some time with . Let
be the first time after time that . Let be
the last time before such that . Let also

be the last time before such that . Finally,
let be the first time after such that .
The time is the end of the cycle and marks the beginning of
a new cycle.

Recall that the changes in and converge to zero. For
this reason, by taking to be large enough, we can assume
that . To summarize our construction, we have

, and

Our argument will use the Lyapunov functions

where is as in Lemma 5 and 6, and

We have

and we define by a similar formula. By Lemma 4, the
series and converge. Also, let

We observe that is the last component of and therefore,
the series converges and . Finally, let

be a constant such that , for all ,
which exists because and because the sequences
and are bounded.

Using the above observations, we see that if the beginning
time of a cycle is chosen large enough, then for any,
such that , we have
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Finally, we assume that has been chosen small enough so that

Using the fact that , we have

Furthermore, we have

which implies that

Then,

We have shown so far that has a substantial increase be-
tween time and . We now show that can only have a
small decrease in the time betweenand . Indeed, by Lemma
7, we have

By combining these two properties, we obtain

We have shown that increases by a positive amount during
each cycle. Since is bounded above, this proves that there

can only be a finite number of cycles, and a contradiction has
been obtained.

Lemma 11: The sequences and converge.
Proof: Consider the function

, and the same constantas in Lemma 6.
Let be a scalar such that . By the preceding
lemma and by Lemma 4, there exists somesuch that if

, we have

and

Using Lemma 6,

or

which implies

Therefore,

and this implies that

Since can be chosen arbitrarily small, we have
, and since

the sequence is bounded, we conclude that it converges.
Using also Lemma 10, it follows that converges as well.

C. Convergence of

In the preceding subsection, we have shown that and
converge to a common limit. It now remains to show that

converges to zero.
Since converges to zero, the algorithm is of the

form

where converges to zero and is a summable sequence.
This is a gradient method with errors, similar to the methods
considered in [10] and [6]. However, [10] assumes the bound-
edness of the sequence of iterates, and the results of [6] do not
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include the term . Thus, while the situation is very similar to
that considered in these references, a separate proof is needed.

We will first show that . Sup-
pose the contrary. Then, there exists some and some
such that for all . In addition, by taking

large enough, we can also assume that . Then, it
is easily checked that

Let . Note that . We have

(28)

Since is summable (Lemma 4), but , we
conclude that converges to infinity, which is a contradic-
tion.

Next we show that . Sup-
pose the contrary. Then, there exists some such that

for infinitely many indices . For any such ,
let be the first subsequent time that . Then,

for some constant , as is bounded (Lemma 1). Re-
call that is bounded by some constant. Furthermore,
when is large enough, the summability of the sequence
yields This implies that

. By an argument very similar to the one that led to (28),
it is easily shown that there exists some such that

which contradicts the convergence of the sequence .

APPENDIX II
PROOF OFPROPOSITION4

In this section, we prove the convergence of the on-line
method introduced in Section IV, which is described by

if

otherwise.

The proof has many common elements with the proof of Propo-
sition 3. For this reason, we will only discuss the differences

in the two proofs. In addition, whenever routine arguments are
used, we will only provide an outline.

As in Appendix I, we let . Note, however, the
different meaning of the indexwhich is now advanced at each
time step, whereas in Appendix I it was advanced whenever the
state was visited. We also define an augmented state

.
We rewrite the update equations as

where

(29)

Consider the sequence of states visited during
the execution of the algorithm. As in Section III, we let be
the th time that the recurrent state is visited. Also, as in
Appendix I, we let

stand for the history of the algorithm up to and including time
.
The parameter keeps changing between visits to state,

which is a situation somewhat different than that considered in
Lemma 2a). Nevertheless, using Assumption 5, a similar argu-
ment applies and shows that for any positive integer, there ex-
ists a constant such that

(30)

We have

(31)

where and are given by

(32)

and is a scaled version of the functionin Appendix I, namely,

(33)

We note the following property of the various stepsize param-
eters.

Lemma 12:

1) For any positive integer, we have
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2) We have

with probability 1.
Proof:

1) From (30), and because is -measurable, we have

Hence,

and the result follows.
2) By Assumption 4, we have

Furthermore, since the sequenceis nonincreasing (As-
sumption 5), we have

Using part a) of the lemma, we obtain that has
finite expectation and is therefore finite with probability
1.

Without loss of generality, we assume that for
all . Then, the update equation for implies that

, where is a bound on . Thus, is
bounded by a deterministic constant, which implies that the
magnitude of is also bounded by a deterministic constant.

We now observe that (31) is of the same form as (25) that
was studied in the preceding appendix, except that we now have

in place of , in place of , and in place
of . By Lemma 12b), the new stepsizes satisfy the same
conditions as those imposed by Assumption 4 on the stepsizes

of Appendix I. Also, in the next subsection, we show that the
series converges. Once these properties are established,
the arguments in Appendix I remain valid and show that
converges, and that converges to zero. Furthermore,
we will see in the next subsection that the total change of
between consecutive visits toconverges to zero. This implies
that converges and that converges to zero, and
Proposition 4 is established.

A. Summability of and Convergence of the Changes in

This subsection is devoted to the proof that the series
converges, and that the changes ofbetween visits to con-
verge to zero.

We introduce some more notation. The evolution of the
augmented state is affected by the fact that

changes at each time step. Given a timeat which is
visited, we define a “frozen” augmented state
which evolves the same way as except that is held fixed at

until the next visit at . More precisely, we let .
Then, for , we let evolve as a time-homogeneous

Markov chain with transition probabilities . We also
let be the first time after
that is equal to , and

We start by breaking down as follows:

where

We will show that each one of the series ,
, converges with probability 1.

We make the following observations. The ratio
is bounded because of Assumption 3. This implies that between
the times and that is visited, the magnitude of
is bounded by for some constant . Similarly,
the magnitude of is bounded by . Using the
boundedness of and , together with the update equa-
tions for and , we conclude that there exists a (deter-
ministic) constant , such that for every , we have for

,

(34)

(35)

(36)

and for

(37)

Lemma 13: The series converges with probability
1.

Proof: Let be a bound on . Then, using As-
sumption 5, we have



208 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 2, FEBRUARY 2001

Then, Lemma 12a) implies that has finite expecta-
tion, and is therefore finite with probability 1.

Lemma 14: The series converges with probability
1.

Proof: When the parametersand are frozen to their

values at time , the total update coin-
cides with the update of the algorithm studied in Ap-
pendix I. Using the discussion in the beginning of that appendix,
we have . Furthermore, observe that

Thus, . Furthermore, using (34), we have

Using Lemma 12a), we obtain

Thus, is martingale with bounded variance and, there-
fore, converges.

Lemma 15: The series converges with probability
1.

Proof: The proof is based on a coupling argument. For
, the two processes and can be

defined on the same probability space as follows. Suppose that
and are both equal to some particular state. We parti-

tion the unit interval into subintervals, each of length ,
. The next state is obtained by generating a

uniform random variable and selecting the stateassociated
with the particular subinterval into which belongs. The same
random variable is used to select , except that we now
have a partition into subintervals of length . The prob-
ability that causes and to be different is bounded
by . Using the assumption that the
transition probabilities depend smoothly on, as well as (35),
we obtain

(38)

for some constants and .
We define to be the event

for some

Using (38), we obtain

Note that, if the event does not occur, then . Thus,

Since is bounded, and using also the bounds (34)–(37),
we have

for some new constant . We conclude that

Now, it is easily verified that

for some new constant . By combining these inequalities, we
obtain

and

for some different constant. Using Lemma 12a),
has finite expectation, and is, therefore, finite with probability
1.

Lemma 16: The series converges with probability
1.

Proof: Using (36), we have

Using Lemma 12a), has finite expectation, and is
therefore finite with probability 1.

Lemma 17: The series converges with probability
1.

Proof: Using Assumption 5 and the bound (34) on
, we have

Using Lemma 12a), has finite expectation, and is,
therefore, finite with probability 1.
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We close by establishing the statement mentioned at the end
of the preceding subsection, namely, that the changes in(and,
therefore, the changes in as well) between visits to the recur-
rent state tend to zero as time goes to infinity. Indeed, (34)
establishes a bound on for ,
which converges to zero because of Lemma 12a).
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