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Efficient Algorithms for 
Globally Optimal Trajectories 

John N. Tsitsiklis, Member, IEEE 

Abstract-We present serial and parallel algorithms for solving 
a system of equations that arises from the discretization of the 
Hamilton-Jacobi equation associated to a trajectory optimization 
problem of the following type. A vehicle starts at a prespecified 
point zo and follows a unit speed trajectory ~ ( t )  inside a region 
in P. until an unspecified time T that the region is exited. A 
trajectory minimizing a cost function of the form T(T( t ) )  dt+ 
q (  c ( T ) )  is sought. The discretized Hamilton-Jacobi equation 
corresponding to this problem is usually solved using iterative 
methods. Nevertheless, assuming that the function P is positive, 
we are able to exploit the problem structure and develop one- 
pass algorithms for the discretized problem. The first algorithm 
resembles Dijkstra’s shortest path algorithm and runs in time 
O(n log n ) ,  where n is the number of grid points. The second 
algorithm uses a somewhat different discretization and borrows 
some ideas from a variation of Dial’s shortest path algorithm 
that we develop here; it NIIS in time O ( n ) ,  which is the best 
possible, under some fairly mild assumptions. Finally, we show 
that the latter algorithm can be efficiently parallelized: for two- 
dimensional problems and with p processors, its running time 
becomes O ( n / p ) ,  provided that p = O( fi/ log n) .  

I. INTRODUCTION 
ONSIDER a vehicle that is constrained to move in a C subset G of Rm. The vehicle starts at an initial point 20 

and moves according to d x / d t  = U (  t ) ,  subject to the constraint 
IIu(t)II 5 1, where 1 1  . 1 1  denotes the Euclidean norm. At some 
unspecified time T ,  the vehicle reaches the boundary of G and 
incurs a terminal cost q(z(T) ) .  We also associate a traveling 
cost J, r ( x ( t ) )  d t  to the trajectory followed by the vehicle. 
We are interested in a numerical method for finding a trajectory 
that minimizes the sum of the traveling and the terminal cost. 
We assume that infrEc: ~ ( x )  > 0, which forces the vehicle to 
exit G in finite time. 

This problem formulation allows us to enforce a desired 
destination zf: for example, we may let G = W’ - {zf} 
and q ( z f )  = 0. It can also incorporate “hard obstacles;” for 
example, if a subset F of G corresponds to an obstacle, we 
can redefine G by removing F from G and by letting q(z) be 
very large at the boundary of F. 

There are several numerical methods for trajectory optimiza- 
tion problems, but their computational complexity is not fully 
satisfactory for the problems studied in this paper, as will be 
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discussed shortly. In this paper, we focus on the admittedly 
restrictive situation where the running cost is independent 
of the control, but we are able to devise efficient serial and 
parallel algorithms whose running time is provably optimal. 

Interest in algorithmic efficiency can be motivated from 
certain situations in which the trajectory optimization problem 
has to be solved repeatedly and on-line; this is the case, 
for example, if the terrain conditions are uncertain and the 
remaining trajectory is reoptimized each time that new infor- 
mation becomes available. Of course, algorithmic efficiency 
is a worthy objective even when computations are carried out 
off-line. 

Related Research 
Problems of this type have been considered by several 

different research communities. The robotics and theoretical 
computer science community has extensively studied the case 
where r is identically equal to one, G contains several ob- 
stacles, and there is a fixed destination. Under the further 
assumption that the obstacles admit a finite description (in 
particular, if they are polygons), the problem can be trans- 
formed to a shortest path problem on a graph (the so-called 
“visibility graph”). Then, special shortest path algorithms can 
be developed which exploit the structure of the problem and 
reduce algorithmic complexity [ 181. A more general version, 
the “weighted region problem,” has been considered in [20]. 
Here, the region G is partitioned into a finite number of 
polygons, and r is assumed to be constant in each polygon. 
The algorithms in [20] are geared towards the case where the 
partition of G is fairly coarse. If we let the partition become 
arbitrarily fine, however, we are led to our formulation, with 
the function T having an arbitrary functional form. 

Our problem is also a special case of deterministic optimal 
control. As such, variational techniques can be applied leading 
to a locally optimal trajectory [l], [13]. In the presence of 
obstacles or if the cost function T is not convex, however, the 
problem acquires a combinatorial flavor and can have several 
local minima that are far from being globally optimal. For this 
reason, other methods, of the dynamic programming type, are 
required. The solution to the problem is fumished, in principle, 
by the Hamilton-Jacobi (HJ) equation. Since an exact solution 
of the HJ equation is usually impossible, the problem has to 
be discretized and solved numerically. After discretization, 
one needs to solve a system of nonlinear equations whose 
structure resembles the structure of the original HJ equation. 
This approach raises two types of issues: 
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a) Does the solution to the discretized problem provide 
a good approximation of the solution to the original 
problem? 

b) How should the discretized problem be solved? 
Questions of the first type have been studied extensively 

and in much greater generality elsewhere-see, e.g., [12], [16], 
and [21] and references therein. We bypass such questions and 
focus on the purely algorithmic issues. 

The usual approaches for discretizing the HJ equation are 
finite-difference or, more generally, finite-element methods 
[4], [6]-[8], [12] [15], [16], [21]. Furthermore, solving the dis- 
cretized problem is equivalent to solving a stochastic optimal 
control problem for a finite state controlled Markov chain; the 
number of states of the Markov chain is equal to the number of 
grid points used in the discretization [ 161. Thus, the discretized 
problem can be solved by standard methods such as succes- 
sive approximation or policy iteration [2]. This is somewhat 
unfortunate: One would hope that the discretized version of an 
optimal trajectory problem would be a deterministic shortest 
path problem on a finite graph which can be solved efficiently, 
say using Dijkstra's algorithm. In contrast, a method such 
as successive approximation can require a fair number of 
iterations, does not have good guarantees on its computational 
complexity (because the number of required iterations is not 
easy to bound), and can be much more demanding than 
Dijkstra's algorithm. The contribution of this paper is to 
show that, for the particular problem under consideration and 
for certain discretizations, Dijkstra-like methods can be used, 
resulting in fast algorithms. In particular, we will show under 
mild assumptions that there is an algorithm whose complexity 
is proportional to the number of grid points. Our starting point 
is the discretized HJ equation, which we take for granted and 
whose structure we then exploit; our development is com- 
pletely independent from the rich analytical theory that deals 
with the justification of the HJ equation and its discretizations. 

We close by mentioning another approach to the discretiza- 
tion of trajectory optimization problems. In [ 191 the region 
G is discretized by using a regular rectangular grid, and the 
vehicle is only allowed to move along the edges of the grid 
(horizontally or vertically). Then, the shortest path problem on 
the resulting grid-graph is solved using Dijkstra's algorithm. 
The solution via Dijkstra's algorithm is certainly efficient, 
but the employed discretization does not lead to an accurate 
approximation of the solution to the original problem, no 
matter how fine a grid is used. The reason is that the set 
of allowed directions of motion is discretized very coarsely: 
only four directions are allowed. The inadequacy of the naive 
discretization is sometimes referred to as the digitization bias. 
It can be remedied by allowing diagonal motion [19], but only 
partially. Our results establish that the digitization bias can 
be overcome without sacrificing the algorithmic efficiency of 
Dijkstra-like methods. 

Summary of the Paper 
In Section 11, we state the HJ equation corresponding to our 

problem and define the standard finite-difference discretiza- 
tion. 

min {~(x) + (U,  VV*(z))} = 0, x E G. (2.1) 
{~€@lll4l<1} 

interior of G. If the problem data &e smooth enough and 

In Section 111, we exploit certain properties of the discretized 
HJ equation to show that it can be solved in time 0 (n log n) , 
where n is the number of grid points. In particular, we 
show that even though the discretized HJ equation does not 
correspond to a shortest path problem, it is still possible to 
mimic Dijkstra's shortest path algorithm. 

In Section IV, we present a variation of Dial's shortest path 
algorithm. We show that, under certain assumptions on the arc 
costs, it has optimal computational complexity and has good 
parallelization potential. 

In Section V, we explain why the algorithmic ideas of 
Section IV cannot be applied to the discretized HJ equation of 
Section 11. We are thus led to the development of an alternative 
discretization. With this new discretization, we show that the 
algorithmic ideas of Section IV lead to an O(n) algorithm, 
which is the best possible solution. 

In Section VI, we show that the algorithms of Sections IV 
and V can be efficiently parallelized. In particular, we show 
that linear speedup is obtained: the running time in a shared 
memory parallel computer with p processors is only O(n/p),  
as long as the number of processors is not too excessive; 
e.g., for two-dimensional problems, if p = O ( f i / l o g n ) .  
We compare our results to those achievable by the successive 
approximation method. 

Finally, in Section VII, we refer to some preliminary nu- 
merical experiments that strongly support our results, and we 
close, in Section VIII, with some comments. 

11. PROBLEM FORMULATION AND A 
FINITE-DIFFERENCE DISCRETIZATION 

The purpose of this section is purely to motivate the 
structure of the discretized HJ equation that will be studied 
in the rest of the paper; the reader is referred to the literature 
for rigorous and more precise statements. 

Let G be a bounded connected open subset of Rm, and let 
dG be its boundary. We are also given two cost functions 
T :  G H ( 0 , ~ )  and q: dG H ( 0 , ~ ) .  A trajectory starting 
at xo E G is a continuous function x: [O,T] H ~ " '  such 
that x ( t )  E G for all t E [O,T) and x ( T )  E dG. A 
trajectory is called admissible if there exists a measurable 
function U :  [O,T] H 92"' such that x ( t )  = x(0)  + s," u ( s )  ds 
and Ilu(t)ll 5 1 for all t E [O,T], where ( 1  . 1 )  stands for 
the Euclidean norm. The cost of an admissible trajectory is 
defined to be JT r (z ( t ) )  dt + q(x(T)) .  The optimal cost-to- 
go function V":  GUdG H 92 is defined as follows: if x E dG, 
we let V * ( x )  = q(x); if x E G, we let V*(x )  be the infimum 
of the costs of all admissible trajectories that start at x. 

A formal argument [ 131 indicates that V* should satisfy the 
Hamilton-Jacobi equation 

Furthermore, for any x E aG, V* should satisfy 

lim sup V*(y) 5 V * ( x )  (2.2) 
?I+= 

where the limit is taken with 9 approaching x from the 
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if V* is differentiable, it can be argued rigorously that V* 
must satisfy (2.1)-(2.2). Furthermore, V* can be characterized 
as the maximal solution of (2.1)-(2.2). Unfortunately, the 
assumptions needed for V* to be differentiable are too strong 
for many practical problems. Equations (2.1)-(2.2) can be still 
justified, under much weaker assumptions, if V* is interpreted 
as a “viscosity” solution of (2.1) [71, [91, [141. 

We now describe a discretized version of the HJ equation. 
While this discretization is closely related or a special case 
of the discretizations described in [4], [7], [12], [15], and 
[ 161, we provide a self-contained heuristic argument based 
on Bellman’s principle of optimality. Once more, no rigorous 
results are derived or stated; our only purpose is to indicate the 
origin of the discretized HJ equation that will be studied later. 

Let h be a small positive scalar representing the fineness 
of the discretization (the discretization step). Let S and B be 
two disjoint finite subsets of W, with all their elements being 
of the form (zhljh),  where 1: and j are integers. The sets S 
and B are meant to represent a discretization of the sets G 
and dG, respectively. (For example, S could be the set of all 
grid points inside G and B could be the set of all grid points 
outside G that neighbor an element of S.) 

Let e l ,  . s  + e, be the unit vectors in W. For any point 
x E S, we define the set N ( z )  of its neighbors by letting 
N ( x )  = {x + haieilz E {ll...,m},ai E {-l.l}}. The 
assumption that follows states that B contains the “boundary” 
of S: in keeping with the intended meaning of these sets. 

Assumption 2.1: For every z E S, we have N ( T )  c SUB. 
Let Q be an element of A = {-1, l}m. To every N = 

(a1 . . . a,) E A, we associate a quadrant, namely, the cone 
generated by the vectors aiel. . . .  , (Y,c,,. Let 0 be the unit 
simplex in !Rm; that is, ( 0 1 . .  . . 0,) E 0 if and only if 
CE.=, Bi = 1 and Qi 2 0 for all %. 

We assume that we have two functions f :  B H ( 0 : ~ )  
and g: S H (0, x) that represent discretizations of the cost 
functions q and T in the original problem. The function g can 
be usually defined by g(x) = ~ ( x )  for every :I: E S. The 
choice of f can be more delicate because B can be disjoint 
from dG even if B is a good approximation of i)G. In that 
case, some delicate analytical issues arise but are beyond the 
scope of this discussion. 

We finally introduce a function V :  S U B H % which is 
meant to provide an approximation of the optimal cost-to- 
go function V*.  The discretized HJ equation is the following 
system of equations in the unknown V 

r m 1 

x E s. (2.3) 
V ( x )  =f(z) ,  :c E B (2.4) 

where 
m 

(2.5) 

We now explain the form of (2.3)-(2.4). Suppose that the 
vehicle starts at some II: E S and that it moves, at unit 

d 
4 x+he, 

x-he, 

Fig. 1 .  Illustration of the discretization of the HJ equation. Here, the vehicle 
moves along the direction d .  in  the quadrant defined by - P I  and cz;  that is, 
(1 = ( o 1 , n r )  = (-1.1). 

speed, along a direction d.  This direction is determined by 
specifying the quadrant a to which d belongs and by then 
specifying the relative weights B z  of the different vectors QZe, 
that generate this quadrant. Assume that the vehicle moves 
along the direction d until it hits the convex hull of the points 
L + haze, = 1,. . . , m. At that time, the vehicle has reached 
point x+hCEl  0,a,cZ. Since the vehicle travels at unit speed, 
the amount of time it takes is equal to 

See Fig. 1. Since g ( r )  represents travel costs per unit time (in 
the vicinity of x), the traveling cost is equal to hg(x)r(B). To 
the traveling cost we must also add the cost-to-go from point 
0: + hSZl 8,n,e, and, invoking the principle of optimality, 
we obtain 

We approximate V *  by a linear function on the convex hull 
of the points z + hniei, to obtain 

m m 

V* z + h B,n,e, 0,V*(z + haze,). (2.7) ( 7 x 1  

Using approximation (2.7) in (2.6), we are led to (2.3). 
The above discussion gives some plausibility to the claim 

that the solution V of (2.3)-(2.4) can provide a good approx- 
imation of the function V*.  (Of course, some smoothness 
assumptions are required for this to be the case.) This mo- 
tivates our main objective: Providing an efficient algorithmic 
solution of (2.3)-(2.4). 

The discretization (2.3)-(2.4) is a special case of those 
considered in [15] and [16]. It is also related to those in [8], 
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[12], and [4], except that the latter references involve a fixed 
time step, whereas our time step ~ ( 0 )  is variable. It should also 
be pointed out that our choice of a particular discretization out 
of the multitude of choices allowed by [15] and [16] is not 

Pmu$ To simplify notation and for the purposes of this 
proof only, let A = hg(x) and V, = V(x + haiei). The 
assumptions of the lemma and (2.3) yield 

arbitrary; under most choices, the arguments in subsequent m m 
sections fail to go through. V(z) = A.(O) + ~ O i K  = min 

<€e As pointed out in [16], (2.3)-(2.4) are the dynamic program- i=l 
(3.1) ming equations for the following Markov decision problem: if 

we are at state 2 E S and a decision (.,e) E A x 0 is 
made, the cost hg(2 )7 (8 )  is incurred and the next state is 
x + ha,ei, with probability Oi; if we enter a state z E B, 
the terminal cost f ( 2 )  is incurred and the process stops. Since 
the cost per stage is bounded below by the positive constant 
h minzES g(a), standard results of Markovian decision theory 
[2], [5] imply that (2.3)-(2.4) have a unique solution which 
is equal to the optimal expected cost. Furthermore, either the 
successive approximation or the policy iteration algorithm will 
converge to the solution of (2.3)-(2.4). 

References [15] and [16], which deal with more general 
types of problems, suggest the use of the successive ap- 
proximation method, possibly an accelerated version. The 
computational complexity of each iteration is proportional to 
the number of grid points. Even for deterministic shortest path 
problems, however, the number of iterations is proportional 
to the diameter of the grid-graph, which is usually of the 
order of l / h .  The number of iterations can be reduced using 
Gauss-Seidel relaxation (as in [15], for example), but no 
theoretical guarantees are available. This is in contrast to 
Dijkstra-like algorithms that solve deterministic shortest path 
problems with essentially a single pass through the grid points. 

In the next section, we show that even though (2.3)-(2.4) 
correspond to a Markovian decision problem, they still have 
enough structure for the basic ideas of Dijkstra’s algorithm to 
be applicable, leading to an efficient algorithm. 

Notice that the function minimized in (3.1) is convex and con- 
tinuously differentiable. We associate a Lagrange multiplier to 
the constraint CEl <i = 1. Then, the Kuhn-Tucker conditions 
show that there exists a real number X such that 

(3.2) 

for all i E 2. Using the functional form of .(e), we obtain 

AOi 
- + & = A ,  V i E Z .  

We solve (3.3) for V,  and substitute in (3.1) to obtain 

V(Z) = A.(O) + X - 

Thus, it remains to show that 

(3.3) 

or, equivalently, that 
111. A DUKSTRA-LIKE ALGORITHM 

Dijkstra’s algorithm is a classical method for solving the 
shortest path problem on a finite graph. Its running time, 
for bounded degree graphs, is O(nlogn),  where n is the 
number of nodes, provided that it is implemented with suitable 
data structures [3]. The key idea in Dijkstra’s algorithm is to 
generate the nodes in order of increasing value of the cost-to- 
go function. This is done in n stages (one node is generated 
at each stage), and the O(1ogn) factor is due to the overhead 
of deciding which node is to be generated next. We will now 
show that a similar idea can be applied to the solution of 
(2.3)-(2.4) and that the elements of S U B can be generated 
in order of increasing values of V ( x ) .  

Throughout this section, we reserve the notation V ( x )  to 
indicate the unique solution of (2.3)-(2.4). The key to the 
algorithm is provided by the following lemma that states that 
the cost-to-go V ( x )  from any node x can be determined from 
knowledge of V(y) for those nodes y with strictly smaller 
cost-to-go. 

Lemma3.1: Let x E S ,  and let a E d,O E 0,  be 
such that V ( x )  = hg(a)7(8) + CE1 O,V(Z + ha,e,). Let 
Z = {Z lO,  > 0). Then, V ( z  + hate,) < V(z)  for all i E 2. 

(3.4) 

Using the definition of .(e), we see that the left-hand side 
of (3.4) is equal to zero. On the other hand, for i E 2, we 
have Oi > 0 and the right-hand side of (3.4) is negative, thus 
establishing the desired result. Q.E.D. 

We now proceed to the description of the algorithm. Let 
x1 be an element of B at which f(x) is minimized. Using 
the Markov decision problem interpretation of (2.3)-(2.4), it 
is evident that V ( x )  2 f(z1) = V(x1), for all x E S U B. 
Thus, z1 is a point with a smallest value of V ( x ) ,  and this 
starts the algorithm. 

We now proceed to a recursive description of a general stage 
of the algorithm. Suppose that during the first k stages (1 5 
k < n) we have generated a set of points Pk = (21, - + , xk) c 
S U B with the property 

Qi 
c 0; 
j€Z .(e) - - > --. .(e) T ( Q )  
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Furthermore, we assume that the value of V(x) has been 
computed for every z E 9. (The set P k  is like the set of 
permanently labeled nodes in Dijkstra's algorithm.) 

We define v k ( x )  by letting 

for x E P k  U B,  
otherwise. 

We then compute an estimate V k  of the function V by essen- 
tially performing one iteration of the successive approximation 
algorithm, starting from v k .  More precisely, let Vk(x) = V(x) 
for x E B and 

r m 1 

IC E s. (3.5) 

In this equation, and throughout the rest of the paper, we 
use the interpretation o . 00 = 0. Since V k ( x )  2 V(x), a 
comparison of (3.5) and (2.3) shows that 

V k ( x )  2 V(IC), Vx E B U S. (3.6) 

The variable V k ( x ) ,  for x $ P k ,  is similar to the temporary 
labels in Dijkstra's algorithm. 

We now choose a node with the smallest temporary label 
to be labeled permanently. Formally, we choose some z k + l  
that minimizes Vk(x) over all x $ Pk. The following lemma 
asserts that this choice of xk+l is sound. 

Lemma 3.2: 
a) v(xk+l)  = Vk(xk+l). 
b) For every IC $ Pk, we have V(xk+1) I V(x). 

Proof: Let y $ P k  be such that V(y) = min,gpk V(x). 
We will show that V(y) = V k ( y ) .  If y E B, this is 
automatically true. Assume now that y E S. Let a E A and 
0 E 0 be such that V(y) = h g ( y ) T ( 0 )  + C z l  B;V(y + 
haiei). Let Z = { i l& > 0). Lemma 3.1 asserts that V(y + 
haie,) < V(y) for every i E Z. In particular, y + haiei E P k  

for every i E Z. Therefore, ~ ( y  + haiei) = Vk(y + haiei), 
for every i E 2. Consequently 

m 

v ( y )  I &(Y) I jhg(y)T(0) + 0ivk(y  + haiei) 
i= 1 

m 

= hg(y)T(O> + ~ i v ( y  + haiei) = ~ ( 9 ) .  
i=l 

(The first inequality follows from (3.6), the second from ( 3 3 ,  
and the la.$ one from the definition of a and 0.) The conclusion 

This, together with the fact V(x) 5 V k ( x ) ,  for all x, shows 
that a node xk+l which minimizes V k ( ? )  over all x $ P k  also 
minimizes V(x) over all IC $ P k  and V ( I C ~ + ~ )  = V(xk+l). 

Q.E.D. 
The description of the algorithm is now complete. The 

algorithm terminates after n stages and produces the values 
of V(IC) for all IC E S U B,  in nondecreasing order. To 
determine the complexity of the algorithm, we will bound the 
complexity of a typical stage. Throughout this analysis, we 

V(y) = vk(y) follows. 

view the dimension m of the problem as a constant, and we 
investigate the dependence of the complexity onAn. 

Let us first consider what it takes to compute Vjt(x). There 
are 0(1) different elements a of A to consider and for each 
one of them, we have to solve, after some normalization, a 
convex optimization problem of the form 

(3.7) 

No matter what method is used to solve problem'(3.7), the 
computational effort is independent of the number n of grid 
points; it depends, of course, on the dimension m, but we 
are viewing this as a constant. Thus, we can estimate the 
complexity of computing Vk(x), for any fixed 2, according 
to (3.9, to be O(1). 

How would we solve (3.7) in practice? We can use an 
iterative method, such as a gradient projection method or a 
projected Newton method. For small dimensions m (which is 
the practically interesting case), such a method would produce 
an excellent approximation of the optimal solution after very 
few iterations. Furthermore, it is not difficult to show that small 
errors in intermediate computations only lead to small errors 
in the final output of ouf, overall algorithm. (The reason is that 
the mapping from v to Vk in (3.5) is Lipschitz continuous with 
Lipschitz constant one and, therefore, errors in computing V 
do not get amplified.) Finally, for theoretical reasons, it is 
useful to notice that problem (3.7) can be solved exactly with 
a finite number of operations, if the computation of a square 
root counts as a single operation; the details are provided in 
the Appendix. 

We now notice that a,(,) = Vk+l(x) for every x # 
x k + l .  This means that if x is not a neighbor of Z k + l ,  then 
V~(IC) = Vk+l(x). n u s ,  V k + l ( Z )  only needs to be computed 
for the O(1) neighbors of xk+;. We conclude that once V k  
is computed, the evaluation of Vk+1, at the next stage of the 
algorithm, only requires O( 1) computations. 

At each stage, we must also determine the next point 
xk+l, by minimizing Vk(z) over all z $ Pk. Comparing 
O(n)  numbers takes O ( n )  time, which leads to O(n) time 
for each stage and a total O(n2)  running time. In a better 
implementation, the values V k ( x )  can be maintained in a 
binary heap, in which case z k + l  can be determined in O(1og n) 
time; see [3] and [lo] for the use of binary heaps in shortest 
path algorithms. We conclude that each stage of the algorithm 
can be implemented with O(1ogn) computations. We now 
summarize. 

Theorem 3.1: The algorithm of this section solves the sys- 
tem of (2.3)-(2.4). Assuming that square roots can be eval- 
uated in unit time, it can be implemented so that it runs in 
time O(n1ogn). 

Some more comments are in order. We have been using a 
uniform grid. If we were to use a nonuniform grid instead, 
there would be some minor changes in the form of (2.3). The 
general structure would still be the same. Lemma 3.1, however, 
would cease to hold. Similarly, if the cost function g(x) were 
to become direction dependent, e.g., of the form g(x ,a ,0) ,  
Lemma 3.1 would again fail to hold. 
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Finally, we note that the algorithm of this section is inher- 
ently serial. This is because the elements of S are generated 
one at a time, in order of increasing values of V ( z ) .  To obtain 
a parallelizable algorithm, we should be able to generate the 
values of V ( x )  for several points x simultaneously. To gain 
some insight into how this might be done, we first consider, 
in the next section, an algorithm for the classical shortest path 
problem. 

IV. A VARIATION OF DIAL'S SHORTEST PATH ALGORITHM 
We are given a directed graph G = (N, A). Here, N = 

{ 1, . . . , n} is the set of nodes, and A is the set of directed arcs. 
For each arc (i, j) E A, we are given a positive arc length ai j .  

The objective is to find, for every node i ,  a shortest path from 
node i to node 1. We will use the following assumptions. 

Assumption 4.1 : 
a) For every i ,  there exists a path from node i to node 1. 
b) For every ( i , j )  E A, we have a,j 2 1. 
Assumption 4.1-b) can be made without loss of generality, 

since we can always rescale the arc lengths ai j .  It is only made 
to simplify the presentation and the complexity analysis. 

Let V ( i )  be the length of a shortest path from node i to node 
1. For notational convenience, we let V ( l )  = 0 and aij = M 

if ( i , j )  $? A. For k = 1 , 2 , .  . . , let &k = {ilk- 1 5 V ( i )  < k} 

The algorithm starts with RI = &I = (1). Suppose that 
after k stages of the algorithm, we have determined the sets 
Qk and Rk and have computed v(i) for every E Rk. We 
may call the nodes in Rk permanently labeled. We then define 
temporary labels by letting 

and Rk = Ut=o &i = {ilv(i) < k}. 

(4.1) 

Notice that V ( i )  = minj{aij + V ( j ) ) ,  which implies that 
~ ( i )  5 v k ( i )  for all i. 

Lemma 4.1: Suppose that v(i) 2 k, i.e., a 4 Rk. 
a) If V ( i )  < k + 1, then V, ( z )  = V( i ) .  
b) If V ( i )  2 k + 1, then vk(i) 2 k 
c) We have i E Rk+l if ,a"d only if v k ( i )  < k + 1 and, if 

1. 

this is the case, then & ( i )  = v(i). 
Proof: 

a) Let e be the first node on a shortest path from i to 1. 
Then, V ( i )  = aie+V(l).  If V ( i )  < k + l ,  then V ( e )  < k 

On the other hand, we have already noted that V ( i )  5 
and c E Rk. Thus, by (4.1), & ( i )  5 aie +v(e) = v(i). 
v k ( i ) ,  which shows that v(i) =A v k ( i ) .  

b) This is trivial because V ( i )  5 Vk(2). 
c) This is just a restatement of a) and b). Q.E.D. 

l}, from which the set & k + l  can be determined, and this 
completes the description of a typical stage of the algorithm. 
The algorithm terminates after at most L+ 1 stages, where L = 
[maxi V ( i ) l .  We now describe an efficient implementation. 

As in Dial's shortest path algorithm, we store the temporary 
labels v k ( z )  in "buckets." (As is well known [3], buckets can 
be implemented so that insertion and deletion of an item takes 
0(1) computations.) We will use L buckets and at the kth 

k m m a  4.1 shows that &k+l = {i $! Rk/vk( i )<k  + 

stage of the algorithm, the j t h  bucket will contain a list of all 
nodes i such that j - 1 5 v k ( i )  < j .  On the side, we will also 
maintain an array whose ith entry will contain the value of 
v k  (2). The algorithm is initialized by computing VI ( i )  for all 
i and by placing_each i in the appropriate bucket. 

Suppose that v k  has been computed, and each i is stored 
in the appropriate bucket. In particular, the sets & I ,  . . . , Qk+l 
have been generated, and for any x in one of these sets, we 
have V ( x )  = Vk(x). Note that (4.1) can be written as 

Let us consider a typical node i $? & + I .  If there no j E 

vk ( i ) ,  i stays in the same bucket, and nothing needs to be done. 
If, on the other hand, there exists some j E &k+l such that 
( i ,  j )  E A, then v k + l ( i )  has to be evaluated according to (4.2). 
Let Zk+, be the total number of arcs leading into some element 
of & k + l .  (Note that Et==, z k  = IAI.) Then, the computation 
required to evaluate v k + I ( i )  for all i is ~ ( ~ k + l ) .  This leads 
to a total of O( [AI) computations throughout the course of the 
algorithm. For every i for which vj+l ( i )  # v k ( z ) ,  we also 
need to move i to a new bucket and this takes O( 1) time. By 
a similar argument, the total amount of work is still O(lA1). 

Qk+i such that ( i , j )  E A, then (4.2) shows that vk+l(i) = 

We now summarize. 
Theorem 4.1: Let Assumption 4.1 hold, and suppose that 

V ( i )  5 L for all i. Then, the above described algorithm 
computes V ( i )  for all i in time O ( L  + IAI). 

Remarks: 
If all aij are integers, the algorithm of this section is 
identical with Dial's algorithm. Our development here 
shows that the assumption aij 2 1, rather than the 
integrality assumption, is the essential one. 
If L = O(lAl), the running time of the algorithm is 
simply O( IAI), which is the best possible. Suppose that 
the graph G is a uniform mesh in m-dimensional space, 
with a total of n points. We then have IAl = O(mn). 
Suppose that aij 5 K for some constant K. Then, 
the length L of any shortest path is bounded by K 
times the diameter of the graph. Thus, we can let L = 
Kmn1Im. Recall that we have an optimal algorithm if 
L = O(lA1). This will happen if Kmnllm = O(mn), 
or, equivalently, if K = O(n("-l)/"). Even in two 
dimensions (m = a ) ,  we obtain an O ( n )  algorithm 
while allowing a fairly large amount of variability of the 
arc lengths (a factor of nl/'). Notice that this is exactly 
the type of shortest path problems that one obtains 
from the naive discretization of trajectory optimization 
problems mentioned in the end of Section I. 
The algorithm has excellent parallelization potential. At 
each stage, we can let a different processor compute 
v k ( 2 )  for a different node i. Thus, the parallel time seems 
to be limited only by the number L of stages in the 
algorithm. If L is much smaller than the number n of 
nodes, then we can aim at a significant speedup through 
parallelization. So, for the case of a two-dimensional 
mesh (see Remark 2), if we have L = O ( ~ L ' / ~ )  and 
K = O(l) ,  we can strive for O(nl/')  parallel running 

Authorized licensed use limited to: MIT Libraries. Downloaded on February 2, 2009 at 16:01 from IEEE Xplore.  Restrictions apply.



1534 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40. NO. 9, SEITEMBER 1995 

w4 

w5 " 

qw2 N ( z ) ,  the set of its be neighbors, be N ( x )  = {z + wili = 
1, . . + ,8} .  As in Assumption 2.1, we assume that for every 
z E S, we have N ( z )  c SUB.  

We now motivate the discretization of the HJ equation 
that will be used in this section. Suppose that the vehicle 
starts at some z E S and moves along a direction d ,  for 
some time 7, until it hits the set x + H. The direction d is 
in the cone generated by w, and w,+1 for some suitable 
choice of a. The point at which the vehicle meets H is of 
the form (1 - 0)w, + 19w,+1. for some B E [0,1]. We will 

" w1-9 
.O 

- 

property that would lead to a fast solution of (2.3H2.4) is v ( ~ )  = min min [hg(x:)7a(o) + (1 - ~ ) v ( ~  + 
the following. a=1,.,. ,8 O €[O,l] 

Property P: There exists a constant S > 0 such that if + OV(x + w,+1)], z E s, (5.1) 
V(z) = hg(z).r(0) + BiV(z + haiei) and if for some j v ( ~ )  f(z), E B. (5.2) 
we have 0.j > 0, then V ( x )  2 V(z + hajej)  + S. 

Lemma-3.1 established that Property P holds with 6 = 0. 
Unfortunately, Property P is not true for (2.3)-(2.4) when we 
let S be positive. To see this, let us focus on the first quadrant, 
let E be a small positive number, and consider the case where 
m = 2 , h  = g(z) = l , V ( z + e l )  = 1 - E,V(z+ez) = 0. For 
any positive E ,  the optimal value of 81 can be computed and 
is positive. On the other hand, the value of V(z) is bounded 
above by one, and the difference V ( x )  - V(z + e l )  is no 
larger than E. Since this is true for every E > O ,  Property P 
does not hold. 

In this section, we show that Property P becomes true if a 
somewhat different discretization is used. Then, based on this 
property, we mimic the algorithm of Section IV to solve the 
trajectory optimization problem in 0 (n) time. Unfortunately, 
the discretization that we introduce is more cumbersome and 
is unlikely to be useful when the dimension is higher than 
three. For this reason, we will only describe our method when 
the dimension m is two or three. The reader should have no 
difficulty in generalizing to higher dimensions. 

Let us first consider two-dimensional problems. Let H be 
the boundary of a square centered at the origin and whose 
edge length is equal to 2h. We define the vectors w1,. . , wg 
as shown in Fig. 2. We use z + H to denote the translation 
of H so that it is centered at z. 

As in Section 11, let S and B be two disjoint finite subsets 
of W, all of their elements being of the form (ih, j h ) ,  where 
i and j are integers. We assume that we are given functions 

Equations (5.1)-(5.2) are again a special case of the finite 
element discretizations studied in [15] and [16]. Once more, 
they admit a Markov decision process interpretation and have 
a unique solution, and we reserve the notation V(z) to denote 
such a solution. 

Recall that the cost per stage g in the discretized problem 
has been assumed to be positive. In the following, we assume a 
lower bound of unity for g and proceed to establish Property P. 

Assumption 5.1: For every 2 E S, we have g(z) 2 1. 
Lemma 5.1: Fix some x E S and let a, 0 attain the 

minimum in (5.1), that is 

If B < 1, then V(x) 2 V(z + w,) + ( h / f i ) .  If B > 0, then 
V(z)  2 V(x + %+1) + @/a). 

Proof: We only consider the case where a = 1. The 
argument for other chqices of a is identical. Suppose that 
0 = 0. Then, ~ ( x )  = hg(z) + V(x + w1) 2 ( h / J Z )  + 
V(z + wl), as desired. Suppose that 0 = 1. Once more, 
V(z) = hg(z)JZ  + V(z + wz) 2 ( h / f i )  + V(z + 202). 

Suppose now that 0 < B < 1. The first order optimality 
condition for 0 yields 
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Fig. 3. A triangulation of each face of the cube H. 

- V(z + Wl)) 
hg(zP2 = h . g ( z ) d i T 3  - ~ m 

1 + d 2  - 82 
v 4 T F  = hg(z) 

h 
2 Jz’ 

Q.E.D. 
We now continue with the three-dimensional case. Let H 

be the boundary of a cube centered at the origin and with 
edge-length equal to 2h. We triangulate each face of H as 
shown in Fig. 3. We use a similar triangulation for every face 
of z + H. The rest is very similar to the two-dimensional case. 
A direction of motion can be parameterized by specifying a 
triangle on some face of the cube and by then specifying a 
particular point in that triangle. Let (I: be a parameter indicating 
the chosen triangle. (There are six faces with eight triangles 
each; thus, n runs from 1-48.) For a given triangle (I:; let 
ya,lrya,2,ya,3 be its vertices. In particular, let ya,l be the 
point closest to the center of the cube, and let ya,3 be the 
one furthest away. We define the set N ( z )  of neighbors of n:, 
as the set of all points in the set z + H whose coordinates 
are integer multiples of h (i.e., all vertices of any one of the 
triangles that we have introduced). As in the two-dimensional 
case, we require that N ( z )  c S U B for all z E S. 

k t  0 = {(61,82,83)l& 2 o,C?==, ei = I}. Every 
point in the triangle corresponding to some a is of the form 
E:==, 6iya,;, where 8 E 0. Let hr(8) be the distance from 
the center of the cube to the point determined by N and 8. It 
is easily seen that 

= 41 + (1 - 81)2 + 0:. 

Once more, the principle of optimality yields 

(5.3) 
1 3 

V(z)  = min min hg(z)T(8) + 8iV(z + ya , i )  , [ i = l  
a e m  

z E s, 

1535 

We reserve again the notation V(z) to indicate the unique 
solution of (5.3H5.4). The following is the three-dimensional 
analog of Lemma 5.1. 

Lemma 5.2: Fix some z E S, and let a ,  6 E 0 attain the 
minimum in (5.3), that is 

~ 

V(z) = f (x ) ,  z E B. (5.4) and we only discuss the three-dimensional case. 

If Bi > 0, then V(z) 2 V(z + + h/&. 
Prooj Suppose that (Y corresponds to the triangle whose 

vertices are the points ya,l = z + (h,O,O),y,,z = z + 
(h,h,0),ya,3 =z+(h,h,h).Theproofforanyotherchoice 
of (I: is identical, due to the symmetry of the triangulation we 
are using. Let V, = V(ya,i). Using the formula for .(e), we 
have 

Suppose that Oi > 0 for all i. Then, the first-order optimality 
conditions yield 

and 

(5.6) 

(5.7) 

In particular, we have V3 < Vz < VI, and it suffices to find a 
positive lower bound for V(z) - VI. We use (5.6) and (5.7) 
to eliminate VI and V3, respectively, from (5.5) and obtain 

We then subtract (5.6) to obtain, after some algebra 

The argument for the case where some component of 0 is 
zero is similar and is omitted. Q.E.D. 

Having established an analog of Property P for two- and 
three-dimensional problems, we discuss how it leads to effi- 
cient algorithms and estimate their complexity. The basic ideas 
are the same as for the shortest path algorithm of Section IV, 
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Let 6 = h/&. Let Q k  = {zI(IC - 1)6 5 V(z)  < k6) and 
Rk = Ut=:=, Qi = {z1V(z) < k6). Suppose that at some stage 
of the algorithm, we have computed V ( z )  for all 5 E Rk. 
We define pk(z) to be equal to V ( z )  if z E R k  and infinity 
otherwise. Let 

r 3 1 

Vk(z) = min min Lhg(z)r(R) + &V(z + ya, i )  
a @EO 

i= 1 

z E s, (5.8) 

where we are again following the convention 0 . 30 0. We 
then argue as in Lemma 4.1. If V ( z )  2 (IC+l)S, then Vk(z) 2 
V ( z )  2 ( I C  + 1)s. If, on the other hand, V ( z )  < (IC + l)6, 
Lemma 5.2 shows that for every i such that the minimizing t9i 
in (5.8) is positive, we must also have V ( z  + ya , i )  < k6 and 
therefore z+ya,i E Rk and V(z+y,,;) = vk(z+ya,i). This 
implies that Vk(z) = V(5) .  Thus, we have computed V ( z )  
for every z E &+I: and we are ready to start the next stage 
of the algorithm. 

We implement the algorithm by using buckets, exactly 
as in Section IV, except that the “width” of each bucket 
is 6 = h/& instead of unity. The complexity estimate is 
essentially the same as in Section IV, because the underlying 
algorithmic structure is almost the same. Since each z has a 
bounded number of “neighboring points” z + hymZ,  a point 
z may move from one bucket to another and the value of 
V k ( z )  may need to be recomputed only 0(1) times. Each time 
that V k ( x )  is recomputed, we need to solve the optimization 
problem in (5.8). Following an approach similar to the one 
in the Appendix, this can be done with a finite number of 
operations, provided that square root computations are counted 
as single operations. Thus, the complexity estimate becomes 
O(n)  plus the number of buckets employed. The number of 
buckets can be bounded in turn by O(L/6)  = O(L/h ) ,  where 
L is an upper bound on maxZEs V ( z ) .  

For the two-dimensional case, there are no essential differ- 
ences, except that the bucket “width’ should be h / d .  We 
summarize below. 

Theorem 5.1: Let Assumption 5.1 hold, and assume that 
square roots can be evaluated in unit time. Then, a solution of 
(5.1)-(5.2) in the two-dimensional case, or (5.3)-(5.4) in the 
three-dimensional case, can be computed in time O ( n  + L / h ) ,  
where L is an upper bound for maxZEs V ( z ) .  

We now interpret the complexity estimate of Theorem 5.1 
in terms of the original continuous trajectory optimization 
problem. We assume that the underlying cost function T (cf., 
Section I) is bounded below by some positive constant. For 
a problem involving trajectories in !Rm, the number of grid 
points is n = O(h-”), where h is the grid-spacing. On the 
other hand V ( z )  should converge to V*(z ) ,  the cost-to-go 
for the original continuous problem, which is independent of 
h. In particular, the factor L in Theorem 5.1 can be taken 
independent of h. For m > 1, the term O(n)  is the dominant 
one in the complexity estimate O(n  + L/h ) .  We conclude 
that, as long as the problem data in a trajectory optimization 
problem are regular enough for our discretizations to be 
justified, we have algorithms whose complexity is proportional 

to the number of grid points involved, which is the best 
possible. 

VI. PARALLEL IMPLEMENTATION 
In this section, we comment on the parallelization potential 

of the algorithm of Section V and compare it with the parallel 
implementation of relaxation methods. To avoid discussing the 
effects of architecture-dependent features, we frame our dis- 
cussion in the context of an idealized shared memory parallel 
computer; similar results are possible, in theory, for some 
message-passing architectures like hypercubes although, for 
the algorithms we are considering, interprocessor coordination 
and load balancing is quite involved. 

Let us concentrate on the computations required during a 
typical stage of the algorithm. Suppose, for example, that 
Vk(z) is available for all points z, so that Qk+l can be 
determined. Let Nk+l be the set of points that have a neighbor 
belonging to Qk+l. For every z Nk+1, we have Vk+l(z) = 
Vk (z) and no computation is required to obtain Vk+1 (z). Thus, 
a high-level description of a typical stage of the algorithm of 
Section V is as follows: 

1) Use the values of Vk(z) to determine the set Qk+l. 
2) Determine the set Nk+l. 
3) For every z E Nk+1, compute, in parallel, the value of 

If a different processor were assigned to every point 2 E S, 
then Step 3) would be carried out in 0(1) parallel time. Such 
an implementation would be wasteful, however, because the 
processors associated to points z Nk+1 would be idle; for 
most stages, the majority of the processors would be idle and 
the parallelization would be inefficient. To obtain an efficient 
implementation, it is important to use a smaller number, say 
p ,  of processors, certainly no more than the average size of 
Nk+l. Then, at each stage, we need to allocate more or less 
the same number of elements of Nk+1 to each processor. Such 
load balancing can be accomplished by running a parallel 
prefix algorithm at each stage [17].’ The running time of a 
parallel prefix algorithm is O(1ogp). Once the load of the 
different processors is balanced, the parallel time for that stage 
is O(lNk+iI> = O(JQk+il). 

Putting everything together, the total parallel running time 

the argument in the end of the preceding section, L should be 
viewed as a constant independent of n. For two-dimensional 
problems, we have n = O ( / L - ~ )  and 6 = O(h) (Lemma 5.1), 
and the parallel complexity becomes O(n1/2 log p + n / p ) .  With 
p = O(nl/’/ logn), the running time is O(TL’ /~ logn). A sim- 
ilar calculation shows that, for three-dimensional problems, the 
parallel running time is ~ ( n l / ~  logn), using 0(2 /~ /  logn) 
processors. 

Note that no parallel implementation of the algorithm of 
Section V could have much better running time. This is 
because we have to deal with one bucket after the other 
and in two (respectively, three) dimensions there will be 
O(nl/’) (respectively, O(n1/3)) buckets. (Since this is also the 

‘The details of how to do this are somewhat uninteresting and fairly 
common in the parallel algorithms field; we therefore choose to omit them. 

v k + 1  (x) 

is O((L/6)lOgP + c k  IQkI/P) = O((L/6)lOgP + n / P ) .  BY 
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Fig. 4. A square with some line obstacles. 

diameter of the graph formed by the grid points, it is highly 
implausible that any other algorithm could be much better 
either.) In addition, the proposed implementation is efficient, 
in the sense that the processor-time product is of the same 
order of magnitude as the serial running time. 

It could be argued that the successive approximation algo- 
rithm is more suitable for parallelization because all points 
can be simultaneously iterated: Using O(n)  processors, the 
parallel time is of the order of the number of iterations. The 
number of iterations, however, cannot be less than O(n1/2) or 
O ( ~ L ~ / ~ )  for two- or three-dimensional problems, respectively. 
We conclude that parallel successive approximation cannot be 
much faster than the algorithm described here in terms of 
running time, even though it uses a much larger number of 
processors. The number of iterations in the successive approx- 
imation algorithm can be reduced by using the Gauss-Seidel 
technique or other acceleration methods, maybe in conjunction 
with some heuristics guiding the choice of the next point to 
be iterated, but the resulting methods are usually much less 
parallelizable. 

VII. NUMERICAL RESULTS 

We report here on some preliminary numerical experiments 
designed and carried out by L. C. Polymenakos. 

The trajectory optimization problems that were considered 
involved a uniform grid on the unit square [0, 112. The set S 
(respectively, B) consists of the grid points in the interior 
(respectively, on the boundary) of the square. The cost of 
all boundary points was set to infinity except for the two 
neighbors of the top right-hand comer whose cost was zero. 
(Thus, the objective is to reach that comer at minimum cost.) 
The cost g(xl, 2 2 )  in the interior was chosen to be of the form 

g(xl,x2) = 1 - C ~ ( Z I  - 0.5)2 - ~ ~ ( 9 1  - 0.5) 2 

where e1 and e2 are positive constants. Note that this is a 
concave quadratic function whose maximum is attained at the 
center of the square. To make the problem more interesting, 
obstacles were introduced in the interior of the square, as 
shown in Fig. 4. 

The Dijkstra-like algorithm was implemented using a binary 
heap to store temporary labels. In addition, a few shortcuts 
were introduced, such as the following one: If the labels of 
the two neighbors of a node x in a particular direction have 

remained the same since the last time that the label of 2 was 
calculated, no minimization along that direction is necessary. 

For the Gauss-Seidel algorithm, nodes were scanned one 
row at a time. As in the Dijkstra-like algorithm, unnecessary 
optimizations are avoided whenever the labels of some neigh- 
bors of a node have not changed since the last update at that 
node. The Gauss-Seidel algorithm was terminated when the 
change in the value of all nodes was less than 

Both algorithms were implemented on a DEC 5025 personal 
computer running a version of UNM. For a 150 x 150 grid 
of points, the Dijkstra-like algorithm took 1.8 seconds, inde- 
pendently of the number of obstacles. For the Gauss-Seidel 
algorithm, the running time was 20.4, 77.7, 63.7, and 93.9 
seconds for 1, 2, 3, and 4 obstacles, respectively. 

To test whether the Gauss-Seidel algorithm was slow only 
because of a stringent termination criterion, some runs were 
executed in which the algorithm was terminated as soon as 
all nodes would get a finite label, regardless of the accuracy 
of that label. It was then observed that, in the presence of 
obstacles, the Gauss-Seidel algorithm still required a fair 
number of passes through the grid points, as anticipated. The 
Gauss-Seidel algorithm was again several times slower. 

VIII. DISCUSSION 
The Dial-like algorithm of Section V has the best possible 

order of magnitude of running time, namely O(n) .  On the 
other hand, the constant factor hidden by the O(.) notation 
appears to be much larger than the constant factor in the 
O(n log n) estimate for the Dijkstra-like algorithm of Section 
III. In practice, we expect the Dijkstra-like algorithm to be 
faster. 

It is to be expected that the Dijkstra-like algorithm will 
always significantly outperform the classical successive ap- 
proximation algorithm. Successive approximation is likely to 
be competitive only if its GaussSeidel variant is used and 
if the points are swept in more or less the same order as 
they appear on optimal trajectories. In other words, successive 
approximation becomes competitive only if it manages to 
mimic the Dijkstra-like method. 

In this paper, we have stayed clear of more general trajectory 
optimization problems involving unbounded domains or, more 
importantly, running costs of the form ~ ( x ,  U ) .  The latter is a 
fairly severe restriction but appears to be critically needed 
if one wishes to obtain one-pass (as opposed to iterative) 
algorithms. Nevertheless, we expect that similar methods that 
try to propagate “wavefronts” (or level sets) of the function 
V hold much promise. 

APPENDIX 
We explain here how problem (3.7) can be solved with a 

finite number of operations, if the evaluation of a square root 
is counted as a single operation. 

Let us first assume, without loss of generality, that VI 2 
V2 . . . 2 V,. Suppose that the optimal value of 81 is positive. 
It is then apparent from the structure of problem (3.6) that 
the optimal value of O i  is positive for all i. Then, by the 
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Kuhn-Tucker conditions, there exists a scalar X such that 

We thus have 
m 

We can solve this quadratic equation to determine X (this 
requires a square root computation). Furthermore, the relation 

m m 

(A.3) 
i=l i= l  

can be used to determine the value of r (8). The value of each 

[9] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi 
equations,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1-42, 1983. 

[lo] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to 
Algorithms. New York: McGraw-Hill, 1990. 

[ 111 R. Dial, “Algorithm 360: Shortest path forest with topological ordering,” 
Commun. ACM, vol. 12, pp. 632-633, 1969. 

[12] M. Falcone, “A numerical approach to the infinite horizon problem of 
deterministic control theory,” Applied Math. Optim., vol. 15, pp. 1-13, 
1987; corrigenda, 23, pp. 213-214, 1991. 

[13] W. Fleming and R. Rishel, Deterministic and Srochasric Optimal Con- 
trol. New York: Springer-Verlag, 1975. 

[14] W. H. Fleming and H. M. Soner, Controlled Markov Pmcesses and 
Kscosity Solutions. 

[15] R. Gonzalez and E. Rofman, “On deterministic control problems: An 
approximation procedure for the optimal cost, I, the stationary problem,” 
SIAM J. Contr. Optim.. vol. 23, no. 2, pp. 242-266, 1985. 

[I61 H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic 
Control Problems in Continuous Time. New York Springer-Verlag, 
1992. 

[17] F. T. Leighton, Introduction to Parallel Algorithms and Architectures. 

New York Springer-Verlag. 1993. 

Oi can be then computed from (A.1). If, after doing all these 
calculations, we find that 8; > 0 for all i ,  then we have an 
optimal solution of problem (3.7). If some 8; is negative or 
zero or if (A.2) has no real roots, then our assumption o1 > 0 
was e ” w s .  In that case, we can let 81 = 0 and optimize 

San Mateo, CA: Morgan Kaufmann, 1992.- 
[18] J. S. B. Mitchell, “Planning shortest paths,” Ph.D. dissertation, Dept. 

Operations Research, Stanford Univ., Stanford, CA, 1986. 
[I91 J. S. B. Mitchell and D. M. Keirsey, “Planning strategic paths through 

variable terrain data,” SPIE Volume 485: Applica. Art$cial Intell., 1984, 

~201 J. S. B. Mitchell and C. H. Papadimitriou, “ n e  weighted region 
pp. 172-179. 

with respect to the remaining variables. This is a problem with 
the same but in one dimension less, and the Same 
procedure can be used. By repeating these steps at most m 

problem,” J. ACM., vol. 38, pp. 18-73, 1991. 
[211 P. E. Souganidis, “Approximation schemes for viscosity solutions of 

Hamilton-Jacobi equations,” J. Diferential Equations, vol. 59, pp. 1 4 3 ,  
1985. 

times, the optimal solution of (3.7) will have been determined. 
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