DYNAMIC SHORTEST PATHS IN ACYCLIC NETWORKS WITH
MARKOVIAN ARC COSTS

HARILAOS N. PSARAFTIS

National Technical University of Athens, Athens, Greece

JOHN N. TSITSIKLIS

Massachusetts Institute of Technology, Cambridge, Massachusetts
(Recerved August 1990; revisions received March, October 1991; accepted December 1991)

We examine shortest path problems in acyclic networks in which arc costs are known functions of certain environment
variables at network nodes. Each of these variables evolves according to an independent Markov process. The vehicle
can wait at a node (at a cost) in anticipation of more favorable arc costs. We first develop two recursive procedures for
the individual arc case, one based on successive approximations, and the other on policy iteration. We also solve the
same problem via parametric linear programming. We show that the optimal policy essentially classifies the state of the
environment variable at a node into two categories: green states for which the optimal action is to immediately traverse
the arc, and red states for which the optimal action is to wait. We then extend these concepts for the entire network by
developing a dynamic programming procedure that solves the corresponding problem. The complexity of this method is
shown to be O(n*K + nK?), where n 1s the number of network nodes and K is the number of Markov states at each node.

We present examples and discuss possible research extensions.

In this paper, we examine shortest path problems in
a stochastic and dynamic setting. We assume a
directed acyclic graph G = (N, A). A vehicle plans to
traverse (, starting from a specified node 1, and
ending at another specified node #. Assume also that
arc-traversal costs on G are stochastic and dynamic,
in the following sense. The cost of traversing each arc
(1, j) of G is a known function f,(e’) of the state ¢’ of
a certain environment variable at node i at the time
the vehicle departs from node / on its way to node j.
Environment variables are mutually independent, and
each is governed by a finite-state Markov process of a
known transition probability matrix. State transitions
occur in discrete time. The actual state ¢’ of the
environment variable at node / is revealed to the
vehicle only when it is at node / (and if it chooses to
visit that node). Once at node i, the vehicle either may
immediately depart from ! toward some other node j
and incur the cost f,(¢’) associated with the prevailing
state ¢' at departure time, or, it may choose to wait,
in anticipation of a “more favorable” environment
state at /. Waiting at a node may last as long as desired,
but it will cost the vehicle an amount of C per state
transition. Based on the above, what is the policy that

minimizes the expected total cost of a traversal from
node 1 to node n?

Some further clarifications about this problem are
in order:

1. We assume that the number of possible states of
the environment variable at each node is K (the
assumption that K is the same for all nodes is not
needed in what follows, and is only made for
notational convenience). We denote these states as
e, €5, ..., ek. We also define p, as the proba-
bility of a direct transition of ¢’ from state ¢, to
¢x. All transition matrices | ;] are assumed to be
known.

2. All Markov processes are assumed to have the
ergodic property, that is, any state can be reached
from any other state in a finite number of transi-
tions. We define as I1,, the steady-state probability
that the environment at node 7 is in state e, (this
probability can be calculated from matrix [p,u«]).
The Markov processes at different nodes are
assumed to be statistically independent and in
steady state.

Subject classifications Networks/graphs, distance algorithms: Markovian cost structure. Networks/graphs, stochastic: dynamic shortest paths. Transpor-
tation, models, network: dynamic and stochastic problems.
Area of review DISTRIBUTION, TRANSPORTATION AND LOGISTICS (SPECIAL ISSUE ON STOCHASTIC AND DYNAMIC MODELS IN TRANSPORTATION).

Operations Research
Vol. 41, No 1, January-February 1993

0030-364X/93/4101-0091 $01.25
© 1993 Operations Research Society of America

Copyright © 2001 All Rights Reserved



92 / PSARAFTIS AND TSITSIKLIS

3. Weassume that C'is positive to avoid the “singular”
solution of indefinitely waiting, which would be
optimal if C'= 0 and the arc costs were nonnegative
(as with K, the assumption that C is the same for
all nodes is again nonbinding and was made only
for notational convenience).

4, The assumiption of an acyclic network means that
there is a numbering of the nodes such that if there
exists an arc from node i to node j, then i < j. A
discussion of what might happen if this assumption
is relaxed is presented in Section 3. It is useful to
define for each node i as J(i) the set of nodes ;
(with ;y > i) that are endpoints of arcs emanating
from node i.

Perhaps the earliest work in which the problem of
shortest paths in random graphs was treated can be
attributed to Frank (1969), where, among other things,
a procedure for obtaining the probability distribution
of the cost of the shortest path was outlined. Since
that time, however, the related literature has been
scant, and, to our knowledge, there has been little or
nothing on the specific problem class considered in
this paper (dynamic shortest path policies in the pres-
ence of Markovian arc costs). Nevertheless, we men-
tion that in the general context of random arc costs
several researchers have considered the problem of
finding the path with the maximum probability of
being the shortest, or the minimum variance path
(Andreatta, Ricaldone and Romeo 1985, Frieze and
Grimmet 1985). In addition, Jaillet (1989) considered
shortest path problems in the presence of node fail-
ures, that is, problems in which the nodes of the
network may or may not be operable. The problem
examined by Hall (1986), on the fastest path through
a network with random, time-dependent travel times
also belongs to the same general category of problems.
With the exception of the work of Hall, who examines
time-adaptive decision rules, all other versions
reported above are essentially static because they call
for the a priori selection of a fixed path optimizing an
appropriate objective, and not for a policy specifying
what should be done for each particular real-time
scenario. A priori optimization is a general scheme
that has also been applied in other stochastic routing
problems, most notably for the Probabilistic Traveling
Salesman Problem and other related problems (Jaillet
1985, Bertsimas 1988). All these routing problems are
essentially static. A general classification of dynamic
routing problems has been examined by Psaraftis
(1988). Dynamic routing policies in a stochastic set-
ting have been analyzed by Bertsimas and van Ryzin
(1991) for the Dynamic Traveling Repairman Prob-

lem (a variation of the dynamic TSP). The focus of
that paper was on the queueing aspects of the problem,
and the stochasticity of the problem was the random
appearance of customers in the Euclidean plane (as
opposed to random arc costs).

Although the purpose of this paper is to focus only
on the abstract problem defined earlier, it is interesting
to note that some motivation about the problem may
come from real-world contexts that generally involve
the motion of a vehicle across a stochastic terrain.
One real-world problem that belongs to this family
concerns the routing of a ship across the ocean under
uncertain and dynamically changing weather condi-
tions. Here, graph nodes approximately represent geo-
graphical regions across which the ship will transit.
The environment variable at each region is a vector
of meteorological variables that describes the state of
the weather in that region. Weather conditions change
dynamically and stochastically in time. The cost of
moving from a certain region to an adjacent region
mainly consists of the cost of fuel consumed in doing
so, and this is a function of the prevailing weather
conditions. If this cost is high enough (due to adverse
weather, a storm, etc.), it may make sense for the ship
to wait (at a cost) in anticipation of more favorable
weather later on.

Of course, some caveats are in order: The real-world
ship weather routing problem is much more complex
than the abstract one defined earlier, and may be
based on different assumptions. For instance, advance
information about weather conditions along the pro-
jected ship path may be available. This means that
the vessel will have some information about the state
of the environment in other regions of the network,
and not only for the region it currently visits. Also, in
general there will be a cross-coupling of environmental
conditions not only in the time dimension, but also
in the space dimension, and this may violate the
assumption of independence among the Markov pro-
cesses at different nodes. Actually, weather may not
evolve according to a Markov process. Finally, the
vessel may choose the speed at which it will sail (and,
hence, control fuel consumption costs), and it may
simply slow down instead of stopping completely if
the weather is bad (see Chen 1978, and Perakis and
Papadakis 1988 for a treatment of this problem).

With these important caveats in mind, we now
describe how the rest of this paper is organized: Section
1 focuses on an individual arc of the network, develops
policies for traversing that arc, and investigates the
properties of such policies. Section 2 examines the
problem on the entire network, and extends the pre-
vious procedures for the problem. Finally, Section 3

COPTTe2e0 i Rights-Reserved



discusses the results of this work and examines possi-
ble extensions.

1. INDIVIDUAL ARC POLICY

Before we proceed with the problem, it is of interest
to isolate an individual arc (i, j) of the network, and
attempt to solve the same problem just on that arc.
The solution of this special case will be an important
building block for the treatment of the general case in
Section 2.

Imagine the vehicle at the starting node i of the arc,
and contemplate to traverse the arc to the ending node
Jj- For this individual arc alone, the question is: What
should be the vehicle’s best action as a function of the
state of the environment that happens to prevail at
node !? Clearly, for some environment states (to
be determined) the vehicle should immediately
depart from / to j (we will call such states green—
see Figure 1), while for the remaining states it should
wait (we will call such states red).

To simplify notation, we temporarily drop indices i
and j, and assume that the state of the environment
variable ranges from e, to ex, with the corresponding
arc cost ranging from f; to fx. The simplified notation
for the transition probabilities is p.x.

Defining X,, as the minimum achievable total

\
\
N,
{ f,‘. TP
\&
33 $33332 ]
) &

am
Y
*4

Green states

) Red states

Pod
(33
Resooy

Figure 1. Green and red environment states.

Dynamic Shortest Paths | 93

expected cost of going across the arc given that the
state of the environment is e,,, it 1s clear that there are
two possible choices for the vehicle: either depart
immediately, and incur a cost of f,,, or wait, and incur
an immediate waiting cost of C, and a residual
expected cost of Y £, pnuXi. The latter is the expected
sum, over each possible “next” environment state e,
of the minimal expected cost associated with the vehi-
cle facing a variable of state ¢ after the transition, and
assuming an optimal policy thereafter.

Thus, it is clear that the cost-to-go variables X,
satisfy the system of nonlinear equations:

K
X,,,=min(fm,C+ me,,Xk>, m=1,....K. (1)
k=1

The variables X,, are the unique solution of the system
(1), as can be seen by applying the results of Bertsekas
and Tsitsiklis (1988). The only assumption needed in
order to apply these results is that any policy that
waits forever has infinite cost. Qur problem has this
property because C > 0.

The set of recursive relationships implied by (1)
cannot be solved in closed form in the general case.
Given that the duration of the decision process
implied by (1) is unbounded, the underlying problem
belongs to the general class of infinite-horizon, total
cost, stochastic dynamic programming problems, and,
as such, can be solved by the spectrum of techniques
available for this class (see Bertsekas 1987, pp.
188-205). Of those, we focus on the methods of
successive approximations (SA), of policy iteration
(PI), and of parametric linear programming (PLP).
We also discuss solving the problem (whenever pos-
sible) in closed form.

1.1. Successive Approximations (SA)
The SA algorithm consists of the following steps:
STEP 1. (Initialize)

Forallm=1,..., K, set X, := fn, and
ARC_COLOR(e,,) := green.

STEP 2. (Update)
Forallm=1, ..., K, reset

K
Xm:=min<fm, C+Y p,,,ka> )

k=1
If ARC_COLOR(e,,) = green, and if X,, < f,,, reset
ARC_COLOR(e,,) := red.

STEP 3. (Iterate)
If convergence has been achieved, go to Step 4. Else
go to Step 2.

Copyright © 2001 All Rights Reserved



94 / PSARAFTIS AND TSITSIKLIS
STEP 4. (Optimal policy)

« If the environment variable is in state ¢, and
ARC_COLOR(e,,) = green, immediately traverse
the arc.

» If the environment variable is in state e, and
ARC_COLOR(e,,) = red, wait for a state transition,
and apply the policy to the next state.

« In all cases, the optimal expected cost given state ¢,
i X,n.

We mention this method because it is often used in
practice for the solution of problems that belong to
this general class (infinite-horizon, stochastic dynamic
programming), and because for the particular problem
the method has some interesting properties. These can
be summarized as follows (proofs are straightforward
and hence are omitted):

1. Forall m=1, ..., K, the sequence of X,,’s in the
iterations of SA is bounded and nonincreasing.

2. If in SA ARC_COLOR(e,,) is reset to red for a
certain state ¢,,, that color need not be reconsidered
throughout the rest of the procedure.

3. At each iteration of SA, there is at least one green
state.

4. States e,, for which C < f,, — Y41 pau/v are always
red.

5. All states are green if C = f,, — Y -1 pufi for all
m=1,..., K In this case, X,, = f,, for all m.

A disadvantage of SA is that there is no guarantee for
the number of iterations needed until an optimal
policy is generated. The example shown in Figure 2
illustrates this point. There are three possible states, 1,
2, and 3, with the corresponding direct travel times of
1, 5, and 10 shown inside the squares in the figure.
The transition probabilities are also shown.

Figure 2. Example for the comparison of procedures
SA and PL.

In this example, the first eleven iterations of SA
produce the results given in Table 1. If these iterations
are pursued further, X5 and X; will ultimately converge
to 4.75 and 3.5, respectively, with all other variables
already having achieved convergence. However, con-
vergence of these two variables will be extremely slow,
and the ultimate number of iterations will be
unbounded if the “tolerance factor” is arbitrarily
small. Notice also that the second state converges to
its ultimate red color only at the ninth iteration of the
algorithm, even though between iterations 2 and §
array ARC_COLOR gives the (false) appearance of
having “stabilized” to a policy of (G, G, R)! Iteration
9 shows that this is not the ultimate optimal policy,
which is (G, R, R).

The conclusion from all this is that SA may achieve
convergence in both arrays X and ARC_COLOR very

Table 1
Iterations of SA

Array X Array ARC_COLOR

m= m=
Iteration | 2 1 2 3
1 1 S 10 G G G
2 | 5 7.4 G G R
3 1 5 5.84 G G R
4 1 5 4.904 G G R
5 1 5 4.342 G G R
6 1 S 4.005 G G R
7 1 5 3.803 G G R
8 1 5 3.682 G G R
9 1 4.946 3.609 G R R
10 1 4.876 3.566 G R R
11 1 4.828 3.539 G R R

= - | o, Y 1
SO ESEE0dmikRire-Reserred



slowly, and that even if or when convergence in policy
(array ARC_COLOR) has been achieved, conver-
gence of array X may still need a significant number
of additional iterations.

The convergence shortcoming is alleviated in the
policy iteration procedure PI, which can be shown to
terminate in a fairly small number of iterations. PI
works as follows.

1.2. Policy Iteration (PI)
The PI algorithm is:

STEP 1. (Initialize)
Forallm=1,...,K, set ARC_COLOR(e,,) := green.

STEP 2. (Evaluate policy)
Forallm=1, ..., K, calculate array X by solving the
system of linear equations:

Xm:=fm 1f ARC_COLOR(e,,) = green, and

K
Xp=C+ Y, pXi ifARC_COLOR(e,)=red.

k=1

STEP 3. (Improve policy)
Forallm=1, ..., K, calculate

K
Tw(X):= min<fm, C+ 2 pkak).
k=1

If 7,.(X) < f,., set ARC_COLOR(e,,) := red; else set
ARC_COLOR(e,,) := green.

STEP 4. (Iterate)
Ifforalilm=1,..., K, itis T,,(X) = X,,, then STOP,
arrays X and ARC_COLOR are optimal, and the
optimal policy is as per Step 5 of SA. Otherwise, go
to Step 2.

In contrast to SA, here array X is explicitly com-
puted from the current policy (array ARC_COLOR)
in Step 2 by solving a system of linear equations. Once
this 1s done, array ARC_COLOR is updated in the
policy improvement step (Step 3). In case no improve-
ment is registered, which happens if 7,,(X) = X,, for
allm=1,..., K, the algorithm terminates. Otherwise,
the algorithm loops to Step 2.

Finite termination of the PI algorithm follows from
standard results in dynamic programming. However,
due to the special structure of this problem, much
more can be said. In particular, once a state becomes
red, it always stays red, as shown in Theorem 1; this
readily leads to a complexity estimate.

Dynamic Shortest Paths |/ 95

Theorem 1

a. Ifat some iteration of the policy iteration algorithm
we have ARC_COLOR(e,,) = red, this property
remains true for all subsequent iterations.

b. The number of iterations is at most K.

Proof. Let X{ and X?* be the values of X, at
two successive iterations. It is a general property
of the policy iteration algorithm that X7* =< Xf¥
for all k. If ARC_COLOR(e,,) = red, then f, >
C + YK pwX¥, which implies that f, > C +
S pX¥* at the next iteration as well, and
ARC_COLOR(e,,) is again red.

Part b follows immediately from part a. Since a
red state cannot switch back to green, and since there
can be at most K — 1 red states, there can be at most
K — 1 policy improvements (changes in array
ARC_COLOR). Given that if there is no policy
improvement the algorithm terminates, the maximum
number of iterations is K.

Theorem 1 leads to a complexity estimate for policy
iteration. There are O(K) iterations, and each consists
mainly of the solution of a linear system of K equa-
tions in K unknowns, which can be accomplished with
O(K?) arithmetic operations. Thus, we have a strongly
polynomial time algorithm, with complexity O(K*).
In contrast, no strongly polynomial algorithm 1is
known for the general Markov decision probiem.

By being a little more clever, the complexity of the
algorithm can be improved further. Let n, be the
number of states that changes color at iteration /.
Using part a of Theorem 1, we have ¥, #, < K. The
system of linear equations solved in Step 2 has the
general structure X = A,.X + b, where 4,1sa K X K
matrix and b, is a K-dimensional vector. Changing the
color of », states amounts to changing #, rows of matrix
A,. Thus, A,+, — A, has rank #n,. It follows that 4.},
can be computed from A;' with only O(n,K?) arith-
metic operations. For example, we can use the
Sherman-Morrison-Woodbury formula (see p. 3 of
Golub and van Loan 1983). Thus, the total complexity
of the algorithm is reduced to O(K?), provided that
Step 2 1s carried out by explicitly computing the
inverse of A,.

An alternative view is provided by the well known
relation between policy iteration and simplex-like
methods for solving a related linear programming
problem (this is formulated in the next subsection;
it has K variables and O(K) constraints). Under
this relation, changing the policy at a single state is
equivalent to a simplex iteration (pivot). Theorem 1

Copyright © 2001 All Rights Reserved



96 / PSARAFTIS AND TSITSIKLIS

guarantees that only O(K) iterations are needed, and
the O(K?) complexity estimate follows.

The above discussion establishes a theoretical supe-
riority of PI over SA, at least with respect to a bound
in the number of iterations. However, an important
caveat is in order. Each iteration of SA requires only
O(K?) computations, and if an optimal policy can be
produced in much less than X iterations, then SA can
be faster. SA may have a further advantage if the
matrix of transition probabilities is sparse, in which
case the complexity of each iteration can be as low
as O(K).

Coming back to the previous example, PI can be
solved in only three iterations. These are shown in
Table II. Since T(X) = X at iteration 3, convergence
is achieved, and the algorithm terminates.

1.3. Parametric Linear Programming (PLP)

As mentioned earlier, linear programming can be used
to solve infinite-horizon dynamic programming prob-
lems (Bertsekas 1987, p. 206). For our specific prob-
lem, an LP formulation would be as follows.

Problem P

X
Maximize Y, Xi

k=1

subject to
K

Xn— 2 pXu<C form=1,.. K,
k=1

0sX,<f,

We then have ARC_COLOR(e,,) = green if X,, = f,
otherwise ARC_COLOR(e,,) = red.

We observe that the parametric dual simplex
method can be used to solve this linear program and
to obtain an optimal policy for all positive values of
C. Due to the special structure of the problem, this
method admits a complexity estimate comparable to
the one derived for policy iteration, as we will show
next.

Let us use the notation X,,(C) to denote the value
of the optimal cost-to-go (the solution of P) as a

form=1,...,K.

function of C. The following result summarizes some
of the properties of X,,,(C).

Theorem 2. For every m, X,(C) is piecewise linear,
concave, and nondecreasing.

Proof. For every stationary policy =, let X.(=; C) be
the expected cost-to-go starting from state e,,, as a
function of C. Also, X,,,(w; C) is affine and nondecreas-
ing in C. Note that X,,(C) = min, X,,(w; C). It follows
that X,,(C) is concave and nondecreasing. Further-
more, since the set of all stationary policies is finite,
we see that X,,(C) is piecewise linear.

The key to the efficiency of the parametric simplex
method is provided by the following theorem.

Theorem 3. Fix a value of C and suppose that state
e Is red under an optimal policy. Then e,, is red under
an optimal policy for any positive C* < C.

Proof. Since ¢, is red,
K
Xm(C) = C+ 2 pkak(C) <fm-
k=1

Let 0 < C* < C. Since X,,(C) is nondecreasing
(Theorem 2), we have

K

C*+ Z pkak(C)<fMy

k=1
which means that state ¢, is red under an optimal
policy for C*.

Theorem 3 implies that as we change C, the optimal
policy changes at most K — | times. These changes
occur at the values C,, where a state e,, changes color.
Let us assume for simplicity that distinct states change
color at different values of C. Thus, there are exactly
K — 1 values of C where the optimal policy changes.
The parametric simplex method only performs pivots
at these special values of C. Note that at C = C,
constraint X,, = f,, exits the dual basis and constraint
X = C + X5, pmXe enters the dual basis (this
corresponds to state e, changing from green to red).

Table 2
Iterations of PI
Array ARC_COLOR Array X Array T(X)
m= m= m =
Iteration 1 2 3 1 2 3 1 2 3
1 G G G 1 5 10 1 5 7.4
2 G G R I 5 3.5 I 4.8 35
3 G R R 1 475 35 1 475 35

N . |
SOy iminmimt e Pt



Thus, the total number of pivots in the parametric
simplex method is K — 1 and the total computational
complexity O(K?) (this argument can be generalized
to the case where several states change color at the
same value of C). The complexity of the parametric
simplex method is the same as the complexity of
policy iteration, but it has the added advantage that
an optimal policy can be obtained for all values of C.

1.4. Closed-Form Solution

Finally, there are often cases of lower dimension for
which an optimal policy can be determined in closed
Jorm. Consider, for instance, the case K = 2 with
pu=2a pn=1=a py=1->b, and py, = b.
Without loss of generality we assume that f; < f;.

For this case, it is straightforward to show that if
C = (f — fi)(1 — b), both states are green, whereas
if C < (fa — fiX1 — b), only ¢, is green and e, is
red. In both cases, since ¢, is green, X; = f,. In
the former case, X» = f,. In the latter case, X, =
Sh+ C/(1 = b).

We close our investigation of the individual arc
policy by reintroducing indices i and j for the arc in
question, and by defining as D, (e;,) what we have so
far defined as X,,, that is, the minimum expected cost
of traversing arc (i, j), given that the current state of
the environment variable at node i is ¢%,. The full
notation for the color array is ARC_COLOR,,(¢},)
(notice the color of a state is specific to the arc (i, j),
and two arcs out of the same node will in general have
different arrays ARC_COLOR). For each arc (i, j),
arrays D,, and ARC_COLOR,, can be obtained by
applying either the successive approximation algo-
rithm or the policy iteration procedures described
above.

2. POLICY FOR THE ENTIRE NETWORK

It is not immediately clear how (or whether) the above
individual arc considerations are relevant to the
original problem. For one thing, in addition to
the “go/no-go” decision at each node, in the original
problem one also has to choose which arc to traverse
(direction decision). Moreover, that the costs of all
arcs emanating from a given node are correlated
(being functions of the same variable) introduces a
cross-coupling among arcs. Even the notion of green
versus red states becomes ambiguous in this case
because environment states which are of a certain
color for a certain arc (i, j) emanating from node i
may or may not be of the same color for another arc
(/, ') emanating from the same node, unless some
“regularity” assumptions are made. But even if this

Dynamic Shortest Paths | 97

ambiguity does not exist, it is not clear what the
optimal traversal policy should be.

In addressing the general problem we first try a
naive approach and show that it can be far from
optimal. Then we develop an algorithm (OPT) based
on dynamic programming that yields an optimal pol-
icy, and we estimate its computational complexity.

2.1. A Naive Approach

In a naive approach to the problem, we break the
decision into two parts: We first somehow decide
which of the arcs out of node i is preferable (in general,
this will be a function of the prevailing state of the
environment variable at that node), and then, once
we are committed to that arc, make the go/no-go
decision based on the policy suggested by array
ARC_COLOR for that arc. The latter policy is
assumed to have been computed separately for all arcs
of the network, as described in the previous section.
Such an approach is suboptimal precisely because we
structure the decision process so that we are commit-
ted to a direction decision before the go/no-go decision
is made (this point will be further discussed later on).

This point is illustrated by the simple example
shown 1n Figure 3. Figure 3a shows the 4-node net-
work under consideration, with only arcs (1, 2) and
(1, 3) having Markovian costs; the other two arcs
(2, 4) and (3, 4) have zero costs. Assume a waiting
cost C. In this case, the only relevant decision is that
at node 1, and the only relevant environment variable
is at that node. Figure 3b shows that this variable may
have three possible states, with Markov transition
probabilities as shown in the figure. The direct tra-
versal costs of arcs (1, 2) and (1, 3) corresponding to
these three states are shown in the figure inside
squares. Let us assume that M is very large.

One can immediately notice that an optimal policy
at node 1 is the following:

If m = 1 (state is e}), immediately go to node 2.
If m = 2 (state is e}), wait.
If m = 3 (state is €}), immediately go to node 3.

The expected cost of this policy is 0 if m = 1 or 3
(state is e{ or e}), and C if m = 2 (state is e3).

In the naive approach, we have to commit ourselves
to a choice of the next node (2 or 3) ahead of time.
Suppose that the initial environment state at node 1
is e3. Then, by symmetry, it does not make any
difference which arc we commit ourselves to traverse.
Suppose we choose arc (1, 2). As long as M is very
large (in fact, M > 1/¢), the optimal policy will be to
wait until the first time that a state of e! occurs. It is
straightforward to check that the expected cost of the

Copyright © 2001 All Rights Reserved



98 / PSARAFTIS AND TSITSIKLIS

(a)
[] =
(=) @ ™
05 € E
() e [M] E g
€ 0.5 g
O CEN:

Figure 3. An example in which the naive procedure
performs arbitrarily poorly.

naive policy is C(2 + 1/¢). We conclude that the naive
approach can produce policies whose performance
differs from the optimum by an arbitrarily large mul-
tiplicative factor.

2.2. Optimal Approach

From the above considerations it is clear that the way
to structure the decision process is to reverse the order
of decisions from that of the naive approach, as fol-
lows: First we decide whether or not we should wait
at a node (this will be a function of the prevailing state
of the environment variable at that node), and if
the decision is go, we decide what the next node
should be.

In procedure OPT, the decision to be made when
the vehicle is at node ;/ is again based on the prevailing
state ¢,, of the environment variable at that node. Let
us define the optimal value function V(e,,) as the
minimum achievable total expected cost of traversing
the network from node i to the terminal node #, given
that while at 1 the prevailing environment variable is
in state e,.

The options for the vehicle are either to immediately
traverse arc (/, J), among those that are emanate from
node / (in which case the vehicle must also choose
node , the next node to visit), or wait, but with no
commitment as to where it should go next. The imme-
diate cost incurred is £, (e,,) in the former case, and C
in the latter case.

As before, if arc (i, ) is immediately traversed, the
environment variable at node j will be in state ¢} with
probability IT;, when the vehicle arrives there. The
cost-to-go from then on is given by V,(¢), assuming
an optimal policy is followed. If, on the other hand,
the vehicle waits at node , the environment variable
will be in state e} with probability pL« at the next
stage, and the cost-to-go from then on will be V,(ei),
assuming again an optimal policy thereafter.

Based on all this, it is clear that V,(e;,) obeys the
following system of equations for all ¢,,. For all
i #n:

K
View)= min{min {f,,(ei,,) + > I V,(ei)} ,
JEJ(1)

k=1
C+ Y pok V,(ei()}’ “4)
k=1

with boundary condition V,(e;,) = 0 for ;1 = n.

A close look at (4) reveals that it is very similar in
structure to (1) that was developed for the individual
arc case. Other than the difference in notation, the
second term in the outer braces is identical to the
corresponding second term C + Yi-, puXi in the
braces of (1). The only other difference between (1)
and (4) is that the first term in the outer braces, namely

A
min{f,}(e'mH 2 I V,(e"k)},
JEJ(1) h=1

replaces variable f,, in (1).

Since the network is acyclic, recursion (4) can be
solved by backward dynamic programming. However,
since V,(e},) appears in both the left- and right-hand
sides. any algorithm of Section 1 can be used to obtain
the value of V,(e;,). Thus, we have the following
algorithm.

Optimal Procedure (OPT)
STEP 1. (Set boundary condition)
Seti:=n,and Vi(e,,) :=0forallm=1,..., K.

STEP 2. (Backtrack)
Seti:=1—1.

Conyright © 2001 All Rights Reserved




STEP 3. (Compute cost of direct traversal)
Forall m =1, ..., K define

K
F = min{ﬁ,(ei,,)+ Y IL, V,(efc)} ,
JEJ) k=1

and DIRECTION,(¢},,) := a node j that minimizes the
right-hand side of the above expression.

STEP 4. Use any one of the algorithms of
Section 1 to solve the individual arc problem, with
f. replaced by F,, X, replaced by V/(e.), and
ARC_COLOR(e,,) replaced by a new array, named
NODE_COLOR,(e;,).

STEP 5. (Check if done)
If i > 1 go to Step 2. Else go to Step 6.

STEP 6. (Optimal policy)
Foralli=1,...,nandallm=1,..., K, the optimal
policy is:

« If the environment variable at node i is in state e},
of NODE_COLOR(e,,) = green, immediately
depart to node DIRECTION,(e,,).

» Else (i.e., if NODE_COLOR,(¢,,) = red), wait for a
state transition.

The following points are now in order:

1. As in SA or PI, this algorithm classifies the state
of the environment variable into two categories,
this time by array NODE _COLOR. As before, this
state can be either green, or red. Also, as before, if
the environment variable is in the red state, the
vehicle should wait until a green state is reached.
As soon as the latter happens, the vehicle imme-
diately departs to the node designated by the array
DIRECTION. Note that DIRECTION is not fixed,
but generally depends on the state of the environ-
ment variable at the node. It is the optimal
next node, given the state of the environment vari-
able, and given NODE_COLOR = green (there
is no designation for the best next node if
NODE_COLOR = red).

2. To estimate the complexity of OPT, we first note
that evaluating variable F,, in Step 3 takes O(nK)
time. If the single arc problem is solved using either
PI or PLP, the discussion of Section 2 implies that
Step 4 takes O(K?) time. Given that OPT loops
over every node of the network, the total complex-
ity of OPT becomes O(n*K + nk?).

3. If we wish to solve the problem on the entire
network using parametric linear programming for
all values of C, then expression F,, (Step 3 of OPT)

Dynamic Shortest Paths | 99

becomes a piecewise linear function of C. In this
respect, the parametric problem is more difficult
than the equivalent problem in the individual arc
case, where f,, is a constant and independent of C.
In particular, the time complexity of performing
Step 4 for all values of C using parametric LP will
be proportional to the number of breakpoints of
the function F,.(C). In principle, the number of
these breakpoints can increase exponentially with
the size of the graph and we obtain an unfavorable,
worst case computational complexity.

The added complexity of a parametric solution of
the problem on the entire network is illustrated by the
following example which shows that as C changes
monotonically, a state color can change from green to
red and then back to green (Theorem 3 showed that
this cannot happen in the individual arc case).

Consider the problem illustrated in Figure 4. There
are three nodes and we wish to go from node 1
to node 3. The figure shows the original network

Node 2

Node 1

Figure 4. Example of a 3-node network in which a
state color (here, that of the 1st state at node
1) can change from green to red and back
to green. This is a combined graph in which
states at nodes 1 and 2 are shown as small
circles. Nodes | and 2 are shown as large
ellipses. Arcs are shown in bold and arc
costs are shown inside boxes. Also shown
are the dynamics of the Markov processes
at nodes 1 and 2 and the transition
probabilities.

Copyright © 2001 All Rights Reserved



100 / PSARAFTIS AND TSITSIKLIS

G (N, A) for these three nodes and the Markov state
graphs for nodes 1 and 2 in combination, the dynam-
ics of the environment variables shown directly in the
figure. Also shown are the dependencies of the arc-
traversal costs on the states of the environment vari-
ables (e.g., if we are at node | with a state of e}, and
we choose to go to node 2, the arc-traversal cost would
be equal to M). We assume that ¢/(1 — 2¢) <
(1 — oM.
The optimal cost-to-go at node 2 satisfies:

V2(e3)=0, and
V2(e}) = min(M, C + (1 — )Va(e?)), which yields
Va(e}) = min(M, C/e).

Let us now look at node 1. If state e} is green, the
cost-to-go is equal to II1} V,(e}) (the probability of
finding the environment variable at node 2 at state
el times V(e?)), that is, equal to (1 — ymin(M, C/e).

If, on the other hand, state e} is red, then
state e} must be green, and the cost-to-go (starting
from el)is C + 1. It follows that e} isred if C + | <
(1 — omin(M, C/e), or, equivalently, if ¢/(1 — 2¢) <
Cs(l—oM—-1.

Thus, as C increases, el changes color twice:
at C = ¢/(1 — 2¢) (from green to red), and at C =
(I — e)M — 1 (from red to green).

3. CONCLUSIONS AND POSSIBLE EXTENSIONS

This paper has examined shortest path problems in
acyclic networks in which arc costs are known func-
tions of certain environment variables at network
nodes, and each of these variables evolves according
to an independent Markov process. Several proce-
dures were developed for determining which of
the environment states at each node are green (the ve-
hicle departs immediately) and which are red (the
vehicle waits). For the individual arc case, the succes-
sive approximations (SA), policy iteration (PI), and
parametric linear programming (PLP) methods were
examined. We see that PI and PLP have some com-
putational advantages over SA, the most important
one being termination after a maximum of K itera-
tions, and an overall complexity of O(K?). These
concepts were extended for the entire network by
developing a dynamic programming procedure that
optimally solves the corresponding problem. The
complexity of this method was shown to be O(n*K +
nK?). This low-order polynomial complexity is to be
contrasted with that of the general Markov decision
problem for which no strongly polynomial algorithm
1s known to exist.

We now further discuss the results of this work,
with an emphasis on possible extensions.

1. An interesting extension of these procedures would
be to networks other than acyclic (e.g., undirected
or mixed). The resulting procedures will be similar
to the Bellman-Ford algorithm for the general
shortest path problem in that they will incorporate
in the state space an additional index that measures
progress along the path. However, in contrast to
the previous case, here the vehicle may visit the
same node more than once on its way to the
terminal node, and in doing so would have some
prior knowledge about the possible state of the
environment at that node. Any optimal algorithm
should explicitly incorporate such knowledge into
the formulation. Alternatively, if that prior knowl-
edge is deliberately not taken into account (say, by
developing a memoryless procedure that does not
keep track of such information), a straightforward
extension of the Bellman-Ford algorithm could be
used as a heuristic to obtain an upper bound on
the optimal total expected cost. Of course, for
reasonable instances it may be unlikely for the
vehicle to visit the same node twice, however, this
could happen in the general case.

2. Another interesting, but far from straightforward,
extension is to assume that information on the
states of environment variables at nodes other than
the one currently visited by the vehicle is also
available. Such information may be useful in that
it may provide a “look-ahead” capability which
may be exploited in order to achieve a lower cost
policy. However, to carry out such an extension
one would have to consider a number of nontrivial
issues. First, the state space in the DP formulation
may become enormous. If the vehicle knows the
state of the environment at a/l nodes, the state
space will be O(K"), clearly intractable even if K is
very small, say, 3. A less pronounced, but never-
theless equally bothersome state-space explosion
would occur even if only a limited amount of
additional information is assumed to be known,
for instance, the state of the environment variables
at the current node and all its adjacent nodes. An
additional issue is that one has to explicitly con-
sider the time it takes to traverse an arc (at least in
multiples of the time interval between successive
Markov transitions), in order to predict the envi-
ronment state at the next node at the time the
vehicle arrives there. Such a consideration was not
necessary in our version of the problem because of
the lack of information on environment conditions

~COPTHE S 288min=Riirs-Reserved



at other nodes. Moreover, one may also have to
consider spacewise dependencies among environ-
ment vatiables in addition to their timewise
dependency. All of the above certainly add to the
difficulty of the problem.

3. With respect to the last problem, it might be of
interest to investigate suboptimal policies in which
the vehicle receives partial information on the envi-
ronment states. Such partial information may be
either an upper bound B on the number of nodes
for which information is available (our original
problem is the case B = 1), or a more aggregate
representation of the state of the environment vari-
ables (e.g., the various states may be classified into
good or bad and the vehicle may only know that
information as opposed to the detailed information
about the actual state), or finally, anything that
would effectively limit the growth of the problem’s
state space.

4, Finally, another very interesting extension is if we
add a time window [r, d] at the terminal node n,
where r is a specified earliest arrival time and d is
a specified latest arrival time (or deadline). Penal-
ties for early and/or late arrivals may be specified,
and these penalties would be part of the overall
expected cost to be minimized. As in the previous
extension, this extension requires the consideration
of arc-traversal times. It also necessitates the inclu-
sion of the time dimension into the state space.

ACKNOWLEDGMENT

The work of both authors was supported in part by
C. S. Draper Labs under contract DL-H-404164. The
work of the second author also received matching
support from NSF grant ECS-8552419. We thank the
area editor and two anonymous referees for their
comments,

Dynamic Shortest Paths |/ 101
REFERENCES

ANDREATTA, G., F. RICALDONE AND L. ROMEO. 1985.
Exploring Stochastic Shortest Path Problems. In
ATTI Giornale di Lavoro, Tecnoprint, Bologna,
Italy.

BERTSEKAS, D. P. 1987. Dynamic Programming Deter-
ministic and Stochastic Models. Prentice-Hall,
Englewood Cliffs, N. J.

BERTSEKAS, D. P., AND J. N. TSITSIKLIS. 1988. An Analy-
sis of Stochastic Shortest Path Problems. Math.
Opns. Res. (to appear).

BERTSIMAS, D. J. 1988. Probabilistic Combinatorial Opti-
mization Problems. Ph.D. Thesis, Operations
Research Center, MIT, Cambridge, Mass.

BERTSIMAS, D. J., AND G. VAN RYZIN. 1991. A Stochastic
and Dynamic Vehicle Routing Problem in the
Euclidean Plane. Opns. Res. 39, 601-615.

CHEN, H. 1978. A Dynamic Program for Minimum Cost
Ship Routing Under Uncertainty. Ph.D. Thesis,
Department of Ocean Engineering, MIT,
Cambridge, Mass.

FRANK, H. 1969. Shortest Paths in Probabilistic Graphs.
Opns. Res. 17, 583-599.

FrIEzg, A., AND G. GRIMMET. 1985. The Shortest Path
Problem for Graphs With Random Arc Lengths.
Discrete Appl. Math. 10, 57-77.

GoLus, G. H., aND C. F. vaN LoaN. 1983. Matrix
Computations. The Johns Hopkins University Press,
Baltimore, Md.

HALL, R. W, 1986. The Fastest Path Through a Network
With Random Time-Dependent Travel Times.
Trans. Sci 20, 182-192.

JAILLET, P. 1985. The Probabilistic Traveling Salesman
Problem. Technical Report 185, Operations
Research Center, MIT, Cambridge, Mass.

JAILLET, P. 1989. Shortest Path Problems With Node
Failures. Nerworks (submitted).

PERAKIS, A. N., AND N. PAPADAKIS. 1988. New Models
for Minimal Time Ship Weather Routing. SNAME
Trans. 96, 247-269.

PsaraFTIS, H. N. 1988. Dynamic Vehicle Routing Prob-
lems. In Vehicle Routing: Methods and Studies, B.
Golden and A. Assad (eds.). North-Holland,
Amsterdam.

Copyright © 2001 All Rights Reserved



