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When is a pair of matrices mortal? !
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Abstract

A set of matrices over the integers is said to be k-mortal (with k positive integer) if the zero matrix can be expressed
as a product of length k of matrices in the set. The set is said to be mortal if it is k-mortal for some finite k. We show
that the problem of deciding whether a pair of 48 x 48 integer matrices is mortal is undecidable, and that the problem of
deciding, for a given k, whether a pair of matrices is k-mortal is NP-complete. © 1997 Elsevier Science B.V.
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In order to prove our first result we shall need Post’s
correspondence problem which is as follows:

Instance: A set of pairs of words {(U;, Vi) | i =
1,...,n} over a finite alphabet.

Question: Does there exist a non-empty sequence of
indices i1,i2,...,ix where 1 < i; < n, such that
UpUy---Up =V V- W2

This problem is trivially decidable for one letter al-
phabets but is undecidable when the alphabet contains
more than one letter (for a proof of this classical re-
sult see, e.g., [2]).

A set of real matrices ¥ is said to be mortal if
there exists a finite product of matrices in 3 that is
equal to the zero matrix. In [8] Paterson uses Post’s
correspondence problem to show that the problem of
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deciding whether a given finite set of 3 x 3 integer
matrices is mortal is undecidable (the case of 2 x 2
integer matrices is open, see [4] for a discussion of
this case). Let n, be any number of pairs of words
for which Post’s correspondence problem is undecid-
able. In Theorem 1, we use Paterson’s result and a
simple matrix argument inspired from a construction
appearing in [9], to prove that the mortality of pairs
of integer matrices of size n x n is undecidable for n =
6(n, + 1). In a recent contribution Matiyasevich and
Sénizergues [5] have shown that Post’s correspon-
dence problem is already undecidable when there are
seven pairs of words (the previous bound was nine,
see [6]). Combined with our result, this shows that
the mortality of pairs of 48 x 48 integer rnatrices is
undecidable.

Theorem 1. Let n, be any number of pairs of words
for which Post’s correspondence problem is undecid-
able. Then, the mortality of two integer matrices of
size n x n is undecidable for n = 6(n, + 1).
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Proof. Let {By,...,Bn} be a set of n x n inte-
ger matrices. Define two nm x nm matrices by
A =diag(By,...,Bpn) (ie., A is block-diagonal with
blocks By, ..., B, in that order) and

_{ O Inm-n)
)

where I, is the r x r identity matrix. Notice that 7"
Lim and Ay := T*TAT™= (1) = Th=1AT- (=D
diag(By,...,Bm.B1,...,Br-1) fork=1,...,m.

We claim that {Bj,..., By} is mortal if and only
if {A,T}is.

In order to prove our claim suppose first that
B ---B;, =0 for some i; € {1,...,m}. Then, the
first block of the block-diagonal matrix A; --- A; is
equal to zero. But then

iq

m—1

P =[] Ay - AT =0,
k=0

and since this product can be written as a product of
matrices in {A, T} the first implication is proved.
Suppose now that P := T"AM T2 A% . .. T'a A%T "
= 0 for some integers t;, a; and assume without loss
of generality that 0 < 7; < m — 1. We clearly have

P =Tt1 Aale—nTan»mAaz .. 'TrqAathq“
= (Ah‘H)a[Tt]-Hz—-mAaz e thAathqH .

By recursion we are lead to

T= (Apl)al . (qu)aqT"‘ =0

forsomet, > 0and 1 < pp<m(i=1,...,9).
The matrices A are block diagonal and the second
implication is therefore proved.

Mortality of the nm x nm matrices A and T is
thus equivalent to that of the m n X n matrices
{Bi,...,Bn}. Itis shown in [8] that the latter prob-
lem is undecidable for 3 x 3 integer matrices. The
proof given by Paterson uses a reduction from Post’s
correspondence problem with n, pairs of words to
mortality of 2(n, + 1) 3 x 3 integer matrices. By
our construction we are lead to two matrices of size
6(n, +1) x 6(n, + 1) and the proof is therefore
complete. [

Remarks. (1) The number of matrices involved in
Paterson’s proof can be reduced to (4 +n,) by us-

ing the modified Post’s correspondence problem (see
[2]). Therefore, the mortality of two integer matri-
ces of size n x n is undecidable for n = 3(n, +
4) where n, is any number of pairs of words for
which Post’s correspondence problem is undecidable.
For n, = 7 this shows undecidability of the mor-
tality of pairs of 33 x 33 integer matrices. This im-
provement was brought to our attention by M. Bran-
icky [1].

(2) When the entries of the matrices are nonnega-
tive, then mortality becomes decidable but computa-
tionally intractable (NP-complete). We make a com-
ment on this after Theorem 2.

Using a reduction from the classical SAT problem
[3] we now show that the a priori bounded version of
mortality is NP-complete. (Notice that it is trivially
decidable.) Our proof is partly inspired from a reduc-
tion technique used in [7] and is similar to the proof
of the main result in [10].

k-MORTALITY OF A PAIR OF MATRICES

Instance: k > 1 (encoded in unary), Ag, A; € Z"*".

Problem: Do there exist i; € {0,1} for j =1,...,k
such that A; ---A;, =0?

Theorem 2. k-MORTALITY OF A PAIR OF MA-
TRICES is NP-complete.

Proof. k-MORTALITY OF A PAIR OF MATRICES
clearly belongs to NP; this is because “yes” instances
have a certificate ij,...,I; that can be checked by
means of k¥ — 1 multiplication of the n X n matrices
A, ..., A;. Since k is encoded in unary, the certifi-
cate checking algorithm runs in time polynomial in
k and n. Thus, it suffices to exhibit a reduction from
SAT.

Starting from an instance of SAT with n variables
Xi,...,xpand mclauses C, . . ., Cy, We construct two
directed graphs Go and G|. The graphs have identical
nodes but have different edges. Besides the start node
s, there is a node u;; associated to each clause C; and
variable x;, a Oth node uo; associated to each variable
xj, and a (n + 1)th node u;(n+1) associated to each
clause C;. Edges are constructed as follows: For i =
1,...,mand j=1,...,n there is
e an edge (u;j,uij+1)) in both Go and G, if the

variable x; does not appear in clause C;,
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® an edge (u,-j,uo_,-) in Go and an edge (u,-j,u,-(j“))
in Gy if the variable x; appears in clause C; nega-
tively,

e an edge (u;j,uo;) in G and an edge (u;j, uij+1))
in Go if the variable x; appears in clause C; posi-
tively.

Fori=1,...,m there are edges (s,u;;) and edges
(#i(n+1y, 5) in both graphs. Finally, the graphs have
edges (uo;, uoj+1)) for j =1,...,n—1. There are no
edges leaving from uop,.

Let r denote the total number of nodes (r = (n +
1) (m+ 1)). We construct two r X r matrices Ao and
Aj. Associated to the graph Gy (respectively, G;) is
the r x r adjacency matrix Ag (respectively, A1) whose
(i, j)th entry is equal to 1 if there is an edge from
node j to node i in Gy (respectively Gy), and is equal
to zero otherwise. (Thus, the jth column is associated
with edges that leave node j.) Let k = (n+1)(n+3).
We claim that the set {Ag, A} is k-mortal iff the in-
stance of SAT is satisfiable. Since all transformations
are performed in polynomial time, this claim will es-
tablish the theorem.

To any given node a we associate a column-vector
x(a) of dimension r whose entries are all zero with
the exception of the entry corresponding to the node
a which is equal to one. We need two observations
for proving our claim.

(1) Let a partition of the nodes be given by Ppy2 =
{S}, Pn+1 = {u,~| | i = 1,...,m}, P,, = {um,u,'z |
i=1,....m}, ..., Po={uo(n—rythin | i=1,...,m}
and Py = {uon, Uin+1y | i =1,...,m}. We use I, to
denote the index of the partition to which the node a
belongs. Any edge (from Gy or G;) leaving from a
node of partition P, goes to a node of partition P;_;.
Furthermore, the edges leaving from partition P, go
back to partition P,,. Thus, any path in Gy and G;
that starts from node « either gets to the node ug,, from
which there is no outgoing edge, or it visits node s after
I, steps. In matrix terms this implies the following.
Let  be an arbitrary node and let /,, be its associated
partition index. If & is a positive integer equal to [,
modulo (n + 2) and A is a product of h factors in
{Ao, A]}, then

Ax(a) = ux(s) (D)

for some nonnegative scalar u.
(2) Let q1,...,9n € {0, 1} be a truth assignment
of the boolean variables x; and consider the product

Ag, - +Ag. The vector Ay, - Ay x(u;) is equal to
x(ug,) if the clause C; is satisfied and is equal to
X(Uicnt1y) otherwise. Let A, be any of Agor A;. There
are no edges leaving from ug, and there are edges from
stou; fori=1,...,m. Thus we have A,x(ug,) =0
and A,x(s) = Zf;] x(u;1). From this we conclude

AuAg, - AgAux(s)

=AuAg Ay Y x(un)
i=1

m

= A, ZA% s Agx(ui) = Ax(s), (2)

=1

where A is equal to the number of clauses that are not
satisfied by the given truth assignment.

With these two observations we now prove the
claim. Assume that the instance of SAT is satisfied
by the assignment x; = g; for q1,...,4, € {0,1} and
define A by A = A A,, --- A, A, with A, any of Ao
or Aj. Since all clauses are satisfied, Eq. (2) gives
Ax(s) =0. Using Eq. (1), we infer

(A.A) " Dx(a) =0,

for all a. Since R” is spanned by x(a) when « ranges
over the nodes, we conclude that

(A*A)(n+1) =0

and the set { Ap, A1} is k-mortal for k = (n+1) (n+3).

For the reverse implication, assume that the instance
of SAT is not satisfiable and consider any product of
n + 2 factors A, - - - Ag,,,. Since the instance is not
satisfiable, we infer from Eq. (2) that

Ag - Ag x(5) 2 x(5). (3)

Let A be an arbitrary product of k matrices. A" is
a product of (n + 2)k matrices and Eq. (3) gives
A" 2x(s) > x(s), hence A # 0. Since A was arbi-
trary the proof is complete. O

Remarks. (1) In Theorem 2 we assume k to be en-
coded in unary. The reason for this is that the certifi-
cate checking algorithm runs in time polynomial in
k and n. If k was encoded in a non-unary base, the
certificate checking algorithm would run in time ex-
ponential in the size of k and the proof of the mem-
bership in NP would fail. Thus, when & is encoded in
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non-unary decimal expansion, k-mortality of a pair of
matrices becomes NP-hard.

(2) The proof of Theorem 2 involves only boolean
matrices (i.e., matrices with entries in {0, 1}). Thus,
the theorem remains valid in the special case where we
restrict all matrices in the given family to have {0, 1}
(or nonnegative) entries.

(3) As already mentioned in a remark after Theo-
rem 1, we claim that the mortality of a pair of matri-
ces that have nonnegative entries is decidable, and is
NP-complete. Our argument is as follows. The mor-
tality of any set of matrices with nonnegative entries
is equivalent to the mortality of the associated set of
boolean matrices whose entries are put to zero (re-
spectively, one) when the corresponding entry in the
initial matrix is equal to zero (respectively, positive).
Because there are at most 2" boolean matrices of di-
mension z X n, any elements of the semigroup gener-
ated by a pair of boolean matrices can be written as
a product whose length is less than 27, Mortality can
thus be checked by simple enumeration.

By a small adaptation of the proof of Theorem 2
one can show that mortality of a pair of matrices
with nonnegative entries is NP-complete. As before,
the proof involves only boolean matrices and thus the
problem remains NP-complete when the given matri-
ces are boolean.

(4) Using a reduction similar to the one used in the

-proof of Theorem 2, we can establish that the problem

of deciding the stability of all products of a given
pair of matrices is NP-hard. This, together with other
results on the exact and approximate computation of
the generalized spectral radius of a set of matrices, is
given in [10].
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