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l. PROBLEM DEFINITION

The decentralized detection problem is defined as
follows. There are M > 2 hypotheses Hy,Ha,...,Hy
with known a priori probabilities P(H;) > 0 and N
sensors. Each sensor i obtains an observation Yi, where
yi is a random variable taking values in a set Y. We
assume that yy,...,yy are conditionally independent
(given the true hypothesis) and identically distributed
with known conditional distributions Py (- | H;). Each
sensor i evaluates a D-valued message u; € {1,...,D},
as a function of its observation, and transmits it to a
fusion center. Finally, the fusion center declares one of
the alternative hypotheses to be true (Fig. 1).

Lety; : Y~ {1,...,D},i=1,2,...,N, be the
function (to be called a decision rule) used by the ith
sensor to determine its message u;; that is, u; = 7).
Let ug € {1,...,M} be the decision of the fusion
center. This decision is made according to a decision
rule 7o : {1,...,D}¥ — {1,...,M}; that is, up =
Yo(u1,...,un). We say that the fusion center makes
an error if uo = i and H; is not the true hypothesis.
The probability of error is completely determined by
the statistics of the observations and by the decision
rules 7o, 71,...,7n; it is denoted by IN(70,-..,7N). Our
problem is to choose the decision rules ¥o,71, ...,y of
the sensors and of the fusion center so as to minimize
the probability of error.

Fusion
Center

0

Fig. 1.

The above described problem and its variations
have attracted substantial interest [1, 3, 46, 8-10,
12-18]. It was first introduced in [14] for the case
of two hypotheses (M = 2), two sensors (N = 2),
binary messages (D = 2), and for a fixed choice
of the decision rule 7y of the fusion center. It was
shown in [14] that under the conditional independence
assumption, each sensor should evaluate its message
u; using a likelihood ratio test with an appropriate
threshold. (This conclusion is not valid if the
conditional independence assumption is removed in
which case the problem becomes computationally
intractable [17].) The optimal thresholds in the
likelihood ratio tests of the different sensors can be
obtained by solving a system of nonlinear equations.

It is important to emphasize that the optimal decision
rules for the decentralized problem are not, in general,
the same as those that would be derived using the
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classical theory, independently for each sensor. This is
because the optimal decision rules are chosen so as to
optimize system-wide performance, as opposed to the
performance of each individual sensor.

The performance of a decentralized detection
system is generally inferior to that of a centralized
system in which all raw data available are transmitted
to the fusion center, due to the loss of information in
the local processing. However, decentralized detection
is often more practical due to the reduction of the
communication requirements, as well as because
the processing of the data is shared by a number of
different processors. On the other hand, decentralized
detection problems are qualitatively different and
much more difficult than the corresponding centralized
detection problems. For this reason, there are very
few such problems that have been solved analytically.
In fact, most of the theoretical research available is
limited to the derivation of necessary conditions for
optimality, and these can only be solved numerically.
In contrast, we identify a special case for which an
explicit solution can be obtained analytically.

We now define the particular problem to be
studied. We assume that there is a one-to-one
correspondence between observations and hypotheses
and, more specifically, Y = {1,...,M}. We assume that
the conditional distribution of the observation y of any_
sensor is given by

6 if j#i

Pr(y=i|Hj)=PY(i|Hf)={1_(M__1)f

if j=i
where ¢ is a scalar satisfying 0 < e <1/(M —1). In
other words, the observation of a sensor indicates
the true hypothesis with probability 1 — (M — 1)e, or
it indicates a false hypothesis in which case each one
of the false hypotheses is equally likely (probability ).
Furthermore, we assume that the number of sensors is
large and we are looking for an asymptotic solution, as
N — 0.

Our model is undoubtedly too structured to be
an exact representation of a realistic problem, the
main drawback being the assumption that there is a
one-to-one correspondence between hypotheses and
possible observations. This assumption becomes fairly
reasonable, however, in the following situation (see
Fig. 2). Each sensor i receives some observations z;
that it processes in some predetermined way, and
comes up with a preliminary decision y; € {1,...,M}
on the identity of the true hypothesis. Then, each
sensor i transmits to the fusion center a function
¥:(y:) of its preliminary decision y;. Notice that we are
restricting here the message to be a function of the
processed observations instead of the raw observations.
While such a restriction may result in some loss of
performance, it is quite natural in certain contexts,
especially if each sensor has a reason to come up with
a preliminary decision in a timely manner.
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The above discussion notwithstanding, our interest
in this particular problem arises mainly from the
fact that an explicit solution can be obtained, as is
demonstrated in the sequel. Furthermore, the solution
to be derived provides insights and intuition on the
nature of optimal solutions to more general problems
for which explicit solutions are not possible. Such
insights are very valuable because they can suggest
interesting numerical experiments and heuristic
guidelines for coping with more difficult problems.

The remainder of this paper is organized as follows.
In Section II, we outline some results from [19] that
are needed later. In Section III, we introduce some
notation and terminology, and some simple preliminary
facts. In Section IV, a complete solution is derived for
the case where the noise parameter € is small and the
number of sensors is large. In Section V, we provide
a partial extension of the results of Section IV to the
case of a general noise parameter €. Finally, in Section
VI, we study the tradeoff between the number of
sensors and the communication rate of each sensor
when there is a constraint on the total communication
rate from the sensors to the fusion center.

il. BACKGROUND

As mentioned in the introduction, we are looking
for an asymptotic solution to our problem, as the
number of sensors N becomes very large. The basic
theory concerning such an asymptotic solution has
been developed in [19] and we review here the facts
that are needed. Some experimentation [7] has shown
that the asymptotically optimal decision rules perform
reasonably well for moderate numbers of sensors.

We use T' to denote the set of all possible decision
rules. Due to the finiteness of the observation set
Y and of the message set {1,...,D}, it is seen that
the set T is also finite. We introduce the shorthand
notation 7” to denote a possible choice (y9,71,.-.,TN)
of decision rules for the N-sensor problem. With
a reasonable choice of YV, the probability of error
Jn (V) converges exponentially to zero as N increases.
For this reason, we focus on the exponent of the error
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probability, defined by

N
() = EIOT) M)

Let Ry = inf,nry(y"), where the infimum is taken
over all possible choices of decision rules for the
N-sensor problem. Thus, Ry is the optimal exponent.
As N tends to infinity, Ry has a limit [19] which is
denoted by A*. In the sequel, we are concerned with
choosing the decision rules so that the corresponding
error exponent approaches the optimal exponent A*.
Consider a sensor that uses a particular decision
rule v € T. Conditioned on H;, the probability that
the transmitted message takes a particular value
de{l1,...,D} is given by Pr(y(y) = d | H;). For every
i,j €{1,...,M} and every decision rule y€T, we
define a function ;;(v,) : [0,1] — [—o0, +00) by

1ij (7,5)
D
=log| > (Pr(7(y) = d | H))!~*Pr(y(y) = d | H;))* .
d=1
@

(The convention 0° = 0 is used in this formula.) It is
casily verified that y;;(7,s) < 0 for every L,j,YETL, s€
[0,1], and it is also known that y;;(7,s) is a convex
function of s, for every i, j,7 € T [11]. Furthermore,
as long as there exists some y € Y such that Py (y |
H;) - Py(y [ Hj) # 0, then p;;(y,5) > —o0, for every
5 € {0,1]. This turns out to be always the case for our
problem except for the uninteresting situation where
M=2ande=1.

The optimal exponent is given [19] by

A* = min max min Xo f; i (7, § 3
{X—yl‘rél“}{(i,j)li#f]:'E[O.l],’EZP i (05) - G)

where the outer minimization is carried out over all
choices of vectors {x, | v € '} satisfying x, > 0 for all
7€T,and 3. 1 xy =1 In the sequel, we use x to
denote a vector {x, |y € I'}. Furthermore, we use X
to denote the set of all such vectors which satisfy the
constraints just stated.

The variable x, in (3) should be interpreted as
the fraction of the sensors that use decision rule
7. More specifically, let us fix some x € X. For
each 7 €T, let | Nx,] sensors use decision rule .
(If for some 7 the value of Nx, is not integer this
determines the decision rules for fewer than N
sensors. However, the remaining sensors constitute a
vanishingly small fraction of the total, as N — o0, and
are inconsequential.) Then, the asymptotic exponent
(as N — oc) of the probability of error is given by [19]

max min Xy 1t i(7,5). 4
{(id)li#j}xG[O.l]jL; 7Hii(1:9) ©

In particular, if the fractions x., are chosen to
minimize the exponent in (4), then the optimal
cxponent A* is obtained [compare with (3)]. Notice
that the problem formulation has taken a somewhat
different, but equivalent, form: instead of choosing
the decision rule of each sensor, we are now trying to
choose the fraction x, of the sensors that use a given
decision rule y € T.

Equation (4) has a simple interpretation. The
quantity minse(o,1) 3. ep Xy /4;(7,5) is the exponent in
the Chernoff bound for the probability of confusing
hypotheses H; and H; ([11, 20]), and such a bound is
known to be asymptotically tight. The maximization
over all i and j in (4) corresponds to the fact that
the dominant term in the probability of error comes
from the worst (i.e., the largest) of the exponents
corresponding to the different pairs.

The outer minimization in (3) appears to be
simple because it involves linear constraints and a cost
function which is linear in the variables xy. However,
the inner minimization (with respect to s) severely
complicates the computation of A* and of the optimal
values of the variables Xy. In Sections III and IV, we
get around this difficulty by exploiting the symmetry of
the problem to remove the dependence on s.

I, PRELIMINARIES

Consider a decision rule 7 : Y + {1,...,D} and let
Yiy = {y | 7(y) = d}. We notice that the sets Yiy, d=
1,...,D, are disjoint, their union equals ¥, and
therefore determine a partition of Y into D disjoint
sets. It is possible that two different decision rules
determine the same partition in which case they can
be considered equivalent, since they convey the same
information to the fusion center. From now on, we do
not distinguish between equivalent decision rules and
we consider them to be identical. We are therefore
adopting the alternative definition that a decision
rule is a partition of Y into subsets Y;,,...,¥p . We
assume that the sets Y,;, are arranged in order of
increasing cardinality; that is, [Y1,| < --- < DB

DEFINITION.  Two observations i,j € Y are
separated by a decision rule v if i and j belong to
different elements Y, of the partition corresponding
to 7. We let T}; be the set of all 7 € T' that separate
i and j. The number of separations corresponding
to a decision rule v is defined as the number of
(unordered) pairs of observations i, j € Y which are
separated by 7.

Notice that an M-ary hypothesis testing problem
can be viewed as a collection of several binary
hypothesis testing problems, one for each pair of
hypotheses. The number of separations corresponding
to a decision rule ¥ can be interpreted as the number
of binary problems for which a message y(y;) provides
useful information.
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Fig. 3. Let M =5, D = 2. The decision rules in (a) and (b)
belong to the class C>> and the corresponding number of
separations is 6. The decision rule in (c) belongs to the class C+*
and the corresponding number of separations is 4.

DEFINITION. Let 64,...,6p be a collection of
nonnegative integers satisfying §; < 62 < --- < ép and
Y4164 = M. The class C%-9 s the set of all 7 € T
such that |Yy, | = 6,4 for every d.

These definitions are illustrated in Fig. 3.

Let L be the number of different classes. In order
to facilitate notation, we assume that the different
classes have been arranged according to some arbitrary
order and we use the simpler notation C; to denote
the Ith class, / = 1,...,L. Thus, the set T of all decision
rules is equal to U1L=1 C.

It is seen that the number of separations is the
same for all decision rules belonging to the same class
C; [see Fig. 3], and is denoted by 5;. In particular,

D
S = 1264(M—6d) ©)
2d=l

12 in (5) is present in order to avoid counting the
same unordered pair twice.]

Let @ be the cardinality of the set of all triples
(i,J,7) such that vy € C; and 7 separates i and j. [The
two triples (i, j,7) and (j,i,7) are only counted once.]
Since the number of separations corresponding to any
v € G is §;, we see that Q; = |G| - S;. On the other
hand, every pair (i, ) is separated by exactly |C; N T}j|
elements of C;. By symmetry, the cardinality of C; N T};
is the same for every i and j. Furthermore, since there
exist M(M — 1)/2 different (unordered) pairs (i, j), we
conclude that Q; = |G NT;j| - M(M — 1)/2. By equating
the two alternative expressions for Q;, we obtain

IGNL; _ 25
Gl MM -1)

a fact that will be useful later.

We now derive the form of the functions p;;(7,s).
Suppose that i € Yy, and j € Y; ,. Using the notation
0n = |Yyyl and 6, = Y 4|, it is seen (cf. (2)) that

1 (1,5) = 1og[(1 — (M — b,)€)!~* (6€)°
+(6c€)' (1= (M — 6 )e)°
t(M—by-06)el, if n#C (7)

©)

and

Bij(7,8) =0, if = ®
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Notice that the case 7 = ¢ [cf. (8)] corresponds to the
case ¥ ¢ I};. Finally, from either (2) or (7), it is seen
that

pij(7,8) = pji(7,1 = 5) ©)

which is useful later.

IV. SMALL NOISE CASE

In this section, we derive the solution of our
problem for the case where the noise parameter €
is small. This is accomplished by showing that the
minimum with respect to s in (3) is approximately
attained for s = %, which allows us to eliminate s.

LEMMA 1. Fix some €g such that 0 < g < 1/(M — 1).
Then, there exist constants G1 and G such that, for
every € € (0,¢0), every i,j € {1,...,M} such that i # j,
and every x € X, we have

1 .
G+ 51085 E Xy < sg‘[(‘)f}lzxﬁfﬂij(%s)
€EL; Y€r
<G+ %loge Z Xy.
7€L;

PROOF. We first prove the right-hand side inequality.
Consider some v € I}; and suppose that i €Yy 4, j €
Y¢ 4. We have (cf. (7))

e,,i,-(‘y,l/Z) = (1 _ (M _ 6,')6)1/2(6',6)1/2
+(06)/ (1= (M = b)) 2

+ (M — 8y 8)e
< 02 + (B2 + (M — b, — 5)el/?
S Hzel/z

where H; = 6},’2 +<5;/2 + M — 6, — 6, > 1. Taking
logarithms, we obtain p;;(7, 1) < G2 + (loge)/2, where
G = logH> > 0. Furthermore, if ¥ ¢ I;j, we have
Hij(7,1/2) = 0 (cf. (8)). It follows that

1 1
Zx.,p,-,- (75) <G+ -2-loge Z Xy,
~yer ~v€L;

If a minimization over s is carried out, the resulting
value is no larger than the one corresponding to s = %,
and this proves the right-hand side inequality.

We now prove the left-hand side inequality. We fix
some i, j, some v € I;, and some s € [0,1]. We assume
again that i €Yy 4 and j €Y, ,. We have

eFilr) = (1 — (M = 8,)) =% (6y€)°
+ (6c€)' ™ (1— (M — 8 )e)* + (M — 6, — §¢)e
> (1— (M —67)6)' ~*(bn€)° > (1 — (M — &p)e)e’
> (1— (M — 1)eg)e* = Hye® > Hye'/?
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where Hy =1~ (M — 1)¢o > 0. Taking logarithms, we
obtain 1;(y,5) > G1 + (loge)/2, where Gy = logH, <
0. The same conclusion is obtained by a symmetrical
argument for the case s € [3,1]. Using again the fact
that y1;;(y,s) = 0 if 7 ¢ T};, we obtain

min nyuij(%s) > Zx‘r:gi(i)rhllij(%s)
~€er ’

:G[O,l]‘yer
1
> Z Xy (Eloge + G1>
v€EL;

1
>G + Eloge Z Xy
7€L;
which completes the Proof. Q.E.D.

We notice that as € approaches zero, loge tends to
—o0, while the constants G1, G, of Lemma 1 remain
unchanged. Therefore, by retaining the dominant term,
A" can be approximated, for small ¢, by

1 .
A" = —min max

loge X~ 10
23eX {Gplinj) © gr:ﬁ K (19)
Since loge is negative, an equivalent optimization
problem is
max min Xo. 11
Y€X {()li#))} 2 %y (1

Y€Ly;
We now derive the solution of (11).

PROPOSITION 1. Ler $* = max;S;. Then, a vector

x € X is an optimal solution of the problem 1) if
and only if the following two conditions hold: 1) the
value of Z»/el‘,-,- X is the same for every pair (i, ) such
that i # j, and 2) if y € C; and S; < S*, then xy =0
Furthermore, the optimal value of (11) is equal to

25" /(M(M - 1))

PROOF. Suppose that a vector x* € X satisfies
conditions 1) and 2), and let ¢ be such that ¢ =

2_yer,; X} for i # j. Summing over all unordered pairs
(i,]), we obtain

MM-1
 EIP YD VLD DD DT

{GNIi#j} 1€n; YeT{@)lven;}

= Z S*xl =S".
7€l
(Here we used the fact that if ¥ € Cj, then the
cardinality of the set {(i,j) |y € I};} is S}, by
definition; we then used property 2) to replace S; by
$*.) We conclude that if conditions 1) and 2) hold,
then ¢ = 28* /(M(M - 1)).
In order to show that the vector x* is actually
optimal, it is sufficient to show that

min Z Xy < L
GNi#)y &= 77 = M(M —1)
Y€EL};

for every vector x € X. We use the elementary fact
that the minimum of a set of numbers is no larger than
their average, to obtain

MM-1)
—_— min X
2 (Gl 2 %

v€D;

< > va=zz 2 X

{G@i)li#i} 7€T; 1 7€Ci{Glver;)
=3 Y S5n<s> Sn=5s 1
1 veC 1 yeG

as desired. We conclude that x* is optimal.

For the converse, let us suppose that a vector
x € X is optimal. We have already established that
the optimal value of the objective function under
consideration is equal to 25* /(M (M — 1)). Therefore,
all inequalities in (12) must be equalities. Since the
first inequality in (12) is not strict, condition 1) follows.
Furthermore, since the second inequality in (12) is not
strict, condition 2) follows. Q.E.D.

Using Proposition 1, one optimal solution for the
problem (11) is the following. Choose a class Cj such
that §;. = §* = max,S; and let

if v¢C-

13
if yeC-. 13

(i
Xn =
TG,

It is seen that this vector x is feasible (x € X) and
satisfies the optimality conditions of Proposition 1. Let
us point out that an optimal solution of the problem
(11) is in general not unique. The solution provided by
(13) can be singled out because of its special symmetry
properties.

The class Cj., which is a class of decision rules with
a maximal number of separations, should be viewed
as a “best” class. According to Proposition 1 only
decision rules in such a class should be used. This is
very intuitive because each v € C; provides information
to the fusion center which is useful in discriminating
S; pairs of hypotheses (by the definition of S;). The
larger the value of Sj, the larger the contribution of
a decision rule 7 € §; in discriminating between the
different hypotheses.

We now proceed to determine the best class
Ci-. Suppose that Cj. = C8+-% for some integer
coefficients éy,...,6p whose sum is equal to M.
Suppose that there exist some 7 and ¢ such that
6y — 6¢ > 1. Consider a new class Cj» = C%»+% where
0y =06,—1,6, =6 +1,and §, =6, if d # n and
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d # ¢. Using (5), we obtain
XSy —Sie) = 8(M — b)) + 6, (M —6,)
—6¢(M — 6¢) — 6y(M — 6y)
= (6¢ + (M — 8¢ — 1) + (6 — 1)(M — b + 1)
—0¢(M —b¢) — by(M — b1)
=26y —bc—1)>0

which contradicts the optimality of S;.. This shows

that |6, — 6;| <1 for all 5,{. Given that the average

of the coefficients 6; must be equal to M /D, it follows
that for every d we must have either §; = |[M /D] or
64 = [M/D]. In particular, if M is divisible by D, then
04 = M /D for every d. If M is not divisible by D,

the number of é,s for which é; = | M /d]| is uniquely
determined by the requirement 3™5_, 64 = M.

We conclude that with decision rules belonging to
the best class C;-, the corresponding partitions of the
observation set Y are as even as possible. For example,
if D=2 and M is even, the set Y is to be partitioned
into two subsets with equal cardinalities. Also, for the
example of Fig. 3 in which M =5 and D = 2, the best
class is the class C%3. Notice that C23 has 10 different
elements; thus, an optimal solution is to divide the
sensors in ten groups of equal cardinality and letting
all the sensors in each group use a particular decision
rule belonging to the class C%3.

Example

We discuss here, in qualitative terms, a simple
example, in order to provide some feeling for the
nature of our solution. Each sensor obtains an image
of an animal and does some preprocessing to decide
between the four hypotheses Black-Cat, White-Cat,
Black-Dog, White-Dog (abbreviated as BC, WC, BD,
WD, respectively). Each sensor transmits a binary
message to a fusion center who declares one of the
four hypotheses to be true. We restrict the messages
to depend only on the preliminary decisions of the
respective sensors (as opposed to arbitrary functions
of their raw data).

With decision rules in the class C'* each sensor
concentrates on a particular hypothesis and its
message reveals whether the sensor believes that
hypothesis to be true. A typical such rule would
correspond to a partition like ({BC}, {WC,BD,WD}).
With such decision rules, each message helps
the fusion center in resolving 3 different pairs of
hypotheses.

Our solution suggests that decision rules in the
class C%2 should be preferable. For example, half
of the sensors could use the partition ({BC,BD},
{WC,WD}) (that is, provide color information to the
center) and the other half could use the partition
({BC,WC}, {BD,WD}), thus providing species

information. Each message is more informative now
because it helps in resolving 4 pairs of hypotheses.
However, this solution is not optimal. In particular,
all messages help in deciding between BC and WD,
but only half of the messages are helpful in deciding
between BC and WC. For this reason, we should also
introduce a third partition ({BC,WD}, {WC,BD})
and let one third of the sensors use each one of the
introduced partitions.

We have thus arrived at the interesting conclusions
that a) it is not optimal to have each sensor focus
on a particular hypothesis, and b) it is not optimal
to decompose the four hypotheses into two binary
hypotheses. Of course, these conclusions are only valid
under our symmetry assumption, namely, that all errors
are equally likely at the sensors. This makes sense if an
error is caused by a burst of noise that destroys most
useful information. On the other hand, one can also
think of situations where, under the true hypothesis
of a black cat, it is more likely that a sensor sees a
black dog than a white dog. In the latter case, our
conclusions do not apply.

We close this section by conjecturing that, for the
small noise case, the same results hold even when N
is small (and not only asymptotically). However, this
would require a very different mathematical approach.

V. GENERAL CASE

We now consider the case where ¢ does not tend
to zero but is fixed instead at some nonzero value in
the range 0 < € < 1/(M — 1). Unfortunately, despite
the symmetry of the optimization problem defining
A*, symmetry considerations alone are not sufficient
to ascertain that the optimal value of the vector x
possesses symmetry properties similar to the ones
obtained in the previous section. We demonstrate this
by means of a simple example.!

Example

Let there be three hypotheses (M = 3) and let
the messages be binary (D = 2). In this case there
are exactly three decision rules, the following: the ith
decision rule y;, i = 1,2,3, is defined by 7;(i) = 1 and
¥:(j) =2 if j # i. Notice that p12(y3,5) = p13(y2,5) =
pn2s(71,8) =0, for every s. Let

v(s) = log[(1 — 2€)!~%¢* + (2¢)'~*(1 - €)°].

It is seen (cf. (2)) that p;;(7:,5) = v(s) and p;;(y;,5) =
v(1—5), for every i # j. Substituting in (3), and using

1This example also corrects an error in a corresponding example in
[19].
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the notation x; = X~i, We obtain

A* = mi min [x ,8) + ,8) + y
g‘;ma’({ e[gll][ 1812(71,8) + X2p12(72,5) + X3p12(73, )]

gllg)ﬂl][xlﬂn(’h,S) +x2p13(72,8) + x3p413(73,5)]

‘el}{)“”[xl#u("/h-") +x2p23(72,5) + xalm(’rs,s)]}

= mi . 1—
Bél)r} max{ Jlenlz)nl][xlu(s) +x20(1 - 5))]

1-
sgx[:)n”[):lu(s) +x30(1 - 5)]

’33%][x2u(s) +x3v(1 -~ s)]},

Consider the symmetric solution where the numbers
of sensors using each decision rule are equal (xi= %
for each 7). The corrcspondlng exponent is seen to be
Jminggo[v(s) + v(1 - 5)] = 1/(2) (The last equality
follows because we are minimizing a convex function
which is symmetric around the point 1/2.) Let us

now consider the nonsymmetric solution x; = x, = 1

x3 = 0. The corresponding exponent is equal to

max{u (%) ! 3 mmin (5)}

In particular, if 1 mmse[o yv(s) < u( ), then

the symmetric solutlon is not optlmal We have
investigated this issue numerically by computing the
value of the exponent corresponding to different
vectors x € X (over a fairly dense grid of points in
X and for a few different values of €) and we have
reached the conclusion that the symmetric solution is
always the optimal one. However, an analytical method
for establishing that this is the case is not apparent,
even though it can be proved that the symmetric
solution is a strict local minimum. (The proof of the
latter fact is outlined in the Appendix.)

Without any guaranteed symmetry properties,
little progress can be made analytically towards the
computation of A*. For this reason, we shall impose
a symmetry requirement and proceed to solve the
problem of (3) subject to this additional constraint.
Motivated by the structure of an optimal solution
for the low noise case (cf. Eq. (13)), we require that
the value of x, be the same for every ¥ belonging
to the same class. Given any vector x € X satisfying
this requirement, let y; = 2 yec, ¥+~ We then have

= y1/|Ci| for every v € C,. Using this expression
for Xy, the minimization problem of (3) becomes

A* i »§ 14
o YL{(I/)I #;}:e(ouz|q|7§;l‘1(7 ) (14)

where the variables yy,..., YL are subject to the
constraints y; > 0, for each /, and E{;l y=1

PROPOSITION 2.
a) Fix some class Cy. Then, the value of

|C1 | 2 i (% )

Lj YeCINTy

is the same for all i, such that i # j, and is denoted by
Q.

b) Let I" be such that S« |ay+| = max; S;|oy|. Then,
the choice y. =1, and y; =01if | # I*, is an optimal
solution of the problem (14).

PROOF.

a) This is evident from the definition of y;;(y, 2)
and symmetry considerations.

b) Fix some pair (i, j), with i # j. For any y €
T, define a new decision rule o(y) in which the
positions of i and j in the partition corresponding to
7 are interchanged (see Fig. 4). It is seen that ¢ is a
one-to-one and onto mapping of any given class C; into
itself. Furthermore, it follows easily from the definition

of pi;j that p;;(o(7),8) = pji(y,5) = Bij (1,1 = 5).
Therefore,

> wiins) =5 Z[uu(%s) + i (0 (),9)]

Y€C 7€C:

1
=5 D _ii(1,9) + pij (1,1

Y€C

~ 5. (15)

Thus, the expression in the left-hand side of (15) is
symmetric, as a function of s, around the value s = %
It follows that the minimization with respect to s in
(14) involves a functlon which is convex and symmetric
around the pomt §=5 1. Hence, the minimum is
attained at s = and (14) simplifies to

A* = mi , . (16
Vi yL{04»x¢1}§E:ICbl:£: Hij (7 > (16)

Now, using part a) of the proposition,

i e (13) =g = wa(n3)

7€C nr;
|Clmrljl ZSIO’[
G T MM -1)

(17)

where we have made use of (6) in the last step. We
now use (17) to further simplify (16) and obtain

2y1
A = mn EM(M 1)51(11-

,,,,,

(18)

Notice that the inequality a; < 0 holds for each /.
Therefore, an optimal solution to the optimization
problem of (18) is obtained by choosing a class Cj.
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(a)‘ ‘ (b)"

Fig. 4. A decision rule v is shown in (a) and the corresponding
decision rule o'(y) (in which the positions of i and j are
interchanged) is shown in (b).

for which the value of S;|a;| is maximized and letting
y-=1LlLand y, =0ifl #I*. QE.D.

Our conclusions are therefore similar to the small
noise case. In particular, there exists a best class and
all decision rules to be used should belong to a best
class. The nature of the best class is interesting. The
constant ¢; can be interpreted as a measure of the
contribution of an “average” element of C; to a pair of
hypotheses which are separated by that decision rule
(see Proposition 2a)). The product S;|o;| weighs the
number of separations of a decision rule in by the
“quality measure” o; and the value of this product is
used to determine a best class.

The identity of the best class cannot be determined
analytically because the formulas for the coefficients q;
are somewhat cumbersome. On the other hand, for any
given value of ¢, the value of ¢ is easy to compute
numerically. We have done so for the case where
D =2 and for M =35, 10, 20, 30 [7]. We summarize the
results. When ¢ is very small, then the optimal class is
the one which partitions evenly the observation set, in
agreement with the results of Section IV. Interestingly
enough, this same class remains optimal for larger
values of € as well, up to approximately 1/M. At about
that point, the identity of the optimal class changes,
and the optimal class is a most uneven one, namely
the class C¥™-1_ This latter class remains the best one
for all € up to 1/(M — 1) (which is the largest allowed
value for ¢).

The case € = 1/(M — 1) has an interesting
interpretation. Here, the probability Pr(y = i | H;)
is equal to € if i # j, and is zero if i = j. Thus, an
observation y = i provides absolute proof that H; is
not the true hypotheses. If the sensors use decision
rules ¥ € CY¥~1 of the form y(i) = 1 and 7(j) =2,
for j # i, then a message with the value 1 allows the
fusion center to eliminate one of the hypotheses. On
the other hand, if decision rules in classes other than
CYM-1 are used, then the fusion center is not able to
make unequivocal inferences. This argument suggests
that CM-1 is the optimal class, as confirmed by our
numerical experiments.

VI. DESIGN OF OPTIMAL COMMUNICATION RATE
FOR SMALL NOISE CASE

A fundamental design problem is decentralized
decision making concerns the choice of the

POLYCHRONOPOULOS & TSITSIKLIS: EXPLICIT SOLUTIONS FOR SIMPLE DETECTION PROBLEMS

communication rate (or available bandwidth) between
the different decision making units. Such design
problems are usually very hard and very little analysis
is possible, except for simple situations. For this
reason, the solution of even idealized problems can
provide valuable intuition. We consider such a design
problem, in the context of our decentralized detection
problem, under the small noise assumption.

We express the communication rate of each sensor
as a function of the variable D. In particular, we
view the number [log,D] as the number of binary
messages that each sensor must transmit to the
fusion center.? Clearly, a higher value of D leads
to better performance (smaller probability of error
at the fusion center) since a decision is made with
more information. On the other hand, communication
resources may be scarce, in which case an upper bound
can be imposed on the total communication rate in the
system. Accordingly, we assume that

Nlog,D}1 < K (19)

where K is a given positive integer. Given such a
constraint, we pose the question: “Is it better to have
few sensors communicating at high rate, or more
sensors communicating at low rate”? We formulate
the above described problem in mathematical terms.
We view the optimal error exponent A* as a function
of D and we use the more suggestive notation A*(D).
Furthermore, we consider the small noise case for
which we can use the approximation (cf. (10) and
Proposition 1)

A*(D) = logf%ﬁl—) (20)
where (cf. (5))
D
S(D)= max 53 6M~b) @)
d=1

and Ap is the set of all vectors § = (6,...,6p) such
that each 6, is a nonnegative integer and $°5_, 64 =
M. Recall that the error probability behaves,
asymptotically as N — oo, like V4" D), We are then
led to the problem

g}%NA (D) (22)
subject to the constraint (19). (Of course N and D are
also constrained to be integers satisfying N > 1 and
D>2)

PROPOSITION 3. An optimal solution of the problem
defined by (19) and (22) is given by D =2, N = K.

2In an altemative formulation we could use log,D instead of [log,D].
Which one of these choices is more appropriate could depend on
the particular coding method used for transmission. In any case, our
subsequent results can be shown to remain valid under this alternative
formulation as well.




PROOF. We use (20) and (21) and the fact that loge is
negative to formulate the problem (22) in the form

rﬂ’zli)xN F(D) (23)
where D
F(D) = max > 6a(M —6,). (24)
Pa=1

Let us recall that the optimization problem in the
definition of F(D) was solved in the end of Section
IV. In particular, it is seen that

MZ
- if M is even
F@= M?2-1
7 if M is odd

and

F(D)gg%(M—%> =M2(1—%), vV D.

(The above inequality is obtained because §; = --- =
6p = M /D is the optimal solution in (24) when the
integrality constraints are relaxed.)

We compare the solution N = K, D = 2, with the
solution N = |K /2], D =3. It is easily verified that

2_
M 12£M2(1—§), Y M>2

K 2 2

which shows that the solution with D =2 is preferable.
Similarly,

2_
e 1251\42(1—1), Y M>2

2 2 4

and D =2 is also preferable to D = 4. Finally, if
D > 4, then [log,D] >3 and N < K/3. We have

M?2-1_K 2 K. » 1
> = -=
K=——2>3M*>M <1 D)’

YV M>2, V¥V D>4,
Q.E.D.

Generally speaking, intuition- suggests that it is
better to have several sensors transmitting low rate
but independent information, rather than few sensors
transmitting detailed information. (One could argue
that, other things being equal, independent messages
carry more information in the information-theoretic
sense, thus leading to smaller error probability;
however, it does not seem that this argument can
be made rigorous.) Our result (Proposition 3)
corroborates this intuition, at least for the particular
problem under study. An alternative statement of this
result, which is pertinent to organizations involving
human decision makers, is the following: if a decision
maker is to receive a set of reports of a given total
length, it is preferable to receive many partial but

and D = 2 is again preferable.

independently drafted reports, rather than a few
lengthy ones.

VII.  CONCLUSIONS

We have considered the asymptotic (as the number
of sensors goes to infinity) solution of a particularly
simple symmetric problem in decentralized detection.
While the problem is very idealized, the conclusions
obtained agree with intuition and could be useful in
guiding principles for more general problems. Roughly
stated, the following guidelines suggest themselves.

1) It is preferable to have several independent
sensors transmitting low rate (coarse) information
instead of few sensors transmitting high rate (very
detailed) information. (Of course, this guideline is
meaningful if it is assumed that the addition of more
sensors does not lead to increased “setup” costs;
in other words, it is assumed that many sensors are
readily available and the only question is whether they
can be usefully employed.)

2) An M-ary hypothesis testing problem can
be viewed as a collection of M (M — 1)/2 binary
hypothesis testing problem. Under this point of view,
the most useful messages by the sensors (decision
rules) are those which provide information to the
fusion center that is relevant to the largest possible
number of these binary hypothesis testing problems.
This conclusion has been reached for the small case,
because each decision rule is of the “same quality”.
More generally, one should multiply the number of
hypotheses pairs for which a decision rule is helpful by
a certain “quality measure” and employ decision rules
for which this product is highest.

To what extent the above two guidelines can be
verified analytically or experimentally in more realistic
problems is an interesting question which is left for
further research. Of particular interest is the solution
of the same problem when N is finite (as opposed
to its asymptotic limit), as well the generalization
to problems having less symmetry or to problems
with different observation models. Unfortunately, our
results are very sensitive to minor changes in problem
formulation and different mathematical approaches
would be needed to tackle more general problems.

APPENDIX

We outline here a proof that the symmetric solution
(xi = %, for i = 1,2,3) is a strict local minimum for the
problem considered in the example of Section V. The
problem under consideration can be stated as:

A =£21}1{1F(x)

where

F(x) = max Fi;(x) (A1)
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and
F;j(x) = srer}(ilr}][xiy(s) +x;v(1— )]

where i, € {1,2,3}. Let x* = (},1,}). The function
v(-) is strictly convex and continuously differentiable,
and the minimum in the definition of F;;(x*) is
uniquely attained at s = % We can then use Danskin’s

Theorem [2] to obtain

O ey = 9 L (2) e (L
oax ) " o 1 \2) T2

_{0, if k#i and k#j
“lv@d), i k=i or k=j.

Consider any direction d € R3, d # 0, in which x*
can be perturbed without leaving the set X. [That is,
d = (dy,d3,d3) with d; + d, + d3 = 0.] The chain rule
yields

3

_ 3, OFi)

dx
=1 k

OF;j(x* + ad)
da

a=0 k

=(d; +dj) (%) . (A2)

Notice that the assumptions d # 0, d; +d, +d3 =0
imply that there exist some i, j such that d; +d; <0.
Since v(1/2) < 0, it follows that for every choice of

d, the left-hand side of (A2) is positive for some

pair (i, j). Thus, for each direction d, some function
F;;(x) has to increase. Taking (Al) into account, F(x)
must also increase. From this point on, it is only a
small step to show that F(x) is larger than F*(x) in

a neighborhood of x*, i.e., that x* is a local minimum.
(The details of this Jast step are omitted.)
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