
1528 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 9, SEPTEMBER 1995

Efficient Algorithms for
Globally Optimal Trajectories

John N. Tsitsiklis, Member, IEEE

Abstract-We present serial and parallel algorithms for solving
a system of equations that arises from the discretization of the
Hamilton-Jacobi equation associated to a trajectory optimization
problem of the following type. A vehicle starts at a prespecified
point zo and follows a unit speed trajectory ~ (t) inside a region
in P. until an unspecified time T that the region is exited. A
trajectory minimizing a cost function of the form T(T(t)) dt+
q (c (T)) is sought. The discretized Hamilton-Jacobi equation
corresponding to this problem is usually solved using iterative
methods. Nevertheless, assuming that the function P is positive,
we are able to exploit the problem structure and develop one-
pass algorithms for the discretized problem. The first algorithm
resembles Dijkstra’s shortest path algorithm and runs in time
O(n log n) , where n is the number of grid points. The second
algorithm uses a somewhat different discretization and borrows
some ideas from a variation of Dial’s shortest path algorithm
that we develop here; it NIIS in time O (n) , which is the best
possible, under some fairly mild assumptions. Finally, we show
that the latter algorithm can be efficiently parallelized: for two-
dimensional problems and with p processors, its running time
becomes O (n / p) , provided that p = O(fi/ log n) .

I. INTRODUCTION
ONSIDER a vehicle that is constrained to move in a C subset G of Rm. The vehicle starts at an initial point 20

and moves according to d x / d t = U (t) , subject to the constraint
IIu(t)II 5 1, where 1 1 . 1 1 denotes the Euclidean norm. At some
unspecified time T , the vehicle reaches the boundary of G and
incurs a terminal cost q(z(T)) . We also associate a traveling
cost J, r (x (t)) d t to the trajectory followed by the vehicle.
We are interested in a numerical method for finding a trajectory
that minimizes the sum of the traveling and the terminal cost.
We assume that infrEc: ~ (x) > 0, which forces the vehicle to
exit G in finite time.

This problem formulation allows us to enforce a desired
destination zf: for example, we may let G = W’ - {zf}
and q (z f) = 0. It can also incorporate “hard obstacles;” for
example, if a subset F of G corresponds to an obstacle, we
can redefine G by removing F from G and by letting q(z) be
very large at the boundary of F.

There are several numerical methods for trajectory optimiza-
tion problems, but their computational complexity is not fully
satisfactory for the problems studied in this paper, as will be

Manuscript received November 8, 1993; revised September 21, 1994.
Recommended by Past Associate Editor, S. P. Meyn. This work was supported
in part by ARO Contract DAAL03-92-G-0115.

The author is with the Laboratory for Information and Decision Systems
and the Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA.

T

IEEE Log Number 9413533.

discussed shortly. In this paper, we focus on the admittedly
restrictive situation where the running cost is independent
of the control, but we are able to devise efficient serial and
parallel algorithms whose running time is provably optimal.

Interest in algorithmic efficiency can be motivated from
certain situations in which the trajectory optimization problem
has to be solved repeatedly and on-line; this is the case,
for example, if the terrain conditions are uncertain and the
remaining trajectory is reoptimized each time that new infor-
mation becomes available. Of course, algorithmic efficiency
is a worthy objective even when computations are carried out
off-line.

Related Research
Problems of this type have been considered by several

different research communities. The robotics and theoretical
computer science community has extensively studied the case
where r is identically equal to one, G contains several ob-
stacles, and there is a fixed destination. Under the further
assumption that the obstacles admit a finite description (in
particular, if they are polygons), the problem can be trans-
formed to a shortest path problem on a graph (the so-called
“visibility graph”). Then, special shortest path algorithms can
be developed which exploit the structure of the problem and
reduce algorithmic complexity [181. A more general version,
the “weighted region problem,” has been considered in [20].
Here, the region G is partitioned into a finite number of
polygons, and r is assumed to be constant in each polygon.
The algorithms in [20] are geared towards the case where the
partition of G is fairly coarse. If we let the partition become
arbitrarily fine, however, we are led to our formulation, with
the function T having an arbitrary functional form.

Our problem is also a special case of deterministic optimal
control. As such, variational techniques can be applied leading
to a locally optimal trajectory [l], [13]. In the presence of
obstacles or if the cost function T is not convex, however, the
problem acquires a combinatorial flavor and can have several
local minima that are far from being globally optimal. For this
reason, other methods, of the dynamic programming type, are
required. The solution to the problem is fumished, in principle,
by the Hamilton-Jacobi (HJ) equation. Since an exact solution
of the HJ equation is usually impossible, the problem has to
be discretized and solved numerically. After discretization,
one needs to solve a system of nonlinear equations whose
structure resembles the structure of the original HJ equation.
This approach raises two types of issues:

0018-9286/95$04.00 0 1995 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

TSITSIKLIS: GLOBALLY OPTIMAL TRAJECTORIES 1529

a) Does the solution to the discretized problem provide
a good approximation of the solution to the original
problem?

b) How should the discretized problem be solved?
Questions of the first type have been studied extensively

and in much greater generality elsewhere-see, e.g., [12], [16],
and [21] and references therein. We bypass such questions and
focus on the purely algorithmic issues.

The usual approaches for discretizing the HJ equation are
finite-difference or, more generally, finite-element methods
[4], [6]-[8], [12] [15], [16], [21]. Furthermore, solving the dis-
cretized problem is equivalent to solving a stochastic optimal
control problem for a finite state controlled Markov chain; the
number of states of the Markov chain is equal to the number of
grid points used in the discretization [161. Thus, the discretized
problem can be solved by standard methods such as succes-
sive approximation or policy iteration [2]. This is somewhat
unfortunate: One would hope that the discretized version of an
optimal trajectory problem would be a deterministic shortest
path problem on a finite graph which can be solved efficiently,
say using Dijkstra's algorithm. In contrast, a method such
as successive approximation can require a fair number of
iterations, does not have good guarantees on its computational
complexity (because the number of required iterations is not
easy to bound), and can be much more demanding than
Dijkstra's algorithm. The contribution of this paper is to
show that, for the particular problem under consideration and
for certain discretizations, Dijkstra-like methods can be used,
resulting in fast algorithms. In particular, we will show under
mild assumptions that there is an algorithm whose complexity
is proportional to the number of grid points. Our starting point
is the discretized HJ equation, which we take for granted and
whose structure we then exploit; our development is com-
pletely independent from the rich analytical theory that deals
with the justification of the HJ equation and its discretizations.

We close by mentioning another approach to the discretiza-
tion of trajectory optimization problems. In [191 the region
G is discretized by using a regular rectangular grid, and the
vehicle is only allowed to move along the edges of the grid
(horizontally or vertically). Then, the shortest path problem on
the resulting grid-graph is solved using Dijkstra's algorithm.
The solution via Dijkstra's algorithm is certainly efficient,
but the employed discretization does not lead to an accurate
approximation of the solution to the original problem, no
matter how fine a grid is used. The reason is that the set
of allowed directions of motion is discretized very coarsely:
only four directions are allowed. The inadequacy of the naive
discretization is sometimes referred to as the digitization bias.
It can be remedied by allowing diagonal motion [19], but only
partially. Our results establish that the digitization bias can
be overcome without sacrificing the algorithmic efficiency of
Dijkstra-like methods.

Summary of the Paper
In Section 11, we state the HJ equation corresponding to our

problem and define the standard finite-difference discretiza-
tion.

min {~(x) + (U, VV*(z))} = 0, x E G. (2.1)
{~€@lll4l<1}

interior of G. If the problem data &e smooth enough and

In Section 111, we exploit certain properties of the discretized
HJ equation to show that it can be solved in time 0 (n log n) ,
where n is the number of grid points. In particular, we
show that even though the discretized HJ equation does not
correspond to a shortest path problem, it is still possible to
mimic Dijkstra's shortest path algorithm.

In Section IV, we present a variation of Dial's shortest path
algorithm. We show that, under certain assumptions on the arc
costs, it has optimal computational complexity and has good
parallelization potential.

In Section V, we explain why the algorithmic ideas of
Section IV cannot be applied to the discretized HJ equation of
Section 11. We are thus led to the development of an alternative
discretization. With this new discretization, we show that the
algorithmic ideas of Section IV lead to an O(n) algorithm,
which is the best possible solution.

In Section VI, we show that the algorithms of Sections IV
and V can be efficiently parallelized. In particular, we show
that linear speedup is obtained: the running time in a shared
memory parallel computer with p processors is only O(n/p),
as long as the number of processors is not too excessive;
e.g., for two-dimensional problems, if p = O (f i / l o g n) .
We compare our results to those achievable by the successive
approximation method.

Finally, in Section VII, we refer to some preliminary nu-
merical experiments that strongly support our results, and we
close, in Section VIII, with some comments.

11. PROBLEM FORMULATION AND A
FINITE-DIFFERENCE DISCRETIZATION

The purpose of this section is purely to motivate the
structure of the discretized HJ equation that will be studied
in the rest of the paper; the reader is referred to the literature
for rigorous and more precise statements.

Let G be a bounded connected open subset of Rm, and let
dG be its boundary. We are also given two cost functions
T : G H (0 , ~) and q: dG H (0 , ~) . A trajectory starting
at xo E G is a continuous function x: [O,T] H ~ " ' such
that x (t) E G for all t E [O,T) and x (T) E dG. A
trajectory is called admissible if there exists a measurable
function U : [O,T] H 92"' such that x (t) = x(0) + s," u (s) ds
and Ilu(t)ll 5 1 for all t E [O,T], where (1 . 1) stands for
the Euclidean norm. The cost of an admissible trajectory is
defined to be JT r (z (t)) dt + q(x(T)) . The optimal cost-to-
go function V": GUdG H 92 is defined as follows: if x E dG,
we let V * (x) = q(x); if x E G, we let V*(x) be the infimum
of the costs of all admissible trajectories that start at x.

A formal argument [131 indicates that V* should satisfy the
Hamilton-Jacobi equation

Furthermore, for any x E aG, V* should satisfy

lim sup V*(y) 5 V * (x) (2.2)
?I+=

where the limit is taken with 9 approaching x from the

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

1530 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 9, SEFTEMBER 1995

if V* is differentiable, it can be argued rigorously that V*
must satisfy (2.1)-(2.2). Furthermore, V* can be characterized
as the maximal solution of (2.1)-(2.2). Unfortunately, the
assumptions needed for V* to be differentiable are too strong
for many practical problems. Equations (2.1)-(2.2) can be still
justified, under much weaker assumptions, if V* is interpreted
as a “viscosity” solution of (2.1) [71, [91, [141.

We now describe a discretized version of the HJ equation.
While this discretization is closely related or a special case
of the discretizations described in [4], [7], [12], [15], and
[161, we provide a self-contained heuristic argument based
on Bellman’s principle of optimality. Once more, no rigorous
results are derived or stated; our only purpose is to indicate the
origin of the discretized HJ equation that will be studied later.

Let h be a small positive scalar representing the fineness
of the discretization (the discretization step). Let S and B be
two disjoint finite subsets of W, with all their elements being
of the form (zhljh), where 1: and j are integers. The sets S
and B are meant to represent a discretization of the sets G
and dG, respectively. (For example, S could be the set of all
grid points inside G and B could be the set of all grid points
outside G that neighbor an element of S.)

Let e l , . s + e, be the unit vectors in W. For any point
x E S, we define the set N (z) of its neighbors by letting
N (x) = {x + haieilz E {ll...,m},ai E {-l.l}}. The
assumption that follows states that B contains the “boundary”
of S: in keeping with the intended meaning of these sets.

Assumption 2.1: For every z E S, we have N (T) c SUB.
Let Q be an element of A = {-1, l}m. To every N =

(a1 . . . a,) E A, we associate a quadrant, namely, the cone
generated by the vectors aiel. . . . , (Y,c,,. Let 0 be the unit
simplex in !Rm; that is, (0 1 0,) E 0 if and only if
CE.=, Bi = 1 and Qi 2 0 for all %.

We assume that we have two functions f : B H (0 : ~)
and g: S H (0, x) that represent discretizations of the cost
functions q and T in the original problem. The function g can
be usually defined by g(x) = ~ (x) for every :I: E S. The
choice of f can be more delicate because B can be disjoint
from dG even if B is a good approximation of i)G. In that
case, some delicate analytical issues arise but are beyond the
scope of this discussion.

We finally introduce a function V : S U B H % which is
meant to provide an approximation of the optimal cost-to-
go function V*. The discretized HJ equation is the following
system of equations in the unknown V

r m 1

x E s. (2.3)
V (x) =f(z) , :c E B (2.4)

where
m

(2.5)

We now explain the form of (2.3)-(2.4). Suppose that the
vehicle starts at some II: E S and that it moves, at unit

d
4 x+he,

x-he,

Fig. 1 . Illustration of the discretization of the HJ equation. Here, the vehicle
moves along the direction d . in the quadrant defined by - P I and cz; that is,
(1 = (o 1 , n r) = (-1.1).

speed, along a direction d. This direction is determined by
specifying the quadrant a to which d belongs and by then
specifying the relative weights B z of the different vectors QZe,
that generate this quadrant. Assume that the vehicle moves
along the direction d until it hits the convex hull of the points
L + haze, = 1,. . . , m. At that time, the vehicle has reached
point x+hCEl 0,a,cZ. Since the vehicle travels at unit speed,
the amount of time it takes is equal to

See Fig. 1. Since g (r) represents travel costs per unit time (in
the vicinity of x), the traveling cost is equal to hg(x)r(B). To
the traveling cost we must also add the cost-to-go from point
0: + hSZl 8,n,e, and, invoking the principle of optimality,
we obtain

We approximate V * by a linear function on the convex hull
of the points z + hniei, to obtain

m m

V* z + h B,n,e, 0,V*(z + haze,). (2.7) (7 x 1

Using approximation (2.7) in (2.6), we are led to (2.3).
The above discussion gives some plausibility to the claim

that the solution V of (2.3)-(2.4) can provide a good approx-
imation of the function V*. (Of course, some smoothness
assumptions are required for this to be the case.) This mo-
tivates our main objective: Providing an efficient algorithmic
solution of (2.3)-(2.4).

The discretization (2.3)-(2.4) is a special case of those
considered in [15] and [16]. It is also related to those in [8],

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

TSITSIKLIS: GLOBALLY OPTIMAL TRAJECTORIES 1531

[12], and [4], except that the latter references involve a fixed
time step, whereas our time step ~ (0) is variable. It should also
be pointed out that our choice of a particular discretization out
of the multitude of choices allowed by [15] and [16] is not

Pmu$ To simplify notation and for the purposes of this
proof only, let A = hg(x) and V, = V(x + haiei). The
assumptions of the lemma and (2.3) yield

arbitrary; under most choices, the arguments in subsequent m m
sections fail to go through. V(z) = A.(O) + ~ O i K = min

<€e As pointed out in [16], (2.3)-(2.4) are the dynamic program- i=l
(3.1) ming equations for the following Markov decision problem: if

we are at state 2 E S and a decision (.,e) E A x 0 is
made, the cost hg(2)7 (8) is incurred and the next state is
x + ha,ei, with probability Oi; if we enter a state z E B,
the terminal cost f (2) is incurred and the process stops. Since
the cost per stage is bounded below by the positive constant
h minzES g(a), standard results of Markovian decision theory
[2], [5] imply that (2.3)-(2.4) have a unique solution which
is equal to the optimal expected cost. Furthermore, either the
successive approximation or the policy iteration algorithm will
converge to the solution of (2.3)-(2.4).

References [15] and [16], which deal with more general
types of problems, suggest the use of the successive ap-
proximation method, possibly an accelerated version. The
computational complexity of each iteration is proportional to
the number of grid points. Even for deterministic shortest path
problems, however, the number of iterations is proportional
to the diameter of the grid-graph, which is usually of the
order of l / h . The number of iterations can be reduced using
Gauss-Seidel relaxation (as in [15], for example), but no
theoretical guarantees are available. This is in contrast to
Dijkstra-like algorithms that solve deterministic shortest path
problems with essentially a single pass through the grid points.

In the next section, we show that even though (2.3)-(2.4)
correspond to a Markovian decision problem, they still have
enough structure for the basic ideas of Dijkstra’s algorithm to
be applicable, leading to an efficient algorithm.

Notice that the function minimized in (3.1) is convex and con-
tinuously differentiable. We associate a Lagrange multiplier to
the constraint CEl <i = 1. Then, the Kuhn-Tucker conditions
show that there exists a real number X such that

(3.2)

for all i E 2. Using the functional form of .(e), we obtain

AOi
- + & = A , V i E Z .

We solve (3.3) for V, and substitute in (3.1) to obtain

V(Z) = A.(O) + X -

Thus, it remains to show that

(3.3)

or, equivalently, that
111. A DUKSTRA-LIKE ALGORITHM

Dijkstra’s algorithm is a classical method for solving the
shortest path problem on a finite graph. Its running time,
for bounded degree graphs, is O(nlogn), where n is the
number of nodes, provided that it is implemented with suitable
data structures [3]. The key idea in Dijkstra’s algorithm is to
generate the nodes in order of increasing value of the cost-to-
go function. This is done in n stages (one node is generated
at each stage), and the O(1ogn) factor is due to the overhead
of deciding which node is to be generated next. We will now
show that a similar idea can be applied to the solution of
(2.3)-(2.4) and that the elements of S U B can be generated
in order of increasing values of V (x) .

Throughout this section, we reserve the notation V (x) to
indicate the unique solution of (2.3)-(2.4). The key to the
algorithm is provided by the following lemma that states that
the cost-to-go V (x) from any node x can be determined from
knowledge of V(y) for those nodes y with strictly smaller
cost-to-go.

Lemma3.1: Let x E S , and let a E d,O E 0, be
such that V (x) = hg(a)7(8) + CE1 O,V(Z + ha,e,). Let
Z = {Z lO, > 0). Then, V (z + hate,) < V(z) for all i E 2.

(3.4)

Using the definition of .(e), we see that the left-hand side
of (3.4) is equal to zero. On the other hand, for i E 2, we
have Oi > 0 and the right-hand side of (3.4) is negative, thus
establishing the desired result. Q.E.D.

We now proceed to the description of the algorithm. Let
x1 be an element of B at which f(x) is minimized. Using
the Markov decision problem interpretation of (2.3)-(2.4), it
is evident that V (x) 2 f(z1) = V(x1), for all x E S U B.
Thus, z1 is a point with a smallest value of V (x) , and this
starts the algorithm.

We now proceed to a recursive description of a general stage
of the algorithm. Suppose that during the first k stages (1 5
k < n) we have generated a set of points Pk = (21, - + , xk) c
S U B with the property

Qi
c 0;
j€Z .(e) - - > --. .(e) T (Q)

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

1532 W E TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40. NO. 9, SEPTEMBER 1995

Furthermore, we assume that the value of V(x) has been
computed for every z E 9. (The set P k is like the set of
permanently labeled nodes in Dijkstra's algorithm.)

We define v k (x) by letting

for x E P k U B,
otherwise.

We then compute an estimate V k of the function V by essen-
tially performing one iteration of the successive approximation
algorithm, starting from v k . More precisely, let Vk(x) = V(x)
for x E B and

r m 1

IC E s. (3.5)

In this equation, and throughout the rest of the paper, we
use the interpretation o . 00 = 0. Since V k (x) 2 V(x), a
comparison of (3.5) and (2.3) shows that

V k (x) 2 V(IC), Vx E B U S. (3.6)

The variable V k (x) , for x $ P k , is similar to the temporary
labels in Dijkstra's algorithm.

We now choose a node with the smallest temporary label
to be labeled permanently. Formally, we choose some z k + l
that minimizes Vk(x) over all x $ Pk. The following lemma
asserts that this choice of xk+l is sound.

Lemma 3.2:
a) v(xk+l) = Vk(xk+l).
b) For every IC $ Pk, we have V(xk+1) I V(x).

Proof: Let y $ P k be such that V(y) = min,gpk V(x).
We will show that V(y) = V k (y) . If y E B, this is
automatically true. Assume now that y E S. Let a E A and
0 E 0 be such that V(y) = h g (y) T (0) + C z l B;V(y +
haiei). Let Z = { i l& > 0). Lemma 3.1 asserts that V(y +
haie,) < V(y) for every i E Z. In particular, y + haiei E P k

for every i E Z. Therefore, ~ (y + haiei) = Vk(y + haiei),
for every i E 2. Consequently

m

v (y) I &(Y) I jhg(y)T(0) + 0ivk(y + haiei)
i= 1

m

= hg(y)T(O> + ~ i v (y + haiei) = ~ (9) .
i=l

(The first inequality follows from (3.6), the second from (3 3 ,
and the la.$ one from the definition of a and 0.) The conclusion

This, together with the fact V(x) 5 V k (x) , for all x, shows
that a node xk+l which minimizes V k (?) over all x $ P k also
minimizes V(x) over all IC $ P k and V (I C ~ + ~) = V(xk+l).

Q.E.D.
The description of the algorithm is now complete. The

algorithm terminates after n stages and produces the values
of V(IC) for all IC E S U B, in nondecreasing order. To
determine the complexity of the algorithm, we will bound the
complexity of a typical stage. Throughout this analysis, we

V(y) = vk(y) follows.

view the dimension m of the problem as a constant, and we
investigate the dependence of the complexity onAn.

Let us first consider what it takes to compute Vjt(x). There
are 0(1) different elements a of A to consider and for each
one of them, we have to solve, after some normalization, a
convex optimization problem of the form

(3.7)

No matter what method is used to solve problem'(3.7), the
computational effort is independent of the number n of grid
points; it depends, of course, on the dimension m, but we
are viewing this as a constant. Thus, we can estimate the
complexity of computing Vk(x), for any fixed 2, according
to (3.9, to be O(1).

How would we solve (3.7) in practice? We can use an
iterative method, such as a gradient projection method or a
projected Newton method. For small dimensions m (which is
the practically interesting case), such a method would produce
an excellent approximation of the optimal solution after very
few iterations. Furthermore, it is not difficult to show that small
errors in intermediate computations only lead to small errors
in the final output of ouf, overall algorithm. (The reason is that
the mapping from v to Vk in (3.5) is Lipschitz continuous with
Lipschitz constant one and, therefore, errors in computing V
do not get amplified.) Finally, for theoretical reasons, it is
useful to notice that problem (3.7) can be solved exactly with
a finite number of operations, if the computation of a square
root counts as a single operation; the details are provided in
the Appendix.

We now notice that a,(,) = Vk+l(x) for every x #
x k + l . This means that if x is not a neighbor of Z k + l , then
V~(IC) = Vk+l(x). n u s , V k + l (Z) only needs to be computed
for the O(1) neighbors of xk+;. We conclude that once V k
is computed, the evaluation of Vk+1, at the next stage of the
algorithm, only requires O(1) computations.

At each stage, we must also determine the next point
xk+l, by minimizing Vk(z) over all z $ Pk. Comparing
O(n) numbers takes O (n) time, which leads to O(n) time
for each stage and a total O(n2) running time. In a better
implementation, the values V k (x) can be maintained in a
binary heap, in which case z k + l can be determined in O(1og n)
time; see [3] and [lo] for the use of binary heaps in shortest
path algorithms. We conclude that each stage of the algorithm
can be implemented with O(1ogn) computations. We now
summarize.

Theorem 3.1: The algorithm of this section solves the sys-
tem of (2.3)-(2.4). Assuming that square roots can be eval-
uated in unit time, it can be implemented so that it runs in
time O(n1ogn).

Some more comments are in order. We have been using a
uniform grid. If we were to use a nonuniform grid instead,
there would be some minor changes in the form of (2.3). The
general structure would still be the same. Lemma 3.1, however,
would cease to hold. Similarly, if the cost function g(x) were
to become direction dependent, e.g., of the form g(x ,a ,0) ,
Lemma 3.1 would again fail to hold.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

TSlTSIKLIS: GLOBALLY OPTIMAL TRAJECTORIES 1533

Finally, we note that the algorithm of this section is inher-
ently serial. This is because the elements of S are generated
one at a time, in order of increasing values of V (z) . To obtain
a parallelizable algorithm, we should be able to generate the
values of V (x) for several points x simultaneously. To gain
some insight into how this might be done, we first consider,
in the next section, an algorithm for the classical shortest path
problem.

IV. A VARIATION OF DIAL'S SHORTEST PATH ALGORITHM
We are given a directed graph G = (N, A). Here, N =

{ 1, . . . , n} is the set of nodes, and A is the set of directed arcs.
For each arc (i, j) E A, we are given a positive arc length ai j .

The objective is to find, for every node i , a shortest path from
node i to node 1. We will use the following assumptions.

Assumption 4.1 :
a) For every i , there exists a path from node i to node 1.
b) For every (i , j) E A, we have a,j 2 1.
Assumption 4.1-b) can be made without loss of generality,

since we can always rescale the arc lengths ai j . It is only made
to simplify the presentation and the complexity analysis.

Let V (i) be the length of a shortest path from node i to node
1. For notational convenience, we let V (l) = 0 and aij = M

if (i , j) $? A. For k = 1 , 2 , . . . , let &k = {ilk- 1 5 V (i) < k}

The algorithm starts with RI = &I = (1). Suppose that
after k stages of the algorithm, we have determined the sets
Qk and Rk and have computed v(i) for every E Rk. We
may call the nodes in Rk permanently labeled. We then define
temporary labels by letting

and Rk = Ut=o &i = {ilv(i) < k}.

(4.1)

Notice that V (i) = minj{aij + V (j)) , which implies that
~ (i) 5 v k (i) for all i.

Lemma 4.1: Suppose that v(i) 2 k, i.e., a 4 Rk.
a) If V (i) < k + 1, then V, (z) = V(i) .
b) If V (i) 2 k + 1, then vk(i) 2 k
c) We have i E Rk+l if ,a"d only if v k (i) < k + 1 and, if

1.

this is the case, then & (i) = v(i).
Proof:

a) Let e be the first node on a shortest path from i to 1.
Then, V (i) = aie+V(l). If V (i) < k + l , then V (e) < k

On the other hand, we have already noted that V (i) 5
and c E Rk. Thus, by (4.1), & (i) 5 aie +v(e) = v(i).
v k (i) , which shows that v(i) =A v k (i) .

b) This is trivial because V (i) 5 Vk(2).
c) This is just a restatement of a) and b). Q.E.D.

l}, from which the set & k + l can be determined, and this
completes the description of a typical stage of the algorithm.
The algorithm terminates after at most L+ 1 stages, where L =
[maxi V (i) l . We now describe an efficient implementation.

As in Dial's shortest path algorithm, we store the temporary
labels v k (z) in "buckets." (As is well known [3], buckets can
be implemented so that insertion and deletion of an item takes
0(1) computations.) We will use L buckets and at the kth

k m m a 4.1 shows that &k+l = {i $! Rk/vk(i)<k +

stage of the algorithm, the j t h bucket will contain a list of all
nodes i such that j - 1 5 v k (i) < j . On the side, we will also
maintain an array whose ith entry will contain the value of
v k (2). The algorithm is initialized by computing VI (i) for all
i and by placing_each i in the appropriate bucket.

Suppose that v k has been computed, and each i is stored
in the appropriate bucket. In particular, the sets & I , . . . , Qk+l
have been generated, and for any x in one of these sets, we
have V (x) = Vk(x). Note that (4.1) can be written as

Let us consider a typical node i $? & + I . If there no j E

vk (i) , i stays in the same bucket, and nothing needs to be done.
If, on the other hand, there exists some j E &k+l such that
(i , j) E A, then v k + l (i) has to be evaluated according to (4.2).
Let Zk+, be the total number of arcs leading into some element
of & k + l . (Note that Et==, z k = IAI.) Then, the computation
required to evaluate v k + I (i) for all i is ~ (~ k + l) . This leads
to a total of O([AI) computations throughout the course of the
algorithm. For every i for which vj+l (i) # v k (z) , we also
need to move i to a new bucket and this takes O(1) time. By
a similar argument, the total amount of work is still O(lA1).

Qk+i such that (i , j) E A, then (4.2) shows that vk+l(i) =

We now summarize.
Theorem 4.1: Let Assumption 4.1 hold, and suppose that

V (i) 5 L for all i. Then, the above described algorithm
computes V (i) for all i in time O (L + IAI).

Remarks:
If all aij are integers, the algorithm of this section is
identical with Dial's algorithm. Our development here
shows that the assumption aij 2 1, rather than the
integrality assumption, is the essential one.
If L = O(lAl), the running time of the algorithm is
simply O(IAI), which is the best possible. Suppose that
the graph G is a uniform mesh in m-dimensional space,
with a total of n points. We then have IAl = O(mn).
Suppose that aij 5 K for some constant K. Then,
the length L of any shortest path is bounded by K
times the diameter of the graph. Thus, we can let L =
Kmn1Im. Recall that we have an optimal algorithm if
L = O(lA1). This will happen if Kmnllm = O(mn),
or, equivalently, if K = O(n("-l)/"). Even in two
dimensions (m = a) , we obtain an O (n) algorithm
while allowing a fairly large amount of variability of the
arc lengths (a factor of nl/'). Notice that this is exactly
the type of shortest path problems that one obtains
from the naive discretization of trajectory optimization
problems mentioned in the end of Section I.
The algorithm has excellent parallelization potential. At
each stage, we can let a different processor compute
v k (2) for a different node i. Thus, the parallel time seems
to be limited only by the number L of stages in the
algorithm. If L is much smaller than the number n of
nodes, then we can aim at a significant speedup through
parallelization. So, for the case of a two-dimensional
mesh (see Remark 2), if we have L = O (~ L ' / ~) and
K = O(l) , we can strive for O(nl/') parallel running

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

1534 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40. NO. 9, SEITEMBER 1995

w4

w5 "

qw2 N (z) , the set of its be neighbors, be N (x) = {z + wili =
1, . . + ,8} . As in Assumption 2.1, we assume that for every
z E S, we have N (z) c SUB.

We now motivate the discretization of the HJ equation
that will be used in this section. Suppose that the vehicle
starts at some z E S and moves along a direction d , for
some time 7, until it hits the set x + H. The direction d is
in the cone generated by w, and w,+1 for some suitable
choice of a. The point at which the vehicle meets H is of
the form (1 - 0)w, + 19w,+1. for some B E [0,1]. We will

" w1-9
.O

-

property that would lead to a fast solution of (2.3H2.4) is v (~) = min min [hg(x:)7a(o) + (1 - ~) v (~ +
the following. a=1,.,. ,8 O €[O,l]

Property P: There exists a constant S > 0 such that if + OV(x + w,+1)], z E s, (5.1)
V(z) = hg(z).r(0) + BiV(z + haiei) and if for some j v (~) f(z), E B. (5.2)
we have 0.j > 0, then V (x) 2 V(z + hajej) + S.

Lemma-3.1 established that Property P holds with 6 = 0.
Unfortunately, Property P is not true for (2.3)-(2.4) when we
let S be positive. To see this, let us focus on the first quadrant,
let E be a small positive number, and consider the case where
m = 2 , h = g(z) = l , V (z + e l) = 1 - E,V(z+ez) = 0. For
any positive E , the optimal value of 81 can be computed and
is positive. On the other hand, the value of V(z) is bounded
above by one, and the difference V (x) - V(z + e l) is no
larger than E. Since this is true for every E > O , Property P
does not hold.

In this section, we show that Property P becomes true if a
somewhat different discretization is used. Then, based on this
property, we mimic the algorithm of Section IV to solve the
trajectory optimization problem in 0 (n) time. Unfortunately,
the discretization that we introduce is more cumbersome and
is unlikely to be useful when the dimension is higher than
three. For this reason, we will only describe our method when
the dimension m is two or three. The reader should have no
difficulty in generalizing to higher dimensions.

Let us first consider two-dimensional problems. Let H be
the boundary of a square centered at the origin and whose
edge length is equal to 2h. We define the vectors w1,. . , wg
as shown in Fig. 2. We use z + H to denote the translation
of H so that it is centered at z.

As in Section 11, let S and B be two disjoint finite subsets
of W, all of their elements being of the form (ih, j h) , where
i and j are integers. We assume that we are given functions

Equations (5.1)-(5.2) are again a special case of the finite
element discretizations studied in [15] and [16]. Once more,
they admit a Markov decision process interpretation and have
a unique solution, and we reserve the notation V(z) to denote
such a solution.

Recall that the cost per stage g in the discretized problem
has been assumed to be positive. In the following, we assume a
lower bound of unity for g and proceed to establish Property P.

Assumption 5.1: For every 2 E S, we have g(z) 2 1.
Lemma 5.1: Fix some x E S and let a, 0 attain the

minimum in (5.1), that is

If B < 1, then V(x) 2 V(z + w,) + (h / f i) . If B > 0, then
V(z) 2 V(x + %+1) + @/a).

Proof: We only consider the case where a = 1. The
argument for other chqices of a is identical. Suppose that
0 = 0. Then, ~ (x) = hg(z) + V(x + w1) 2 (h / J Z) +
V(z + wl), as desired. Suppose that 0 = 1. Once more,
V(z) = hg(z)JZ + V(z + wz) 2 (h / f i) + V(z + 202).

Suppose now that 0 < B < 1. The first order optimality
condition for 0 yields

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

TSITSIKLIS: GLOBALLY OWIMAL TRAJECTORIES

Fig. 3. A triangulation of each face of the cube H.

- V(z + Wl))
hg(zP2 = h . g (z) d i T 3 - ~ m

1 + d 2 - 82
v 4 T F = hg(z)

h
2 Jz’

Q.E.D.
We now continue with the three-dimensional case. Let H

be the boundary of a cube centered at the origin and with
edge-length equal to 2h. We triangulate each face of H as
shown in Fig. 3. We use a similar triangulation for every face
of z + H. The rest is very similar to the two-dimensional case.
A direction of motion can be parameterized by specifying a
triangle on some face of the cube and by then specifying a
particular point in that triangle. Let (I: be a parameter indicating
the chosen triangle. (There are six faces with eight triangles
each; thus, n runs from 1-48.) For a given triangle (I:; let
ya,lrya,2,ya,3 be its vertices. In particular, let ya,l be the
point closest to the center of the cube, and let ya,3 be the
one furthest away. We define the set N (z) of neighbors of n:,
as the set of all points in the set z + H whose coordinates
are integer multiples of h (i.e., all vertices of any one of the
triangles that we have introduced). As in the two-dimensional
case, we require that N (z) c S U B for all z E S.

k t 0 = {(61,82,83)l& 2 o,C?==, ei = I}. Every
point in the triangle corresponding to some a is of the form
E:==, 6iya,;, where 8 E 0. Let hr(8) be the distance from
the center of the cube to the point determined by N and 8. It
is easily seen that

= 41 + (1 - 81)2 + 0:.

Once more, the principle of optimality yields

(5.3)
1 3

V(z) = min min hg(z)T(8) + 8iV(z + ya , i) , [i = l
a e m

z E s,

1535

We reserve again the notation V(z) to indicate the unique
solution of (5.3H5.4). The following is the three-dimensional
analog of Lemma 5.1.

Lemma 5.2: Fix some z E S, and let a , 6 E 0 attain the
minimum in (5.3), that is

~

V(z) = f (x) , z E B. (5.4) and we only discuss the three-dimensional case.

If Bi > 0, then V(z) 2 V(z + + h/&.
Prooj Suppose that (Y corresponds to the triangle whose

vertices are the points ya,l = z + (h,O,O),y,,z = z +
(h,h,0),ya,3 =z+(h,h,h).Theproofforanyotherchoice
of (I: is identical, due to the symmetry of the triangulation we
are using. Let V, = V(ya,i). Using the formula for .(e), we
have

Suppose that Oi > 0 for all i. Then, the first-order optimality
conditions yield

and

(5.6)

(5.7)

In particular, we have V3 < Vz < VI, and it suffices to find a
positive lower bound for V(z) - VI. We use (5.6) and (5.7)
to eliminate VI and V3, respectively, from (5.5) and obtain

We then subtract (5.6) to obtain, after some algebra

The argument for the case where some component of 0 is
zero is similar and is omitted. Q.E.D.

Having established an analog of Property P for two- and
three-dimensional problems, we discuss how it leads to effi-
cient algorithms and estimate their complexity. The basic ideas
are the same as for the shortest path algorithm of Section IV,

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

1536 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 9, SE$PTEMBER 1995

Let 6 = h/&. Let Q k = {zI(IC - 1)6 5 V(z) < k6) and
Rk = Ut=:=, Qi = {z1V(z) < k6). Suppose that at some stage
of the algorithm, we have computed V (z) for all 5 E Rk.
We define pk(z) to be equal to V (z) if z E R k and infinity
otherwise. Let

r 3 1

Vk(z) = min min Lhg(z)r(R) + &V(z + ya, i)
a @EO

i= 1

z E s, (5.8)

where we are again following the convention 0 . 30 0. We
then argue as in Lemma 4.1. If V (z) 2 (IC+l)S, then Vk(z) 2
V (z) 2 (I C + 1)s. If, on the other hand, V (z) < (IC + l)6,
Lemma 5.2 shows that for every i such that the minimizing t9i
in (5.8) is positive, we must also have V (z + ya , i) < k6 and
therefore z+ya,i E Rk and V(z+y,,;) = vk(z+ya,i). This
implies that Vk(z) = V(5) . Thus, we have computed V (z)
for every z E &+I: and we are ready to start the next stage
of the algorithm.

We implement the algorithm by using buckets, exactly
as in Section IV, except that the “width” of each bucket
is 6 = h/& instead of unity. The complexity estimate is
essentially the same as in Section IV, because the underlying
algorithmic structure is almost the same. Since each z has a
bounded number of “neighboring points” z + hymZ, a point
z may move from one bucket to another and the value of
V k (z) may need to be recomputed only 0(1) times. Each time
that V k (x) is recomputed, we need to solve the optimization
problem in (5.8). Following an approach similar to the one
in the Appendix, this can be done with a finite number of
operations, provided that square root computations are counted
as single operations. Thus, the complexity estimate becomes
O(n) plus the number of buckets employed. The number of
buckets can be bounded in turn by O(L/6) = O(L/h) , where
L is an upper bound on maxZEs V (z) .

For the two-dimensional case, there are no essential differ-
ences, except that the bucket “width’ should be h / d . We
summarize below.

Theorem 5.1: Let Assumption 5.1 hold, and assume that
square roots can be evaluated in unit time. Then, a solution of
(5.1)-(5.2) in the two-dimensional case, or (5.3)-(5.4) in the
three-dimensional case, can be computed in time O (n + L / h) ,
where L is an upper bound for maxZEs V (z) .

We now interpret the complexity estimate of Theorem 5.1
in terms of the original continuous trajectory optimization
problem. We assume that the underlying cost function T (cf.,
Section I) is bounded below by some positive constant. For
a problem involving trajectories in !Rm, the number of grid
points is n = O(h-”), where h is the grid-spacing. On the
other hand V (z) should converge to V*(z) , the cost-to-go
for the original continuous problem, which is independent of
h. In particular, the factor L in Theorem 5.1 can be taken
independent of h. For m > 1, the term O(n) is the dominant
one in the complexity estimate O(n + L/h) . We conclude
that, as long as the problem data in a trajectory optimization
problem are regular enough for our discretizations to be
justified, we have algorithms whose complexity is proportional

to the number of grid points involved, which is the best
possible.

VI. PARALLEL IMPLEMENTATION
In this section, we comment on the parallelization potential

of the algorithm of Section V and compare it with the parallel
implementation of relaxation methods. To avoid discussing the
effects of architecture-dependent features, we frame our dis-
cussion in the context of an idealized shared memory parallel
computer; similar results are possible, in theory, for some
message-passing architectures like hypercubes although, for
the algorithms we are considering, interprocessor coordination
and load balancing is quite involved.

Let us concentrate on the computations required during a
typical stage of the algorithm. Suppose, for example, that
Vk(z) is available for all points z, so that Qk+l can be
determined. Let Nk+l be the set of points that have a neighbor
belonging to Qk+l. For every z Nk+1, we have Vk+l(z) =
Vk (z) and no computation is required to obtain Vk+1 (z). Thus,
a high-level description of a typical stage of the algorithm of
Section V is as follows:

1) Use the values of Vk(z) to determine the set Qk+l.
2) Determine the set Nk+l.
3) For every z E Nk+1, compute, in parallel, the value of

If a different processor were assigned to every point 2 E S,
then Step 3) would be carried out in 0(1) parallel time. Such
an implementation would be wasteful, however, because the
processors associated to points z Nk+1 would be idle; for
most stages, the majority of the processors would be idle and
the parallelization would be inefficient. To obtain an efficient
implementation, it is important to use a smaller number, say
p , of processors, certainly no more than the average size of
Nk+l. Then, at each stage, we need to allocate more or less
the same number of elements of Nk+1 to each processor. Such
load balancing can be accomplished by running a parallel
prefix algorithm at each stage [17].’ The running time of a
parallel prefix algorithm is O(1ogp). Once the load of the
different processors is balanced, the parallel time for that stage
is O(lNk+iI> = O(JQk+il).

Putting everything together, the total parallel running time

the argument in the end of the preceding section, L should be
viewed as a constant independent of n. For two-dimensional
problems, we have n = O (/ L - ~) and 6 = O(h) (Lemma 5.1),
and the parallel complexity becomes O(n1/2 log p + n / p) . With
p = O(nl/’/ logn), the running time is O(TL’ /~ logn). A sim-
ilar calculation shows that, for three-dimensional problems, the
parallel running time is ~ (n l / ~ logn), using 0(2 /~ / logn)
processors.

Note that no parallel implementation of the algorithm of
Section V could have much better running time. This is
because we have to deal with one bucket after the other
and in two (respectively, three) dimensions there will be
O(nl/’) (respectively, O(n1/3)) buckets. (Since this is also the

‘The details of how to do this are somewhat uninteresting and fairly
common in the parallel algorithms field; we therefore choose to omit them.

v k + 1 (x)

is O((L/6)lOgP + c k IQkI/P) = O((L/6)lOgP + n / P) . BY

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

TSITSIKLIS: GLOBALLY OPTIMAL TRAJECTORIES 1537

Fig. 4. A square with some line obstacles.

diameter of the graph formed by the grid points, it is highly
implausible that any other algorithm could be much better
either.) In addition, the proposed implementation is efficient,
in the sense that the processor-time product is of the same
order of magnitude as the serial running time.

It could be argued that the successive approximation algo-
rithm is more suitable for parallelization because all points
can be simultaneously iterated: Using O(n) processors, the
parallel time is of the order of the number of iterations. The
number of iterations, however, cannot be less than O(n1/2) or
O (~ L ~ / ~) for two- or three-dimensional problems, respectively.
We conclude that parallel successive approximation cannot be
much faster than the algorithm described here in terms of
running time, even though it uses a much larger number of
processors. The number of iterations in the successive approx-
imation algorithm can be reduced by using the Gauss-Seidel
technique or other acceleration methods, maybe in conjunction
with some heuristics guiding the choice of the next point to
be iterated, but the resulting methods are usually much less
parallelizable.

VII. NUMERICAL RESULTS

We report here on some preliminary numerical experiments
designed and carried out by L. C. Polymenakos.

The trajectory optimization problems that were considered
involved a uniform grid on the unit square [0, 112. The set S
(respectively, B) consists of the grid points in the interior
(respectively, on the boundary) of the square. The cost of
all boundary points was set to infinity except for the two
neighbors of the top right-hand comer whose cost was zero.
(Thus, the objective is to reach that comer at minimum cost.)
The cost g(xl, 2 2) in the interior was chosen to be of the form

g(xl,x2) = 1 - C ~ (Z I - 0.5)2 - ~ ~ (9 1 - 0.5) 2

where e1 and e2 are positive constants. Note that this is a
concave quadratic function whose maximum is attained at the
center of the square. To make the problem more interesting,
obstacles were introduced in the interior of the square, as
shown in Fig. 4.

The Dijkstra-like algorithm was implemented using a binary
heap to store temporary labels. In addition, a few shortcuts
were introduced, such as the following one: If the labels of
the two neighbors of a node x in a particular direction have

remained the same since the last time that the label of 2 was
calculated, no minimization along that direction is necessary.

For the Gauss-Seidel algorithm, nodes were scanned one
row at a time. As in the Dijkstra-like algorithm, unnecessary
optimizations are avoided whenever the labels of some neigh-
bors of a node have not changed since the last update at that
node. The Gauss-Seidel algorithm was terminated when the
change in the value of all nodes was less than

Both algorithms were implemented on a DEC 5025 personal
computer running a version of UNM. For a 150 x 150 grid
of points, the Dijkstra-like algorithm took 1.8 seconds, inde-
pendently of the number of obstacles. For the Gauss-Seidel
algorithm, the running time was 20.4, 77.7, 63.7, and 93.9
seconds for 1, 2, 3, and 4 obstacles, respectively.

To test whether the Gauss-Seidel algorithm was slow only
because of a stringent termination criterion, some runs were
executed in which the algorithm was terminated as soon as
all nodes would get a finite label, regardless of the accuracy
of that label. It was then observed that, in the presence of
obstacles, the Gauss-Seidel algorithm still required a fair
number of passes through the grid points, as anticipated. The
Gauss-Seidel algorithm was again several times slower.

VIII. DISCUSSION
The Dial-like algorithm of Section V has the best possible

order of magnitude of running time, namely O(n) . On the
other hand, the constant factor hidden by the O(.) notation
appears to be much larger than the constant factor in the
O(n log n) estimate for the Dijkstra-like algorithm of Section
III. In practice, we expect the Dijkstra-like algorithm to be
faster.

It is to be expected that the Dijkstra-like algorithm will
always significantly outperform the classical successive ap-
proximation algorithm. Successive approximation is likely to
be competitive only if its GaussSeidel variant is used and
if the points are swept in more or less the same order as
they appear on optimal trajectories. In other words, successive
approximation becomes competitive only if it manages to
mimic the Dijkstra-like method.

In this paper, we have stayed clear of more general trajectory
optimization problems involving unbounded domains or, more
importantly, running costs of the form ~ (x , U) . The latter is a
fairly severe restriction but appears to be critically needed
if one wishes to obtain one-pass (as opposed to iterative)
algorithms. Nevertheless, we expect that similar methods that
try to propagate “wavefronts” (or level sets) of the function
V hold much promise.

APPENDIX
We explain here how problem (3.7) can be solved with a

finite number of operations, if the evaluation of a square root
is counted as a single operation.

Let us first assume, without loss of generality, that VI 2
V2 . . . 2 V,. Suppose that the optimal value of 81 is positive.
It is then apparent from the structure of problem (3.6) that
the optimal value of O i is positive for all i. Then, by the

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

1538 lEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 9, SEPTEMBER 1995

Kuhn-Tucker conditions, there exists a scalar X such that

We thus have
m

We can solve this quadratic equation to determine X (this
requires a square root computation). Furthermore, the relation

m m

(A.3)
i=l i= l

can be used to determine the value of r (8). The value of each

[9] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi
equations,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1-42, 1983.

[lo] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, 1990.

[111 R. Dial, “Algorithm 360: Shortest path forest with topological ordering,”
Commun. ACM, vol. 12, pp. 632-633, 1969.

[12] M. Falcone, “A numerical approach to the infinite horizon problem of
deterministic control theory,” Applied Math. Optim., vol. 15, pp. 1-13,
1987; corrigenda, 23, pp. 213-214, 1991.

[13] W. Fleming and R. Rishel, Deterministic and Srochasric Optimal Con-
trol. New York: Springer-Verlag, 1975.

[14] W. H. Fleming and H. M. Soner, Controlled Markov Pmcesses and
Kscosity Solutions.

[15] R. Gonzalez and E. Rofman, “On deterministic control problems: An
approximation procedure for the optimal cost, I, the stationary problem,”
SIAM J. Contr. Optim.. vol. 23, no. 2, pp. 242-266, 1985.

[I61 H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic
Control Problems in Continuous Time. New York Springer-Verlag,
1992.

[17] F. T. Leighton, Introduction to Parallel Algorithms and Architectures.

New York Springer-Verlag. 1993.

Oi can be then computed from (A.1). If, after doing all these
calculations, we find that 8; > 0 for all i , then we have an
optimal solution of problem (3.7). If some 8; is negative or
zero or if (A.2) has no real roots, then our assumption o1 > 0
was e ” w s . In that case, we can let 81 = 0 and optimize

San Mateo, CA: Morgan Kaufmann, 1992.-
[18] J. S. B. Mitchell, “Planning shortest paths,” Ph.D. dissertation, Dept.

Operations Research, Stanford Univ., Stanford, CA, 1986.
[I91 J. S. B. Mitchell and D. M. Keirsey, “Planning strategic paths through

variable terrain data,” SPIE Volume 485: Applica. Art$cial Intell., 1984,

~201 J. S. B. Mitchell and C. H. Papadimitriou, “ n e weighted region
pp. 172-179.

with respect to the remaining variables. This is a problem with
the same but in one dimension less, and the Same
procedure can be used. By repeating these steps at most m

problem,” J. ACM., vol. 38, pp. 18-73, 1991.
[211 P. E. Souganidis, “Approximation schemes for viscosity solutions of

Hamilton-Jacobi equations,” J. Diferential Equations, vol. 59, pp. 1 4 3 ,
1985.

times, the optimal solution of (3.7) will have been determined.

ACKNOWLEDGMENT
The author wishes to thank L. Polymenakos for carrying out

the computational experiments mentioned in Section VII.

REFERENCES

[l] M. Athans and P. L. Falb, Optimal Control. New York McGraw Hill,
1966.

[2] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic
Models.

[3] -, Linear Network Optimization. Englewood Cliffs, NJ: Prentice-
Hall, 1991.

[4] M. Bar& and M. Falcone, “An approximate scheme for the minimum
time function,” SIAM J. Contr. Optim., vol. 28, pp. 950-965, 1990.

[5] D. P. Bertsekas and I. N. Tsitsiklis, “An analysis of stochastic shortest
path problems,” Marh. Op. Res., vol. 16, no. 3, pp. 580-595, Aug. 1991.

[6] I. Capuzzo Dolcetta, “On a discrete approximation of the Hamil-
ton-Jacobi equation of dynamic programming,” Applied Math. Optim.,

[7] I. Capuzzo Dolcetta and M. Falcone, “Viscosity solutions and discrete
dynamic programming,’’ Annales Institut H. Poincare, Analyse non
lineaire, 6 (supplement), pp. 161-183, 1989.

[8] I. Capuzzo Dolcetta and H. Ishii, “Approximate solutions of the Bellman
equation of deterministic control theory,” Applied Math. Optim., vol. 11,

Englewood Cliffs, NJ: Prentice-Hall, 1987.

vol. 10, pp. 367-377, 1983.

pp. 161-181, 1984.

John N. ’IkitsiWis (S’80-M’83) was born in Thes-
saloniki, Greece, in 1958. He received the B.S.
degree in mathematics in 1980 and the B.S., M.S.,
and Ph.D. degrees in electrical engineering in 1980,
1981, and 1984, respectively, all from the Massa-
chusetts Institute of Technology (MIT), Cambridge,
MA.

During the 1983-1984 academic year, he was
Acting Assistant Professor of Electncal Engineering
at Stanford University, Stanford, CA. Since 1984, he
has been with MIT where he is currently a Professor

of Electrical Engineenng. His current research interests are in the area of
systems and control theory, stochastic systems, and operations research. He
is the coauthor (with D. Bertsekas) of Parallel and Distributed Computation:
Numerical Methods (1989).

Dr. Tsitsiklis was a recipient of an IBM Faculty Development Award (1983).
an NSF Presidential Young Investigator Award (1986), an Outstanding Paper
Award by the IEEE Control Systems Society (for a paper coauthored with
M. Athans, 1986) and of the Edgerton Faculty Achievement Award by MIT
(1989). He was a plenary speaker at the 1992 IEEE Conference on Decision
and Control. He is an Associate M t o r of Applied Mathematics Letters and
was an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL
and Automaiica.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore. Restrictions apply.

