MATHEMATICS OF OFERATIONS RESEARCH
Vol. 24, Neo. 2, May 1999
Printed in U.S.A.

THE COMPLEXITY OF OPTIMAL QUEUING NETWORK CONTROI

CHRISTOS H. PAPADIMITRIOU anxp JOHN N. TSITSIKLIS

We show that several well-known optimization problems related to the optimal control of queues
are provably intractable—independently of any unproven conjecture such as # 3 NF. In particular,
we show that several versions of the problem of optimally controlling a simple network of queues
with simple arrival and service distributions and multiple customer classes is complete for
exponential time. This is perhaps the first such intractability result for a well-known optimization
problem. We also show that the restless bandit problem (the generalization of the multi-armed bandit
problem to the case in which the unselected processes are not quiescent) is complete for polynomial
space.

1. Introduction. The optimal conirol of a network of queues is a well-known, much
studied, and notoriously difficult problem. We are given several servers, a set of customer
classes, and class-dependent probability distributions for the service times. For each customer
class, there is only one server that can serve customers of that class, but the same server might
be eligible for several classes. The class of a customer can change at each service completion
time; for some customer classes, the new class is under our control; for others, the class
change is probabilistic. We restrict ourselves to closed networks in which there is a finite
number of customers that never leave the system, and no external arrivals. The throughput
of a class of customers is defined as the steady-state average number of service completions
for that class per unit time; our performance measure will be a weighted sum of the
throughputs of the different classes. Operating the network amounts to choosing the new
class of a customer whose service has just been completed (routing) and choosing at each
server which customer to serve next, out of all eligible customers (sequencing). The problem
is to come up with a routing and sequencing strategy—with decisions presumably based on
the load of the queues—so as to optimize weighted throughput.

Networks of queues have many applications, the most important ones related to
communication networks or manufacturing systems. There are precious few cases of the
problem that have been satisfactorily solved and are reviewed by Walrand (1988); for
example, the problem is wide open even for the case of two-server networks and exponential
service time distributions. Besides some ad hoc techniques for very special cases, and
computationally explosive dynamic programming algorithms for others, we can only solve to
optimality certain single-server prpblems (Klimov 1974, Weiss 1988), by reducing them to
extensions of the multi-armed bandit problem, the problem of repeatedly selecting one
among many Markov processes, each with known ‘transition probabilities and costs. The
latter problem can be solved by an ingeniously simiple index calculation (Gittins 1989), and
an optimal policy corresponds to prioritizing the different classes by sorting their respective
indices. Due to the difficulty of the problem, research in this area has been deflected to
approaches such as diffusion approximations (Harrison 1985} and certain other rigorous
approximation algorithms (Bertsimas et al. 1994, Kumar and Kumar 1994).

In this paper we prove that the problem of finding an optimal control policy in a multiclass

Received July 8, 1994; revised December 20, 1998.

AMS 1991 subject classification. Primary: 68Q15, 68Q25; Secondary: 60K20, 60K25.

OR/MS subject classification. Primary: Analysis of Algorithms/Computational Complexity; Secondary: Queues/
Networks. .

Key words. Computational complexity, optimal control, queuing network.

293
0364-765X/99/2402/0293/505.00

Copyright © 1999, Institute for Operations Research and the Management Sciences

Copyright © 1999. All rights reserved.

294 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

closed queuing network is an intractable problem. Nobody was really expecting an efficient
algorithm for this problem, at ieast in this generality, and it would be trivial to show it
NP-hard (the vanilla variety of intractability available in the literature). However, our result
is much stronger: we show that the problem provably requires exponential time for its
solution, independently of the P vs. NP question. In particular, we show that it is
EXP-complete.

EXP is the class of all problems solvable in time 2"* for some k. EXP-complete problems
are the problems in EXP to which every other problem in EXP is efficiently reducible; such
problems are known (Papadimitrion 1994) to require exponential time—independently of the
status of the P = NP question. There are many such intractability results in the literature,
starting from the classical ones about regular expression equivalence (Stockmeyer and Meyer
1973), Presburger arithmetic (Fischer and Rabin 1974), and other logics such as, more
recently, variants of Temporal Logic. However, in our experience this is the first intractability
result for a practical and important optimization problem that had been attacked in earnest
over many decades—in contrast, NP-completeness theory is teeming with optimization
problems.

In the next section, we introduce the problem NETWORK OF QUEUES, a relatively
simplified version of the problems one finds in the literature (Walrand 1988, Bertsimas et al.
1994, Kumar and Kumar 1994). The proof that it can be solved in exponential time relies on
the fact that it can be rendered as a Markov decision process with exponentially many states,
which can then be solved by linear programming. To prove completeness, we rely on a
heretofore untapped alternative characterization of EXP, namely in terms of polynomial
space bounded stochastic computation {a similar formulation of polynomial space as
polynomial fime bounded stochastic computation was proposed by Papadimitriou 1985).
Besides the case of exponentially distributed service times, we show that the lower bound
also holds for the case of deterministic service times, and for the case where service times
have a discrete probability distribution and routing is deterministic. However, if both routing
and the service times are deterministic, the problem can be easily shown to be PSPACE-
complete. Recall that PSPACE is the class of problems solvable in polynomial space. The
inclusions P € NP C PSPACE C EXP are well known (Papadimitriou, 1994), and are all
strongly believed to be proper (we only know that at least one of them is, since it can be
proved that EXP properly contains P). Unlike EXP-completeness, PSPACE-completeness
does not immediately imply intractability, but it strongly suggests it—it is considered a much
more convincing evidence of intractability than NP-hardness.

Given that the multi-armed bandit problem is the main teol for solving the few cases of
networks of queues that we can solve, it is interesting to study the complexity of its most
promising extension, the restless bandit problem (Whittle 1988, Weber and Weiss 1990). We
show that this problem is also PSPACE-complete, even in the deterministic case.

2. Networks of queues. A rnetwork of gueues consists of a finite set of servers § and
a finite set C of customer classes. For each class ¢ € C, we are given the identity o(c)
& S of the only server who can serve customers of that class, and the mean service time
m(c). Service times are independent exponentially distributed random variables with the
prescribed mean. The set C is partitioned into two subsets, R and D. Whenever a customer
currently in class ¢ completes service, its class changes to some new class ¢’. For each ¢
€ D, we are given a set N(¢) C C and ¢’ is allowed to be an element of N(c¢) of our choice.
If on the other hand ¢ € R, the new class ¢’ is determined at random according to given
probabilities p_.. '

The queuing network is controlled by making decisions of the following nature: each time
that a customer of some class ¢ € D completes service, we choose its next class ¢’
= N{c)—these are routing decisions. In addition, at each service completion time, any free
server can choose to remain idle or to start serving an eligible customer. We only consider

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 295

nonpreemptive policies; that is, once a server starts serving a customer, it must continue until
service is completed.

A queuing network of the type described here is ¢losed: no new customers arrive and no
customers can leave the network; in particular, the total number of customers is conserved.
At any point in time, the state of the network consists of the following information: (a) how
many customers of each class are present in the system, and (b) the class of the customer (if
any) being served at each server.

A policy is a rule for making decisions at service completion times, as a function of the
current state of the network. Due to the independence and exponentiality of the service times,
the state of the network evolves as a Markov chain under any fixed policy.

Let us fix the initial state of the network. For any policy o and any class ¢ € C, the
number a;(¢) of class ¢ service completions until time ¢ is a well-defined random variable.
We then consider as our performance measure the weighted throughput

J™ = lim sup ; > w(c)E[aT(1}].

[l ceC

where w(c) are given weights and E[+] denotes expectation. We are interested in finding
a policy that maximizes J”, as well as the corresponding optimal value of J7.

We can now provide a formal definition of the problem NETWORK OF QUEUES. An
instance is specified by the finite sets C, §, the function o : C — S, rational-valued functions
o and w defined on C, subsets D and R of C, a set N(¢) C C for each ¢ € D, rational
coefficients p..- for every ¢ € R and ¢’ € C, the initial numbers 7,(c)} of customers of each
class, the set S, of busy servers at time zero, the class ¢, of the customer being served at time
zero by each server s € S, and a rational number K. The problem is to decide whether there
exists a policy « for which J" > K.

We shall establish that this problem is complete for the class EXP of all problems solvable
in deterministic exponential time. In our proof we shall use a novel characterization of EXP,
in terms of stochastic Turing machines, which we now proceed to develop. A stochastic
Turing machine is a Turing machine whose states are divided into two parts: the
nondeterministic states and the stochastic states. We assume that all state-symbol combina-
tions, except of course for the final ones, have o possible continuations, We also assume
that the machine is precise, that is, on input x it only visits the first | x| tape squares, and it
stops after exactly f(1x1) steps, where f(n) is some function depending on the machine (we
can take f(n) = 2"’*). For each input x this machine defines a tree of computations, of depth
flxb. We evaluate this tree stai‘ting from the leaves (where a leaf has value one of zero,
depending whether it is accepting or rejecting), so that the value of each internal node is the
maximum of its two children if the state of the node is nondeterministic, and the average of
its two children if it is stochastic. We say that the machine accepts input x if this tree of
computations evaluates to more than half. Notice that, since we assurne that the machine is
precise, this is equivalent to saying that therc is a way to choose one branch out of every
nondeterministic node such that the majority of the leaves are accepting.

Our proof relies on the fact that stochastic Turing maclines operating in linear space
capture the class EXP:

ProposiTion. The class of all languages decided by stochastic Turing machines in
polynomial space is precisely EXP.

The proof of this proposition is contained in the proof of the following more technical
lemma: The STOCHASTIC IN-PLACE ACCEPTANCE problem is the following: Given a
stochastic Turing machine M and an integer » in unary, does M accept the input consisting
of n zeroes, without using any space beyond that occupied by the input?

Copyright © 1999. All rights reserved.

296 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

LemMa 1. STOCHASTIC IN-PLACE ACCEFTANCE is EXP-complete.

Proor. The addition of stochastic states and acceptance convention to Turing machines
is known to have the effect of turning time into space: it was shown by Papadimitriou (1985)
that the languages decidable by polynomial time-bounded stochastic Turing machines
comprise all of PSPACE. The present lemma essentially says that, as is the case with the
alternating machines (another much studied variant (Chandra et al. 1981, Papadimitrion
1994)), stochastic machines also turm space into time one exponential higher.

We first show that any space-bounded stochastic Turing machine can be simulated in
exponential time. The simulation algorithm is simple: We visit the exponentially many
configurations of the machine one-by-one, in decreasing time (we assume without loss of
generality that the configuration embodies also the time at which the configuration can
occur), and we compute the probability of acceptance (based on the results of the same
calculation one time step later). For stochastic configurations, this entails averaging over the
two possible successor configurations; for nondeterministic {existential) configurations, we
take the maximum. Since there are exponentially many possible configurations, we can carry
out this computation in exponential time,

To show completeness, we shall show how to simulate by a stochastic machine any
alternating machine with polynomial space bounds; it is known (Chandra et al. 1981) that the
power of such alternating machines is precisely EXP. The idea is similar to that in
Papadimitriou (1985) for space: Existential states are simulated by nondeterministic states,
and universal states by stochastic states. It then follows that the stochastic machine accepts
with probability 1, if and only if the alternating machine accepts. Let us now modify the
stochastic machine so that it starts at a stochastic state and one of the continuations can only
lead to nonaccepting states, while the other continuation leads to a state from which the
alternating machine will be simulated as just described. Then, the acceptance probability of
the stochastic machine is + if and only if the alternating machine accepts, and is smaller
otherwise.

To convert polynomial space to linear space is standard (use “padding” to transform any
input x to x followed with polynomially many zeros). To rephrase the problem in a form with
no explicit input (all-zero input), just absorb any given input x in the description of the
machine; this machine always starts by printing x on its tape. O

‘We are now ready for the proof of the main result:

THEOREM 1. NETWORK QF QUEUES is EXP-complete.

Proor. For the upper bound (that is, in order to show that the problem can be solved in
exponential time) notice that the problem is a Markov decision process: We are given a
Markov chain with possible decisions that affect the transition probabilities and costs, and we
seek to find a policy that minimizes the average cost. It is known that such problems can be
reformulated as a linear program, and thus solved in polynomial time (Puterman 1994). But
of course, the number of states in the Markov process (and thus, the number of variables in
the linear programy), is exponential in the size of the data—hence membership in EXP.

To show completeness, we shall reduce the STOCHASTIC IN-PLACE ACCEPTANCE
problem to NETWORK OF QUEUES. We are given a stochastic Turing machine M and an
integer n. We will be making the following additional assumptions about M, besides the fact
that it is precise, halting always after f(1x]) steps. We first assume that M’ s alphabet consists
only of the symbols 0 and 1 (any alphabet can be thus encoded). Also, the start state is never
visited again during the computation (this is easily guaranteed by introducing an extra state).
Furthermore, when the computation ends, the tape has again r zeroes (recail that the machine
starts in this configuration), and the head is at the first position (this only requires a final
“clean-up” phase). We next assume that, when a final state is reached, the machine does not
halt but starts running again from the initial configuration (this can be achieved by simply

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 297

treating final states identically with the start state). We also assume that the transition
function of the machine has been modified so that at each step the symbol scanned is always
overwritten by a different symbol—which can of course be again overwritten in the next step;
this is no loss of generality. Finally, let f{n) be the exact number of steps the machine takes
to halt when started on n zeroes.

We shall now give a high-level overview of the network of queues we construct from the
given Turing machine. There are n + 1 customers; the first n customers G,, i = 1, ..., n
will encode the tape contents, while the n + 1st customer, the fest customer 7, will encode
the current state and tape square (it will become clear later in the proof that T also encodes
the next move chosen by the machine). Each of these customers potentially belongs to several
classes, and is served by several servers. In general, the class of a customer will be such that
it fully describes the present server of the customer, as well as a part of the future route
(sequence of servers) to be followed by this customer. Only one server, the router server r,
can serve all customers; all other servers are customer-specific.

More specifically, corresponding to the ith square of the tape, i = 1, ..., n, we have two
servers, g, and g,,. For each i, there is a single customer G, that can be served by either of
these two servers. In order for G; to move from one of these two servers to the other, it must
go through the router server ». If G, goes from g, to #, it can get served there any number
of times, but when it leaves, it can only go to server g,,-,. We assume that the mean service
time of G, is unity at all three relevant servers.

Each transition of the Turing machine can be viewed as a 6-tuple of the form (s, i, b: s,
i, b’) where s is the current state, { is the current position of the head, & is the symbol (bit)
in the ith square, s’ is the new state, i’ is the new position of the head, and 4’ is the symbol
written on the tape (in the ith square). We have assumed that 5° = 1 — b; thus, & can be
omitted, and we will work instead with 5-tuples (s, i, &; s", {’). The rules of operation of
the Turing machine can be described by specifying for each (s, i, b), two different
continuations (s’, i’). (If s is a stochastic state, one of the two continuations is chosen at
random, with probability 4 each; for nondeterministic states, we are free to choose one of the
two options.)

The current class (alternatively, current server) of the test customer T" will encode the state
of the machine, the position of the head, and the chosen continuation. For every possible state
sand fori = 1, ..., n, customer 7 can be of class (s, {) in which case it is to be served
at a corresponding server (s, {). Then, the test customer makes an excursion through the
network along one of a few possible routes, each possible route corresponding to a possible
transition (s, i, b: s', i’) of the Turing machine. (The choice of a route is enforced by having
the route become part of the description of the customer’s class. In this way, the class of a
customer can ‘“‘remember” the customer’s eventual destination.) The symbol » € {0, 1}
above is chosen by the policy (to be defined soon) so as to correctly reflect the currently
scanned symbol. If s is a nondeterministic state, then the policy also chooses one of the two
available continuations (s, i’) of (s, i, &). If s is a stochastic state, then (s’, i’) is chosen
at random among the two possibilities, each possibility being equally likely.

Once the transition (s, i, b; ', i’) has been selected, the route to be followed during the
test customer’s excursion is the following: Get served once by server g;,-;, then by g, and
finally by the router server, to end . up at server (s’, i"), which is the end of the excursion. In
the beginning of an excursion implementing the choice (s, i, b; s', '), the test customer
assumes a class specific to that excursion and choice. We assume that the mean service time
of the test customer is zero at all servers except for servers &0, £a, and the router server,
where the mean service time is unity.

We choose the weights w{c) as follows. The weight of all customers other than the test
custorner is a very large number B. The weight of the test customer is zero at all servers,
except for servers of the form (s, 7). There, the weight is unity if 5 is a nonaccepting state

Copyright © 1999. All rights reserved.

298 C. H. PAPADIMITRIOU AND I. N. TSITSIKLIS

and 1 + €if 5 is an accepting state, where € is a very small number, e.g., smaller than f(»).
(The number B can be chosen independently of #.)

The network is initialized with each customer G, at server g,, and with the test customer
at server (s,, {), where s, is the start state of the Turing machine, and i = 1, is the initial
position of the head. Thus, the initial state of the network encodes the starting configuration
of the Turing machine.

We will now describe a particular policy 7* for controlling the queuing network which
simulates the stochastic Turing machine. (We will argue later that this policy is optimal.)
Under policy 7%, the customers G, i = 1, ..., n, remain always busy. In general, they keep
getting served over and over at the same server with some exceptions to be described shortly.

Suppose that the test customer is at some server (s, i) and that the router server is free.
Then, the policy cbserves the content 4 of the ith tape square (which is & if and only if G,
is at g,). At that point, (s, i, b; &', i’} is chosen according to the transition rules of the
stochastic Turing machine. If 5 is a stochastic state, (s’, i") is chosen randomly; if s is a
nondeterministic state, (s, ") is chosen in an optimal way, that is, according to a policy that
maximizes the probability of acceptance in the stochastic Turing machine.

The test customer moves to g, ,_,, finds it idle (because &, is at g,,) and starts service
there. Once service is completed, it moves to server g,,. Recall that customer G; was initially
at g.,,. As soon as its service is completed, G, moves to the router server, and g, becomes
available to the test customer.

Customer G; gets served at the router server and then moves to server g;,_,. (However,
it will only choose to move to g, ,_, if T has left g;,_,. In particular, G, may have to be served
more than once at the router server.) Eventually, 7 finishes service at g, and moves to the
router server where it may or may not have to wait for customer G;. Once T finishes service
at the router server, it assumes its new class (s’, {’) and the excursion has been completed.
Notice that at the time that the excursion is completed, the router server has just been freed
from T and none of the customers &; will be found there. In particular, the class of the test
server and the location of the customers G, encode completely the new configuration of the
Turing machine.

It is clear that under policy 7%, each excursion corresponds to a correct simulation of one
transition of the stochastic Turing machine. In addition, the mean duration of each excursion
is constant, and equal to 4. To see why, note that initially, 7" is served at g, ; -, and G, is served
at g;,, and the mean time until the first move is 3. If 7 was the first to complete service, it
moves to g, , and waits for an average of one time unit until &, moves to the router. If G, was
the first one to complete service, it moves to the router and gets served there over and over
until 7 moves to g,,, which happens one time unit later on the average. At this point, and
under either scenario, the expected elapsed time is 1.5, T is at g;,, and G, is at the router,
Since they are served simultaneously, the expected time until the next move is 3. If G, is the
first to complete service, it moves to g;,., and it remains for T to be served at g,, and at the
router. If 7T is the first to complete service, it moves to the router, and it remains for G; and
T to be served at the router. In either case, the last two services take an expected time of 2,
bringing the total to 4.

We now evaluate the weighted throughput of policy #*. The n customers G, are always
busy, and they get one service completion per unit time, on the average. Hence, their
contribution to the weighted throughput is nB. Regarding the test customer, it goes through
a state of the form (s, {) once every 4 time units on the average. A fraction 1/f(n) of these
visits correspond to times at which the computation has ended, and a further fraction p
corresponds to accepting staies, where p is the acceptance probability for the stochastic
Turing machine. Hence, the weighted throughput under this policy is

1 Ep.
nB+Z(l+f_(;5)'

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 299

Recall that we have a “yes” instance of STOCHASTIC IN-PLACE ACCEPTANCE if and
only if p > %; equivalently, if and only if the weighted throughput of policy 7* is larger than

na+%(1 +5ﬂ%) |

We will now argue that no other policy could achieve better weighted throughput. We need
to consider all possible deviations from policy 7* and argue that they are not profitable.
(a) Because B is assumed very large, G; must always stay busy, Whenever T and G, are
at the same server, we must always give priority to G,.
(b) Given that the test customer is at server (s, i), would it ever pay to make a choice of
b that is different than the choice under policy #*7 To see what happens in this case, suppose
that G, is at g, and T chooses & = 1 and goes to g,. We need one time unit for G, to be
served at g, and move to the router. If G; moves from the router to g, before 7' is served
at g;,, either G will have to wait there (which is unprofitable) or 7 will never be able to start
service at g;,. Hence, we must first serve T at g, and at g, (two time units), while G, keeps
being served over and over at the router. Once 7 is finished at g;,, we must wait for the next
service completion for GG; at the router, and finally 7 must also be served at the router, which
brings the total expected time to 5 (as compared to 4).
‘ (c) Another possibie deviation from 7* is to have some other customer G;, j # i, move
from some g;, to the router and then to g;,-,. Since this will occupy the router for some time,
it can only prolong the duration of 7”s excursion by an O(1) amount.
(d) Finally, if the current state s is nonstochastic and the test customer chooses (s, i") in
a way that does not maximize the acceptance probability in the Turing machine, the
frequency p with which final states are accepting goes down, and the weighted throughput is
reduced. .
The conclusion is that if w* is not followed, the mean duration of the test customer’s
excursion increases by a quantity of size O(1). This is not enough to establish the optimality
of mr*, for the following reason: it might still be profitable to violate #* for some time in order
to bring the network to a more favorable state that will result in much higher payoffs down
the line. However, the only possible future payoff would be to bring the network to a state
from which the loss due to a final nonaccepting state will become less likely. This payoff is
at most €, and with € chosen small, the expected future payoff cannot exceed the price paid.
To make the preceding argument more rigorous, notice that we are dealing with an average
reward dynamic programming problem, whose state evolves as a controlled Markov process
x(1), in which we wish to maximize

lim [—i— > r(rk)] ,

[anaad =t

where £, is the time of the kth event and #(¢,) is the reward obtained at-that time. (In our case,
rewards are associated with service completions that have positive weights.) Given a
stationary policy w* with average reward J, we define the corresponding value function by

V(x) = lim E[> r(t) — Jt

e =t

x(0) = x} ,

where the expectation is taken with respect to the probability distribution determined by ar*,
Let S be a subset of the state space which is recurrent under 7%. For any initial state x((),

Copyright © 1999. All rights reserved.

300 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

let ., be the first time that the state enters the set .S from outside S. As a consequence of
standard dynamic programming theory, if our policy 7* maximizes

x(O)J

for all initial states x(0), then this policy is optimal. We wish to apply this result to our
context.

Let S be the set of all states of the queueing network in which the test customer is at some
server of the form (s, i). Consider now any initial state x(0) and consider the particular
policy 7* which we wish to prove optimal. Since the customers other than the test customer
are always kept busy, we can ignore their rewards as well as their contribution to J. Let a*
be the average reward to the test customer under 7* (which is close to 7). Recall also that
there are no rewards received by the test customer while away from the set S. Thus, to verify
that 4% is optimal, it suffices to establish that 7* maximizes E[—a¥*f,q, + V(x(Z.0))]- This
is indeed the case because, as argued earlier, any action that deviates from * increases the
expected value of 7,4, by at least 1, whereas it is easily checked that on the set S the value
function V does not vary by more than €.

Having established that 7% is an optimal policy, it follows that we have a “yes” instance
of STOCHASTIC IN-PLACE ACCEPTANCE if and only if the optimal performance
criterion in the NETWORK OF QUEUES instance is larger than X, and the reduction is
complete. O

E| 2 (1) — Jtuym + V(x(t.0))

L =1x(0)

3. Extensions and special cases. There are several variations of the problem NET-
WORK OF QUEUES that are also intractable; we review some of them below.
The following two results are obtained with minor modifications of the proof of Theorem 1.

CoroLLARY 1. NETWORK OF QUEUES remains EXP-complete under each one of the
following alternative performance measures:

(a) 2. w(c)Elal(t¥)], where t* is a given deterministic terminal time.

) 2.2, wic)E[e "9, where a is a positive discount rate and t(c) is the ith service
completion time of some customer of class ¢. O

CorOLLARY 2. NETWORK OF QUEUES remains EXP-complete if the service times are
deterministic (instead of exponentially distributed). 0O

The following “dual” result can also be proved, using again a reduction from the
STOCHASTIC IN-PLACE ACCEPTANCE problem. However, the encoding of the Turing
machine and the specifics of the reduction are guite different.

THEOREM 2. NETWORK OF QUEUES remains EXP-complete if the service times are
random variables taking values in a finite range, even if R = & (that is, there are no classes
for which routing is stochastic).

ProoF outLiNg. The proof of membership in EXP is very similar to that in Theorem 1. To
show completeness, we shall outline a construction reducing STOCHASTIC IN-PLACE
ACCEPTANCE to this problem. We start with a version of the problem in which the machine
always moves its tape head to the right, coming back to the left end immediately after it visits
the right end (it is best to think of it as having a circular tape). The machine performs its main
computation on the even-numbered squares, and keeps in the odd-numbered squares
markings which identify by a 1 the current square—all other markings are zeroes. To
simulate a leftward move, the machine goes all the way to the right, then starts at the leftmost
square, guesses (using nondeterminism) the square to be visited, and checks that the guess
was correct. Furthermore, each move of the machine as in the form “if the state is s and the

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 301

head scans the ith square and the ith square contains symbol r, then the next state is s°;” or
of the form “if the state is s and the head scans the ith square and the ith square contains
symbol r, then symbol ' is written”—that is, at each step we allow only one of the two
changes. This is not a loss of generality, since a change of both state and symbol can be
accomplished in two stages.

Starting from any such machine, we shall construct a network of queues (S, C). The
servers in § are divided (for the purpose of this exposition) into clusrers, each cluster
simulating a different part of the machine. As before, the customer classes are divided into
partitions which we call customers; customers in the same partition are transformed from one
class in the partition to another.

For each square of the machine we have a cluster of two servers, s, and s,4, 1 = 1, ..,
r, simulating the contents of the ith square. For the states we have a cluster g, ..., g,
simulating the k states in X. We also have a cluster of » servers %,, ..., %, simulating the
head positions.

Each cluster of servers services at all times certain customers. One such server at all times
is servicing the main customer of the cluster (its presence indicates that the machine indeed
is in this state, scans this square, sees this symbol, etc.), and all others service dumumy
customers (just placeholders) or the fest customer to be introduced later. The head cluster has
no dummy customers. All dummy and main customers have deterministic service times on
all machines in their cluster equal to 2. But they are not synchronized: The main customers
start service at times 0, 2, 4, . . ., while the dummy customers at 1, 3, 5, - - - (we shall see that
it is easy to start this).

Each tape square cluster s, 5;;, for example, has two customers, a main and a dummy one.
(Actually, the n tape square clusters have one main customer each, and a collective set of n
— 1 dummy customers; the remaining queue will service a test customer, defined later.} Each
customer returns to its server after it completes service, and so the queue that has the main
customer, suppose it is §;, will continue to service it time after time until scmething
extraordinary happens (namely the resr, explained below). The intended meaning of this
situation is that the ith square contains symbol 1.

The state cluster ¢,, ..., g, has one main and k¥ — 2 dummy customers. Again, if g, is
servicing the main customer between times 2¢ and 2(t + 1), this implies that the machine
at step ¢ is at state 5. The kth customer serviced will again be a test customer.

The head cluster has a main customer, serviced for 2 units at queue £,, then at £,, then at
ki, and so on up to k,, and then back to %, (recall the circular tape).

Recall that each move of the machine as a rule of the form “if the state is s and the head
scans the ith square and the ith square contains symbol r, then the next state is s';” or of the
form “if the state is s and the head scans the ith square and the ith square contains symbol
r, then symbol r' is written”—that is, at each step we allow only one of the two changes.
Each such rule is implemented by atest customer specific to that rule. This customer has very
high weight, and is serviced for most of the time in its own dedicated server; however, it
requires service at times 1, 3, 5, - - - for zero time units by any one these servers: g,, #,, and
s;. If any one of the three servers q,, #;, and s, is free at the time (because its dummy
customer has not arrived yet), then the test customer executes there for zero time, and is
routed to its dedicated server, to return after 2 time units. But if all three are occupied, then
they are occupied by main customers, and thus the rule is applicable. The test customer in
this case requires service for 1 time unit on queue g, and for another 1 on g,, thus reversing
the role dummy/main of the customers of g, and g.—exactly as required. In the case of a
symbol-writing rule, the test customer performs in exactly the same manner a transition
on §;,.

So far we have been simulating a deterministic machine. To simulate our stochastic
machine, we modify this construction as follows: For nondeterministic moves, say with next
state either s’ or s”, the test customers can be serviced, after q., either at g, or at g.., and

Copyright © 1999. All rights reserved.

302 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

the control decides which to choose. The stochastic steps are simulated by having a transition
to g,, with service time a stochastic variable that is either O or 1, with probability half for
each. Then the test customer is routed either to g,, or to g,» and then to g,, in both servers
with deterministic service time 1. If the test customer completes service at ¢, in zero time
(this will happen an expected half of the time for stochastic transitions), the optimal routing
is to g and then to g,, thus reversing the role of 5 and s, effecting a transition from state
s to state s”. If however the test customer completes service at g, in time 1, then the optimum
routing is to.go directly to g, thus changing the state from s to s’. Any other routing decision
will cause the test customer to lose synchronization with the other customers, with a
substantial loss in the weighted objective function.

We have not addressed two questions: First, how is this process started? Second, why can’t
we deviate from the above schedule, thus failing to simulate a computation? Both issues are
taken care of as follows: We introduce a set of elite customers, one for each server, plus a
set of new dedicated servers, one for each eclite customer. The elite customers have
exponentially higher weight (even when compared to the test customers). They require a
service of zero time from each server, and then some of them go to their own dedicated
servers, where they stay for 2% steps, while certain others (those that correspond to the
initial configuration) stay for another unit of time, thus starting the process. Only the elite
customer that corresponds to the accepting state returns one unit earlier, to make sure that the
computation ended up accepting. The proof that no deviation from the intended schedule is
possible now can be structured as follows: To achieve the goal completion rate X, all elite
customers must always be serviced with no delay (any deviation here prevents us from
achieving K). Then, to get the next lower order bits of K right, the test customers must always
be serviced with no delay. Finally, the remaining customers (main and dummy) must also be
serviced as intended. We omit the full proof. O

If all sources of randomness are removed, then the problem can be solved in polynomial
space. The reason is that the problem is now one of guessing a policy and testing that it .
indeed leads to a periodic behavior with the right performance (in terms of weighted
throughput). Guessing such a policy, and evaluating its weighted throughput, can be done in
nondeterministic polynomial space—which is well known to be the same as deterministic
polynomial space. The next result in fact states that this special case is complete for
polynomial space; its proof is similar to the proof of Theorem 2, except that, instead of a
stechastic Turing machine, we are now simulating a space-bounded nondeterministic Turing
machine.

TrEOREM 3. If R = O (that is, there are no classes for which routing is stochastic) and
the service times are deterministic, then the NETWORKS OF QUEUES problem is
PSPACE-complete. O

Out of all queuing control problems, there is a relatively small class for which optimal
policies can be efficiently computed. These are problems involving a single server who
chooses between one of several customer streams (Klimov 1974). The fundamental reason
why these problems are solvable is that they can be reformulated as “branching bandits
problems” (Weiss 1988), which is one of the successful extensions of the multi-armed bandit
problem (Gittins 1989). Optimal policies in such problems can be found by computing a
number of indices—known as Gittins indices—and there are polynomial time algorithms
available for doing so. Thus, there may be some hope of enlarging the class of efficiently
solvable queuing control problems, by deriving efficient solution procedures for other
generalizations of the multi-armed bandit problem. The most interesting generalization that
has been proposed so far is the “restless bandit problem” (Whittle 1988, Weber and Weiss
1990) and this raises the question whether the restless bandit problem is as “easy” as the
original multi-armed bandit problem. Our results below establish that this is unlikely to be
the case.

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 303

In the RESTLESS BANDITS problem we are given n Markov chains (bandits) X (¢), i
=1,...,n,t=0,1,..., that evolve on a common finite state space § = {1, ..., M}.
We are also given the initial state of each chamm. These Markov chains are coupled (and
controlled) as follows. At cach time ¢ we choose one of the bandits, say bandit i(#), to be
played. For i = i(¢), X(r + 1) is determined according to a transition probability matrix P,
and for every i %+ i(¢), X, (¢t + 1) is determined according to some other transition probability
matrix). At each time step, we incur a cost of the form

C(t) = c(Xip) + > d(Xi(1)),

i#i(1)

where ¢ and 4 are given rational-valued functions defined on the state space S. A policy
is a mapping o : S" > {1, ..., n} which at any time decides which bandit is to be played
next, as a function of the states of the different bandits; that is, i(¢f) = (X, {(t), ..., X, ().
Let the average expected cost of a policy be defined as

T
lim sup % >, Efc()].

t—> =1

We are interested in finding a policy with minimal average expected cost.

The classical multi-armed bandit problem is the special case of the above in which we have
Q equal to the identity matrix and d = 0 (bandits not played do not move and do not incur
any costs).

We shall actually show that the restless bandits problem is difficult even for the special
case where the transition probability matrices P, O correspond to deterministic transition
rules, with one transition rule applying to all the bandits that are not played and another
applying to the one which is played.

TueoreMm 4. RESTLESS BANDITS with deterministic transition rules is PSPACE-hard.

Proor. We will start from the following problem. We are given a circular tape, with
squares 1, ..., n; each square can take values in a set {1, ..., A}. At any given time, if
the head is pointing at square i, then, the value v, in that square is updated according to the
rules v; := F(v;,_y, v;) if i > 1, and v, := F(v,, v,), where F is a known function satisfying
F(1, 1) = 1; then the head moves to the next square (or to the first square if it is currently
visiting the last one). That is, at time ¢ the values are updated as follows;

v,(1), if i = ¢ mod n;
vt + 1) = { F(U; - 1modn» Vi), oOtherwise.
We say that this process “halts’™ if all squares have the value 1.

We claim that the problem of deciding, given an initial configuration of the tape, and a rule
F, whether the process will eventually halt, is PSPACE-complete. To see why, start with-a
Turing machine computing in-place with a circular tape (such machines were argued in the
proof of Theorem 1 to simulate arbitrary polynomial space-bounded machines). The symbols
in {1, ..., A} encode the square contents and the current state of the machine when the
square was last entered, and at the next step. It is then clear that the next symbol of square
i can be determined from the current symbols in squares { and i — 1 mod #.

For the reduction, we will describe a state space, a transition structure, and cost structure
for a restless bandit problem in such a manner that solving the restless bandit problem is
equivalent to solving the halting problem. A key idea is to introduce in the restless bandits

Copyright © 1999. All rights reserved.

304 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

problem a high-cost trapping state and to arrange so that the the restless bandits can avoid the
trapping states if and only if their evolution simulates the computation on the circular tape.
We also set up the restless bandits problem so that the time-average cost is zero if and only
if the computation on the circular tape halts.

There are n bandits, one for each square of the tape. The common state space of the bandits
consists of a trapping state and of n consecutive “segments.” Each segment contains states
of the form (%, s) or ({, k,), where l, k, s &€ {1, ..., A}. These are arranged into A layers,
with k serving as the layer index. The transition rules will be such that we always move from
one layer to a state in the next layer (modulo nA).

All layers in any one of the segments 3, ..., » are fairly simple: they consist of A states;
from a state s in one layer, we always move to state s in the next layer, as long as the bandit
is not played (this serves to remember the value in the corresponding tape square); if the
bandit is played, its next state is a trapping state with very high cost. This effectively prevents
us from ever playing a bandit in segments 3, ..., a. ,

In general, when the head is at cell 7, bandit { will be traversing the first segment, bandit
i — 1 the second segment, bandit i — 2 the third, etc., all the way to bandit i + 1 who will
be traversing the nth segment. In particular, we only have to choose between playing bandit
iori — 1.

Let us consider bandit i — 1 who is traversing the second segment. Let (k, s}, s =1, ...,
A, be the states in the kth layer of that segment. As with later segments, from state (%, s),
we can only go to state (¥ + 1, s). [If &k = A, we move to a state (1, s) in the first layer
of the next segment.] If £ + s, playing bandit i — 1 leads to a high-cost trapping state and,
therefore, bandit { will be played. If on the other hand, & = s, a similar transition to a
high-cost trapping state forces us to play bandit { — 1, and, therefore, not play bandit i.

Let us now look at the evolution of the state of bandit ; who is traversing the first segment.
At the first layer of the segment, the bandit’s state is {1, s’) where s’ is the value in the ith
square of the tape. Recall that at each one of the A layers of that segment, that bandit will be
played, with the exception of the sth layer, where s is the value in square i — 1. (This is the
time &k that bandit i — 1 is at state (k, 5) = (s, 5s) of the second segment.} So, let the state
evolve from (%, s") to (k + 1, s’') each time that the bandit is played; on the other hand, if
the bandit is not played, the state goes from (k, s') to (k + 1, k, s'); thereafter, for every
! = k and until the end of the segment, bandit i is played and the state moves from (I, k, s*)
to (I + 1, &k, s'). Notice that the value of £ for which bandit { was not played is equal to s,
the value in square { — 1. Thus, the state (I, &, s’) of bandit i encodes both the content s’
of the ith square as well as the content s of square i — 1. At the end of the segment, bandit
i ends up at state (A, s, 5').

There is one exception to the above. If the value in square i — 1 is A, then bandit i is
played for the first A — 1 layers and ends up in state (A, s7). Since this allows the ith bandit
to infer that the value in cell { — 1 is A, we can identify state (A, s’) with state (A, A, s').

At the end of the segment, the ith bandit makes a transition from state (A, s, s') to state
(1, F(s, s")) in the first layer of the second segment. In particular, the new state of bandit
i is the correct new value in square i.

At this point, bandit i starts traversing the second segment and the process we have
described is repeated, with bandits i and i + 1 playing the role of i — 1 and i, respectively.
It is then clear that a policy that avoids getting into the high-cost trapping states must simulate
the computation on the circular tape.

Besides the trapping state, let the costs per stage be unity at any state of the form (%, s)
with s # 1, and zero at all remaining states. It is clear that the infinite-horizon average cost
is positive except if every tape square eventually becomes equal to 1. But this is the same as
the halting condition. We conclude that the average cost is zero if and only if the computation
halts, thus proving PSPACE-completeness. O

Copyright © 1999. All rights reserved.

OPTIMAL QUEUING NETWORK CONTROL 305

Acknowledgments. We are grateful to the referees for their suggestions, including a
simplification of the proof of Theorem 1. The first author’s research was supported by an NSF
grant. The second author’s research was supported by the ARO under contract DAALQ3-
92-G-0115. A preliminary version of this paper was presented at the Ninth Annual
Conference on Structure in Complexity Theory, June 1994, Amsterdam, The Netherlands.

References

Bertsimas, D., I. C. Paschalidis, J. N. Tsitsiklis 1994. Optimization of multiclass queueing networks: Polyhedral and
nonlinear characterizations of achievable performance. Ann. Appl. Probab. 4 43-75.

Chandra, A., D. Harel, D. Kozen 1981. Alternation. J. Assoc. Comput. Mach. 28 114-133.

Fischer, M. J,, M. O. Rabin 1974, Super-exponential complexity of Presburger arithmetic. K. M. Karp, ed.
Complexity of Computation. SIAM-AMS Symposia in Applied Mathematics.

Gittins, J. C. 1989. Muliti-Armed Bandit Allocation Indices. Wiley, New York.

Harrison, J. M. 1985, Brownian Motion and Stochastic Flow Systems, Prentice Hall, Englewood Cliffs, NJ.

Klimov, G. P. 1974, Time sharing service systems 1. Theory Probab. Appl. 19 532-551.

Kumar, S., P. R. Kumar 1994. Performance bounds for queuing networks and scheduling policies. JEEE Trans.
Automat. Control 39 1600-1611.

Puterman, M. L. 1994. Markov Decision Processes. Wiley, New York.

Papadimitrion, C. H. 1985. Games against nature. Proc. of the 24th FOCS Conf. 446--450; also J. Comput. Systems

Sci. 31 288-301.

1994. Computarional Complexiry. Addison Wesley, Reading, MA.

Stockmeyer, L. J., A. R. Meyer 1973. Word problems reguiring exponential time. Proc. of the 5th STOC Conf. 1-9.

Walrand, J. 1988. An Introduction to Queueing Networks. Prentice Hall, Englewood Cliffs, New Jersey.

Weiss, G. 1988. Branching bandit processes. Probab. Engin. Inf Sci. 2 269-278.

Weber, R, R., G. Weiss 1991. On an index policy for restless bandits. J. Appl. Probab. 27 637—-648; addendum in
23 429-430.

Whittle, P. 1988. Restless bandits. J. Appl. Probab. 25A 301-313.

C. H. Papadimitriou: University of California at San Diego, La Jolla, California; Current address: Computer
Science Division, University of California at Berkeley, Berkeley, California; e-mail: christos@cs.berkeley.edu

J. N. Tsitsiklis: Departiment of EE and CS, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139; e-mail: jnt@mit.edu

Copyright © 1999. All rights reserved.

