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We provide tight lower bounds on the computational complexity of discrete- 
time, stationary, infinite horizon, discounted stochastic control problems, for the 
case where the state space is continuous and the problem is to be solved approxi- 
mately, within a specified accuracy. We study the dependence of the complexity 
on the desired accuracy and on the discount factor. o 1989 Academic PKSS. Inc. 

1. INTRODUCTION 

This paper addresses issues related to the computational complexity of 
solving discrete-time stochastic control problems defined on a continuous 
state space. There has been a great deal of research on the computational 
aspects of stochastic control when the state space is finite (Bertsekas, 
1987; Papadimitriou and Tsitsiklis, 1987; Hartley et al., 1980). However, 
much less has been accomplished for the case of continuous state spaces. 
An explanation for this state of affairs could be that such problems are 
very demanding computationally, with most realistic problems lying be- 
yond the capabilities of commercial computers. However, with advances 
in computer hardware and with the availability of new powerful architec- 
tures, it is to be expected that the numerical solution of continuous-state 
stochastic control problems will become much more common, hence the 
motivation for our work. 

Let S be some subset of W which is the state space of a controlled 
stochastic process. A large class of discrete-time stochastic control prob- 
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lems boils down to the computation of a fixed point J* of the nonlinear 
operator T (acting on a space of functions on the set S) defined by 

(TJ)(x) = j$ [g(x, u) + a I, ~(y)~(ylx, u) dy], vx E s. (1.1) 

Here, U C ?Jtm is the control space, g(x, u) is the cost incurred if the 
current state is x and control u is applied, cr E (0, 1) is a discount factor, 
and P( y lx, u) is a stochastic kernel that specifies the probability distribu- 
tion of the next state y, when the current state is x and control u is 
applied. Then, J*(x) is interpreted as the value of the expected discounted 
cost, starting from state x, and provided that the control actions are 
chosen optimally (see Section 2). 

A fixed point J* of the operator T cannot be determined analytically 
except for a limited class of examples. On the other hand, an approxima- 
tion to such a fixed point can be computed by suitably discretizing the 
state and control spaces, and then solving a finite-dimensional version of 
the problem. There has been some work on such discretization methods, 
with typical results demonstrating that as the discretization becomes 
finer, the resulting approximation of J* becomes more and more accurate 
(Whitt, 1978; Bertsekas, 1975; Chow and Tsitsiklis, 1989). Upper bounds 
on the approximation error are also available. One of the consequences of 
the results to be derived in the present paper is that some of the earlier 
upper bounds are tight within a constant factor. 

Once the original problem is discretized, there is a choice of numerical 
methods for solving the discrete problem (Bertsekas, 1987). One particu- 
lar choice is studied in a companion paper (Chow and Tsitsiklis, 1989), 
where it is shown that the total computational effort is closely related to 
the amount of work needed in discretizing the problem, when a suitable 
multigrid method is employed. Thus, the results in the present paper 
demonstrate that the algorithm of Chow and Tsitsiklis (1989) is close to 
optimal (and sometimes optimal) as far as its complexity is concerned. 

In the special case where the control space U consists of a single 
element, the minimization in Eq. (1.1) is redundant, and the fixed point 
equation J* = TJ* becomes a (linear) Fredholm equation of the second 
kind. Thus, the results in the present paper, in conjunction with the algo- 
rithms of Chow and Tsitsiklis (1989), characterize the computational com- 
plexity of the approximate solution of Fredholm equations of the second 
kind. There has been some prior research on this subject (Werschulz, 
1985). Our work is different in a number of respects that are discussed in 
Section 4. 

The paper is organized as follows. In Section 2, we introduce our as- 
sumptions, define the problem to be solved, and state its relation to sto- 
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chastic control. We also outline the model of computation to be em- 
ployed. Finally, we state some known upper bounds on the 
approximation error introduced by the discretization of the problem, and 
translate them to complexity bounds. In Section 3, which contains our 
main results, lower bounds are derived on the complexity of our problem. 
Finally, Section 4 contains our conclusions and some discussion of re- 
lated issues. 

2. PROBLEM DEFINITION 

Let S = [0, I]” and U = [0, 11”. Let (Y be a scalar belonging to (0, 1). Let 
g:Sx UH%andP:SxSx Ut+%besomefunctions.LetKbesome 
positive constant. 

Assumption 2.1: (a) 0 5 P(yjx, u), Vy, x E S, Vu E U. 
(b) (P(y(x, U) - P(y’Jx’, u’)l 5 KIl(y, x, u) - (Y’, x’, ~‘)((m, VY, Y’, x, 

x’ E s, vu, u’ E u. 
(cl I&, u) - Ax’, u’)l 5 K(((x, 4 - (x’, u’)(lco, vx, x’ E s, vu, 

UI E u. 
(d) (g(x, u)( I K, Vx E S, VU E U. 

Assumption 2.2. Ss P(ylx, u) dy = 1, Vx E S, Vu E U. 

According to Assumptions 2.1 and 2.2, for any fixed x E S and u E U, 
the function P(*lx, U) is a probability density on the set S. Furthermore, P 
and g are Lipschitz continuous with Lipschitz constant K. 

Let %(S) be the set of all continuous real-valued functions on the set S. 
We define the operator T: X(S) I+ %(S) by letting 

VJ E q(S), Vx E S. (2.1) 

(The fact that T maps Z(S) into itself is proved by Chow and Tsitsiklis, 
1989). The space Z(S) endowed with the norm /JJJ, = maxXESIJ(x)J is a 
Banach space. Furthermore, T has the contraction property 

(ITJ - ~~‘11, 5 (Y/(J - J’((,, VJ, J’ E s(S). (2.2) 

Since cr E (0, I), T is a contraction operator, and therefore has a unique 
fixed point J* E s(S). The equation TJ = J, of which J* is the unique 
solution, is known as Bellman’s equation or as the dynamic programming 
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equation. We are interested in the computational aspects of the approxi- 
mate evaluation of J*. 

Stochastic Control Interpretation 

Let IT be the set of all Bore1 measurable functions p: S I+ U. Let fIffi be 
the set of all sequences of elements of II. An element r = (h, ~1, . . .) of 
P, called a policy (also known as feedback law or control law), is to be 
viewed as a prescription for choosing an action p&J E U at time t, as a 
function of the current state xt of a controlled stochastic process. More 
precisely, given a policy 7~ = (~0, pl, . . .), we define a (generally, 
nonstationary) Markov process {XT 1 t = 0, 1, . . .} on the state space S by 
letting P(*]xT, pt(x?)) be the probability density function of XT+,, condi- 
tioned on XT. The cost J,(x) associated to such a policy is defined (as a 
function of the initial state x) by 

Jr(x) = E [z 47(x:, /-4(X:)) j XB = x 1 . (2.3 

[Note that the infinite sum is absolutely convergent and bounded by 
K/(1 - a) because? E (0,l) and the function g is bounded by K.] For any 
x E S, we define J(x) by letting 

(2.4) 

and this defines a function j: S H 8. This function, known as the cost-to- 
go or value function, represents the least possible cost as a function of the 
initial staie of the controlled process. A policy n E II” is called optimal if 
Jn(x) = J(x! for all x E S. The central result of dynamic programming * 
states that J coincides with the fixed point J* of the operator T. Further- 
more, once J* is available, it is straightforward to determine an optimal 
policy. [This is done as follows: Consider Eq. (2.1) with J replaced by J*. 
For each x E S, choose some u that attains the minimum in Eq. (2.1), and 
let ~~(x) = u for each t.] This justifies our interest in the function J*. 

The case where the discount factor (Y approaches 1 from below is of 
substantial theoretical and practical interest. For example, as (Y t 1, one 
obtains, in the limit, the solution to a certain “average cost problem” 
(Bertsekas, 1987). Also, if one deals with a discounted continuous-time 
stochastic control problem and the time step is discretized, one obtains a 
discrete-time discounted problem in which the discount factor approaches 
1 as the time discretization step is made smaller. 

‘This result requires certain technical assumptions. Assumption 2.1 turns out to be suffi- 
cient (Bertsekas and Shreve, 1978; Chow and Tsitsiklis, 1989). 
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In practical stochastic control problems, the state and control spaces 
could be arbitrary subsets of !Ra and sm, respectively, and there could be 
state-dependent constraints on the allowed values of U. Such problems 
can only be harder than the special case studied here. Thus, the lower 
bounds to be derived in Section 3 apply more generally. A similar com- 
ment applies to the smoothness conditions on g and P that have been 
imposed in Assumption 2.1. 

Further Assumptions 

In the case of stochastic control problems defined on a finite state space 
it is known that the convergence of certain algorithms for computing J* is 
much faster when the controlled process satisfies certain mixing condi- 
tions (Bertsekas, 1987) and the same is true in our case as well (Chow and 
Tsitsiklis, 1989). Our next assumption introduces a condition of this type. 

Assumption 2.3. There exists a constant p > 0 such that 

Intuitively, Assumption 2.3 states that no matter what the current state 
is and what control is applied, there are certain states in S (of positive 
Lebesgue measure) for which the probability density of being visited at 
the next time step is positive, This ensures that the effects of initial 
conditions are quickly washed out. 

In an alternative class of stochastic control problems, at any given time 
there is a certain probability, depending on the current state and the 
control being applied, that the process is terminated and costs stop accru- 
ing. Such a formulation is captured by allowing P(*(x, U) to be a subproba- 
bility measure, as in the following assumption: 

Assumption 2.4. ss P(y( x, u) dy 5 1, Vx E S, Vu E U. 

Model of Computation 

Our computational task is completely determined by the functions P 
and g, the discount factor CY, and the desired accuracy E. Accordingly, a 
tuple (P, g, (Y; E) will be called an instance. We then define a problem as a 
class of instances. In our context, different problems will correspond to 
different choices of assumptions. 

In order to talk meaningfully about the approximate computation of J*, 
we need a suitable model of computation. We use a real-number model of 
computation (Traub et al., 1988; Nemirovsky and Yudin, 1983) in which a 
processor: 
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(a) Performs comparisons of real numbers or infinite precision 
arithmetic operations in unit time. 

(b) Submits queries (y, x, U) E S x S x U to an “oracle” and 
receives as answers the values of g(x, u) and P( y lx, u). [We then say that 
the processor samples (y, x, u).] Queries can be submitted at any time in 
the course of the computation and this allows the values of (y, x, u) in a 
query to depend on earlier computations or on the answers to earlier 
queries. (We will therefore be dealing with “adaptive” algorithms, in the 
sense of Traub ef al., 1988.) 

An algorithm in the above model of computation can be loosely defined 
as a program that determines the computations to be performed and the 
queries to be submitted. An algorithm is said to be correct (for a given 
problem) if for every instance (P, g, (Y, E) of the problem, it outputs a 
piecewise constant function J such that \jJ* - J]], 5 E, in some prespeci- 
fied format. A natural format for the representation of the output is as 
follows. The processor outputs a parameter h that signifies that the state 
space S has been partitioned into cubes of volume h”, and then outputs 
the value of J on each one of these cubes, with the understanding that J is 
constant on each one of these cubes. 

The complexity of an algorithm of above described type is defined as 
the sum of: 

(a) the number of oracle queries; 
(b) the number of arithmetic operations performed by the algo- 

rithm. 

A very fruitful method for establishing lower bounds on the complexity 
of any algorithm consists of lower bounding the number of queries that 
must be submitted for the desired accuracy to be attainable. The typical 
argument here is that if the number of queries is small then the available 
information on the problem being solved is insufficient. 

Let the dimensions n, m of the state and control spaces be fixed and let 
us view the constants K and p of Assumptions 2.1-2.3 as absolute con- 
stants. We consider three different problems: 

(4 Problem gQprOt,, which consists of all instances that satisfy As- 
sumptions 2.1 and 2.2. [In particular, P(*]x, u) is a probability measure for 
all (x, u).] 

(b) Problem C?mix, which consists of all instances that satisfy As- 
sumptions 2.1-2.3. (That is, a mixing condition is also in effect.) 

(c) Problem YQsub which consists of all instances that satisfy As- 
sumptions 2.1, 2.3-2.4. [That is, the mixing condition is still in effect, but 
P(.]x, U) is only a subprobability measure.] 
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Let us fix some E and (Y. We define C,,&, E) as the minimum (over all 
correct algorithms for the problem gPr,,b) of the number of queries, in the 
worst case over all instances (P, g, CY, E) of !?PPprob. The quantities Cmix(a, E) 
and C&(Y, E) are defined similarly, by replacing problem PPProb by !3’,i, 
and ‘?Psub, respectively. 

The following upper bounds, together with discretization procedures 
that stay within these bounds, can be found in Whitt (1978) and Chow and 
Tsitsiklis (1989). 

(2.7) 

We have used the O(e) notation, which should be interpreted as follows. 
Let fand h be functions from (0, 1) x (0, ~4) into [0, a). We write f(a, E) = 
O(h(cw, E)) if there exist constants c > 0, EO > 0, and CYO E (0, 1) such that 
f(a, E) I ch(cr, E) for all E E (0, ~0) and all (Y E (a~, 1). (These constants 
are allowed to depend on the absolute constants IZ, m, K, and p.) Later, 
we will aslo use the notation f(o, E) = Q(h(cw, E)), which is equivalent to 
e, 8) = O(.f(a, El). 

3. LOWERBOUNDS 

In this section, we prove that the upper bounds of Eqs. (2.6)-(2.8) are 
tight, by establishing the corresponding lower bounds. Our results rest on 
an “adversary” argument that is commonly used to establish lower 
bounds on the number of queries an algorithm must make. The outline of 
the argument is as follows. Suppose that a certain algorithm makes at 
most A queries. We consider a particular instance (P, g, (Y, E) and we let X 
be the set of triples (y, x, U) sampled by the algorithm when presented 
with that instance. We then construct an alternative instance (p, i, (Y, E) 
such that P(yJx, U) = @(ylx, U) and g(x, U) = $(x, U) for all (y, x, U) E X. 
The algorithm has no means of distinguishing between the two instances 
and must produce the same output J in both cases. Let J* and j* be the 
optimal cost functions for the two problems. If we can manage so that 
/lJ* - j*(lm > 2&, then at least one of the inequalities j/J - J*l(, > G and 
I/J - j*(lm > E must hold. It follows that the algorithm cannot succeed for 
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all problem instances, and therefore the least number of queries necessary 
for the problem is larger than the cardinality of A. 

THEOREM 3.1 (lower bound under Assumptions 2.1-2.3). For any 
K > 0, p E (0, 1), m, and n, we have 

Proof. We only prove the result for the case K = 1 and p = l/2. The 
proof for the general case is identical except for a minor modification 
discussed at the end of the proof. Let us also fix the dimensions m, n of 
the problem. Throughout the proof, an absolute constant will stand for a 
constant that can depend only on m, n, not on any other parameters. 

We fix some E > 0 and some Q E (l/2, 1). Let us consider some 
algorithm that is correct for the problem 9)mix and suppose that the number 
of queries is at most A for every instance with those particular values of (Y 
and E. We will derive a lower bound on A. 

We choose a positive scalar 6 so that l/6 is an integer multiple of 16 and 
such that 

1 1 1 
%s~‘~+ 16, 

where a0 satisfies 

1 
A = 4@I+ln (3.2) 

We partition the set S x S x U into cubic cells of volume 82n+m. (In 
particular, there will be l/iS2”+m cells.) This is done by first specifying the 
“centers” of the cells. Let 3 be the set of all x = (~1, . . . , x,) E S such 
that each component xi is of the form xi = (t + (1/2))6, where t is a 
nonnegative integer smaller than l/6. Similarly, we let 0 be the set of all 
u=(u,,. . . ) u,) E U such that each Ui is of the form Ui = (t + (1/2))6, 
where again t is a nonnegative integer smaller than l/6. For any 
(j, 2, ri) E ..$ x 3 x 0, we define the cell C,,,,, by letting 

GiJi = [(Y, x, u) E s x s x u Jl(y, x ,u) - (j, i, Lz)JI, < g. 

Clearly, the cardinality of 3 and 0 is l/6” and l/6”, respectively. It 
follows that there is a total of l/6*“+” cells. Note that distinct cells are 
disjoint. 
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For any (j, i, U) E 3 x ,$ x 0, we define a function E,-,;.,- : s x s x UI+ 
8, by letting 

E,-,;,,-(yjx, u) = 0, if (Y, x, 4 F Cj,i,i, 

Ef,;,;(YlX9 U) = p - J((Y, X &I - (j;, X7 -4//m, if (Y, x, 4 E Cj,i,i. 

(3.3) 

Thus, E,-,;,; is just a “pyramid” of height 6/2 whose base is the cell C,,i,;. 
The triangle inequality applied to the norm I(*I(CC shows that 

lE~,;,;(ylx, 4 - E~,i,u(~‘lx’, ~‘11 5 I\(Y, J-, u) - (Y’, x’, u’>ltm, 

WY, x ,u), (Y’, x’ 44 E c,,i,i. 

Thus, EJ,*,~ satisfies the Lipschitz continuity Assumption 2.1, with Lips- 
chitz constant K = 1, on the set C,,,,, . The function E,+; is continuous at 
the boundary of C,,,,, and is zero outside C,,;,; . Thus, Ej,;,; is obtained by 
piecing together in a continuous manner a Lipschitz continuous function 
and a constant function. It follows that Ej,i,i is Lipschitz continuous on 
the set S x S x U, with Lipschitz constant 1. 

We define an instance (P, g, LY, E) by letting 

g(x, u) = Xl, V(x, u) E s x u, (3.4) 

P(Y(& u) = 1, V(y, x, u) E s x s x u. (3.5) 

It is easily seen that this instance satisfies Assumptions 2.1-2.3 with K = 
1 and p = l/2. 

Bellman’s equation reads 

J(x) = xi + (Y s J(y) dy. I 

A simple calculation shows that the function J* defined by 

J*(x) = Xl + 2(1 ” a) 

(3.6) 

(3.7) 

is a solution of (3.6) and according to the discussion of Section 2, it is the 
unique fixed point of T. 
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Let X be the set of points ( y, x, u) sampled by the particular algorithm 
we are considering, when it is faced with the instance (P, g, a, E). In 
particular, the cardinality of X is at most A. Using the definition of 6 [cf. 
Eqs. (3.1) and (3.2)], the cardinality of X is at most 1/(462”+“). 

We say that a cell C,,i,i is sampled if the intersection of X and C,,,,; is 
nonempty. Otherwise, we say that C,,,,; is unsampled. We say that some 
($‘, u’) E s x 0 is well-sampled if there exist at least l/(26”) elements 9 of 
S for which the cell C,,,,, is sampled. Otherwise, we say that (i, tz) 
is badfy sampled. Since the total number of samples is bounded by 
l/(462”+” ), there exist at most 1/(26”+m) well-sampled elements (i, U) E 
3 X 0. Therefore, there are at least 1/(26”+m) badly sampled (i, U). For 
each x’ E 3 there are at most l/6” possible choices of U such that (i, U) is 
badly sampled. This shows that there exists a set ,&n C 3 of cardinality 
l/(26”) such that for each X E SaAD there exists some &(A?) E 0 for which 
(i, k(i)> is badly sampled. 

We will now construct a second instance. The cost function g is left 
unchanged [cf. Eq. (3.4)], but we modify the probability density on some 
of the unsampled cells. This is done as follows. Let us fix some X E ,$a,+,. 
By the definition of ,&,n and fi(X), if we keep X fixed and vary j, we find 
at least l/(26”) unsampled cells of the form Cj,i,fi(ij. We sort these unsam- 
pled cells in order of increasing j, and we let c be the median value of j, . 
We refer to those cells for which j;, 5 c (respectively, j, 2 c) as low 
(respectively, high) cells. Let _c = c - (l/16) and C = c + (l/16). We 
discard all unsampled cells C9,i,,,, for which _c < j1 < c. Thus, the number 
of discarded cells is bounded by l/(86”). Since we started with at least 
l/(46”) low unsampled cells, we are left with at least l/(86”) such cells. By 
discarding some more low unsampled cells (if needed), we can assume 
that we are left with exactly l/(86”) unsampled low cells. By a similar 
argument, we can also assume that we are left with exactly l/(86 “) unsam- 
pled high cells. Let QL(i) [respectively, QH(i)] be the set of all j E ,$ such 
that CG,;,~~~, is a low (respectively, high) unsampled cell that has not been 
discarded. This procedure is carried out for each X E iBAD. 

We define 

&YlX, 4 = P(Y(X, u) + E(YlX, l.4) = 1 + E(ylx, u), (3.8) 

where 

(3.9) 

In words, we add a pyramid at each low unsampled cell and we subtract a 
pyramid at each high unsampled cell. This has the effect of shifting the 
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transition probability distribution closer to the origin, with a consequent 
decrease in the cost incurred after a transition. 

We verify that our perturbed instance (@, g, (Y, E) satisfies the required 
assumptions. Since each pyramid is Lipschitz continuous with Lipschitz 
constant 1, and since distinct pyramids are supported on distinct cells, it 
follows that Assumption 2.1(b) is satisfied with K = 1. Furthermore, for 
each (n, u), the number of added pyramids is equal to the number of 
substracted pyramids. For this reason, ss E( y jx, u) dy = 0 and p satisfies 
Assumption 2.2. Finally, the height of each pyramid is 612. Since 6 I 1, 
we have @(y/x, u) 2 1 - (a/2) 2 l/2. This shows that Assumption 2.2 and 
Assumption 2.3 (with p = l/2) are satisfied. 

Our next task is to estimate the optimal cost function 3 corresponding 
to the perturbed instance (P, g, (Y, c). Let 

B={ x E S 1 3X E j;a,n such that J/x - X(1, 5 $}. 

For any x E B, we let p(x) = k(i), where X is the element of $~,+n for 
which 11x - x’\\, 5 iY4. For any x $C B, we let P(X) = 0. We now consider 
the quantity 

e(x) = I s g(Y)aYlxT r4.d) dY, (3.10) 

which can be interpreted as the effect of the perturbation on the expected 
cost after the first transition, when the control is chosen according to the 
function p, 

LEMMA 3.1. For each x E S, we have e(x) 5 0. Furthermore, there 
exists a positive absolute constant k such that e(x) I -kS, for all x E B. 

Proof. Using Eqs. (3.9) and (3.10) and the definition of g, we have 

For any x @ B, we have p(x) = 0, which implies that E( ylx, p(x)) = 0 and 
44 = 0. Let us now fix some x E B and let X be the corresponding 
element of &*n. Then, Eq. (3.11) becomes 
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(3.12) 

Let us consider the summand corresponding to a particular j E QL(i). 
We need only carry out the integration on the set Y( j;) = { y E S ) 11 y - j \lco 
5 6/2} (instead of the entire set S) because E~,i,+~i,(ylx, U) vanishes when 
y $ Y(j). For y E Y(j;), we have yl 5 yi + 6/2 5 c + 6/2. We now use the 
definition of the function Ej,;,&ylx, p(x)) [cf. Eq. (3.3)], together with 
the property p(x) = g(X), to conclude that 

where 

Z(x) = /,,(,, (4 - max{llx - XIL IIY - YlI4) dy. (3.13) 

It is clear that the value of Z(x) is independent of the choice of y, which 
justifies our notation. By a symmetrical argument, each one of the sum- 
mands corresponding to j, E QH(.?) is bounded below by (C - 6/2)1(x). 
Since each one of the sets QH(i), QL(X) has cardinality l/(88”), it follows 
from Eq. (3.11) that 

1 e(x) 5 -(C - c - S)Z(x) & ‘: -Z(x) - 1286” ’ vx E B, (3.14) 

where the last inequality follows because F - c = l/8 (by construction) 
and 6 5 l/16 (by definition). We now bound Z(x) for x E B. We have JJx - 
i JJm 5 6/4, and the integrand is always nonnegative and is at least 6/4 for 
every y belonging to the set (y E S 1 l/y - Yllrn 5 614). Therefore, for 
x E B, Z(x) is bounded below by S/4 times the volume of the set {y E S ( 
[iy - i(lm 5 a/4}. This set is an n-dimensional cube, whose edges have 
length 612. Thus, we obtain 

Combining with Eq. (3.14), we obtain 



478 CHOW AND TSITSIKLIS 

6 
e(x) s - 4. 128 .2n' Vx E B, 

which proves the desired result. Q.E.D. 

LEMMA 3.2. There exists a positive absolute constant h such that 

I B &Y/X, u) dy =‘ h, vx E s, vu E u. 

Proof. The function P is bounded below by l/2, as shown earlier. 
Thus, it suffices to show that the volume of B is bounded below by some 
absolute constant. Note that B consists of l/(26”) cubes of volume (a/2)“, 
and the result follows. Q.E.D. 

Let ? be the operator defined by Eq. (2.1) but with P replaced by p. We 
have 

TJ*(x) = g(x) + CY $t” i s J*(y)&ylx, u) dy 

I g(x) + a I s J”(YP.(Y lx, Ax)) dY 

=x]+a 1 s J*(Y) dY + ff i s J*(y)aYlx, /..+N dY (3.15) 

= J’(x) + a! I s J”(YMYlX, A-4) dY 

= J*(x) + CY I s YlJYYlX, P(X)) dY + 2(1u? &,) I s J% Y 1x9 CL(X)) 4 

= J*(x) + se(x), 

where we have used the fact that J* satisfies Eqs. (3.6) and (3.7), the 
definition of e(x) [cf. Eq. (3. IO)], and the fact that JS E( yjx, p(x)) dy = 0. 
It follows that 

fJ*(x) 5 J*(x), vx E s, (3.16) 

fJ*(x) 5 J*(x) - ak8, Vx E B, (3.17) 

where k is the constant of Lemma 3.1. Let @ be the composition of t 
copies of ? and let B = {x E S ) x e B} be the complement of B. We have 
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?J*(x) = g(x) + ff mif I, fJ*(y)Ei(ylx, u) dy 

5 g(x) + a I s ~J*(Y)~(Y(x, P(X)) 4 

= g(x) + a I B ~J*(Y)&Y\x, P(X)) dy 

+ a J s f~*( y)lj( ~1x3 /.4x)) dy (3.18) 

5 g(x) + a I B (J*(Y) - akWfYy\x, P(X)) dy 

+ 01 i J*(Y)&Y~x, /.4x)) dy J 

= J*(X) + se(x) - a*k8 lB P(y(x, p(x)) dy 

5 J*(x) - a2k6h, vx E s. 

[We have used here the equality between the second and the last line of 
Eq. (3.15), as well as Lemma 3.2.1 It is well known (Bertsekas, 1987) (and 
easy to verify) that for any real constant d, we have T(J + d) = ad + TJ. 
(Here the notation J + d should be interpreted as the function which is 
equal to the sum of J with a function on S that is identically equal to d.) 
Using this property and Eq. (3.18), we obtain 

f3J*(x) zs @J*(x) - a3k8h I J*(x) - a*ksh - a3k8h, vx E s. 

We continue inductively, to obtain 

f’J*(x) s J*(x) - (1 + (Y + CY* + . * . + a’-*)a2k8h, 

t = 2,3, . . . ) vx E s. (3.19) 

Taking the limit as t + CQ, ?J* converges to the optimal cost function j* 
of the perturbed instance, and Eq. (3.19) implies that 

j*(x) I J*(x) - f$6kh, Vx E S. (3.20) 

Note that the perturbed instance coincides with the original one at all 
points sampled by the algorithm. For this reason, the algorithm will per- 
form the same arithmetic operations and will return the same answer for 
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both instances. That answer must be an e-approximation of both J* and 
j*. It follows that jJJ* - J^*llX 5 2~. Therefore, 

Since (Y z- l/2, we obtain 

6 5 d(1 - a)s, (3.21) 

where d is some absolute constant. 
For 8 5 1/(32d), we obtain 6 5 l/32 or l/(26) 2 16. Thus, using Eq. 

(3.1), we have l/a0 2 (l/6) - 16 2 (l/S) - (l/26) = l/(26), and Eq. (3.2) 
yields 

1 
A=46a”‘“? 

1 1 1 
4(26)2”+” L 4(2d(l - a)~)~~+~ = n /((I - cz)&)2n+m J * 

When the theorem is proved for general values of K and p, it is suffi- 
cient to multiply the pyramidal functions of Eq. (3.3) by a factor of min{K, 
1 - p}. It is then easily seen that the perturbed problem satisfies Assump- 
tions 2.1 and 2.3 for the given values of K and p and the proof goes 
through verbatim, except that certain absolute constants are modified. 

Q.E.D. 

In our next result, the mixing condition (Assumption 2.3) is removed. It 
will be seen that this allows us to obtain a larger lower bound. 

THEOREM 3.2 (lower bound under Assumptions 2.1 and 2.2). For 
every m, n, there exists some K such that 

Cwb(E~ a) = R 
1 

((1 _ a)2g)2n+m . 
Proof. The structure of the proof is similar to that of the preceding 

proof. We fix n, m, and some K that will depend on n in a way to be 
determined later. An absolute constant is again a constant that depends 
only on m and n. 

We fix some E > 0 and some CY E (l/2, 1). We consider an algorithm that 
is correct for the problem yp&, (for the given values of m, n, K) and 
suppose that the number of queries is at most A for every instance with 
those particular values of (Y and E. 

We choose a positive scalar 6 so that l/6 is an integer multiple of 9 and 
such that 
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where a0 satisfies 

A = f (;)2n &. 

481 

(3.22) 

(3.23) 

We partition S x S x U into cubic cells of volume 1/a2”+” exactly as in 
the proof of Theorem 3.1 and we use the same notations, 3, U, C,Y,,,, , and 
Ej,i,i . 

We define the first instance to be considered. Let F,, Fz, G: 10, 11 I+ !I? 
be the functions shown in Fig. 1. We define a function H: [0, l] X [0, 11 t+ 
% by letting 

H(ylx) = FI(Y)GW + F2(~)(1 - G(x)), vx, Y E w, 11. 

We finally let 

P(yJx, ~1 = fi HtYiIxi), V(y, x, 24) E s x s x u, (3.24) 

FIG. 1. The functions F, , F2, and G. The maximum value a of F, and F2 is chosen so that 
ji F,(x) dw = Ih Fz(x) dx = 1. In particular, 3 I a % 9/2. 
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where xi and yi are the ith components of x and y, respectively. As for the 
cost function g, we only assume that g(x, u) = 1 for all x E [O, l/3]” and 
u E U, and that g(x, u) = 0 for all n E [2/3, 11” and u E U. 

We verify that Assumptions 2.1 and 2.2 are satisfied. The function P is 
certainly nonnegative. Furthermore, Fi and FZ integrate to 1. Conse- 
quently, j-k,~ H(y(x) dy = 1, for all x E [O, 11. Thus, for any x, u, P(.jx, a) 
is a product of probability measures [cf. Eq. (3.24)] and is itself a probabil- 
ity measure. Note that FI , Fz, and G are Lipschitz continuous. It follows 
that P is also Lipschitz continuous with Lipschitz constant K, provided 
that the absolute constant K is taken large enough. Concerning the func- 
tion g, we have not specified it in detail, but it is easily seen that there 
exist Lipschitz continuous functions satisfying the requirements we have 
imposed on g. 

Note that the Markov chain corresponding to P has the property that if 
the current state is in the set [0, l/3]” then the state stays forever in that 
set. The same property holds for the set [2/3, 11”. 

We now estimate J*(x) when x E [0, l/3]“. While we could argue 
directly in terms of the Bellman equation, the argument is much more 
transparent if we use the interpretation of J*(x) as the optimal cost ex- 
pressed as a function of the initial state. Starting with some initial state in 
[0, 1/31n, the state never exits that set. Furthermore, g(x) = 1 for every x 
E [O, l/3]“. This implies that 

J*(x) = i: a’ = &, vx E [O, l/3]“. 
r=o 

(3.25) 

LEMMA 3.3. There exists a set &MD C [0, 2191” rl L? of cardinality 
(2/9)*/(26”) with the following property: for every X E ,.S?BAD there exist 
some fi(i) E oand two sets QL(X) C [0,2/9]” n 3, QH(i) C [7/9, 11” fl 3, 
each of cardinal@ (2/9)*/(26”), such that the cell C’,Y,;,~,, is unsampledfor 
every j E QL(i) U QH(i). 

Proof. Let Sooon be the set of all X E [0,2/9]” n s that do not have the 
desired property. Since the cardinality of [0, 2/9]” n s is (2/9Y/Sn it is 
sufficient to show that sooon has cardinality less than or equal to (2/9)“/ 
(26”). We suppose the contrary, and we will obtain a contradiction. 

Fix some X E Sooon. Then, for every 5 E 0 we can find at least (2/9)“/ 
(26”) values of j E s such that the celI C,,,,; is sampled. This shows that 
the total number of sampled cells is at least (2/9)*“/(46*“+“). Using Eqs. 
(3.22) and (3.23), this implies that the number of sampled cells is more 
than A, a contradiction. Q.E.D. 

We now construct a perturbed instance. The cost function g is left 
unchanged. We define 
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B(ylx, u) = PO+, 4 + WYl& 49 

where 

mYI& u) = 2 Ej,i,,(i,(YlX, u> - c &,i,,(i,(Y 1% u). 
&&AD, jEQH(i) XE&,, jEQL(i) 

(3.26) 

In effect, we are giving positive probability to certain transitions from 
the set [0, 2191” to the set [7/9, 11”. On the other hand, the property that 
the state can never exit from the set [7/9, 11” is retained. The Lipschitz 
continuity of E and P implies that k is Lipschitz continuous. Also, &.1x, 
u) is nonnegative and integrates to 1, for reasons similar to those in the 
proof of Theorem 3.1. Thus, Assumptions 2.1 and 2.2 are satisfied. 

Let 

B = [x E [O, l/3]” ) 3x E S aAn such that ]]x - XII= 5 $1. 

LEMMA 3.4. For every x E [0, l/3]“, we have 

where h is a positive absolute constant. 

Proof. Fix some x E [0, l/3]“. Note that P(ylx, u) = r&L=, F2(yi) 2 
3An 2 3 for all y E [0, 2/9]“. Since ]E(y]x, u)] 5 612 : 1, we conlude that 
P(ylx, U) B 2, for ally E [O, 2/9]“. The set B consists of (2/96)“/2 cubes of 
volume (a/2)“. Thus, the volume of B is bounded below by some absolute 
positive constant, and the result follows. Q.E.D. 

Let us now define P(X) = C;(i) for all X E B, where X is chosen so that 
IIX - illm 5 6/4, and we let p(x) = 0 for x $Z B. 

LEMMA 3.5. For every x E B, we have 

where k is an absolute positive constant. 
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Proof. ForeveryjES,letY(~)={yES[(ly-j;/(,56/4}.Fixsome 
x E B and let i be an element of SaAn such that 11.1~ - Xl]= 5 614. We have 

The set Y(j) is a cube of volume (a/2)“, the cardinality of the set QH(Z) is 
(2/96)“/2, and the result follows. Q.E.D. 

We now estimate the cost J,(x) which is incurred if policy 7~ = (,x, p, 
. . .) is used, for the case where x E [0, l/3]“. The corresponding Markov 
process x7 evolves as follows. Whenever x7 E [0, l/3]“, there is at least 
probability h that the next state belongs to the set B and there is a further 
probability of at least k6 that the state after one more transition is in the 
set [2/3, I]“. Once the latter set is entered, the state stays forever in that 
set. We therefore have 

Pr(xy E [0, l/3]“) 5 (1 - kh6Y’, Vtr 1. 

Since the cost is 1 on the set 10, l/3]” and 0 on the set [2/3, I]“, we have 

J,(x) = 2 ff’Pr(x; E [0, l/33”) 
i=O 

r  

5 1 + c af(l - kh6)‘-’ 
I=1 

= ’ + 1 - ,(1*- kh8) 

1 + akh6 
= 1 - a(1 - kh6) ’ vx E [O, l/3]“. 

(3.27) 

The optimal cost function j* of the perturbed instance satisfies j* 5 j,, 
and, using Eq. (3.25), we obtain 
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a =kh6 
= (1 - a)(1 - a(1 - kha))’ 

Vx E [O, l/3]“. (3.28) 

Note that the class CPPprob contains the class 9’)mix. For this reason, the 
particular algorithm being considered here is also a correct algorithm for 
the problem 9’mix. In particular, all of the intermediate results in the proof 
of Theorem 3.1 apply to the algorithm we are considering. We can there- 
fore use Eq. (3.21) and conclude that 6 d d( 1 - CX)E, where d is an 
absolute constant. (Actually, the definition of 6 is somewhat different in 
the two proofs, but this affects only the absolute constant d.) This implies 
that for E 5 ll(khd), we have 6 5 (1 - ar)/(kh) or 1 - kha 2 (Y. Using this 
inequality in Eq. (3.28), together with the property (Y 2 l/2, we obtain 

a 2khS (khiS)M 1 kh6 
J”(x) - j*w 2 (1 - a)(l - a2) z (1 - 422 = s(1- 

This inequality is similar to inequality (3.20) in the proof of Theorem 3.1, 
except that 1 - (Y has been replaced by (1 - a)=. The rest of the argument 
is the same, except for certain constant factors and the fact that 1 - Q is 
replaced throughout by (1 - CX)=. Q.E.D. 

THEOREM 3.3 (lower bound under Assumptions 2.1, 2.3, 2.4). For 
every m, n, there is a choice of K and p such that 

Csub(E, a) = R ((1 _ a;2E)2n+m . 

Proof. The proof is almost identical to the proof of Theorem 3.2, and 
for this reason, we argue informally. For convenience, let the state space 
S be the set [0, l/3]“, instead of [0, l]“, and let P( ylx, u) be defined on that 
set as in the proof of Theorem 3.2. Then, P is a probabilty measure on the 
set [0, l/3]” and the corresponding function J* is identically equal to 
l/(1 - a). Note that P satisfies Assumption 2.3. Let i be as in the proof of 
Theorem 3.2, except that it is defined only for x, y E 10, l/3]“. For this 
reason, p is now a subprobability measure. The function j* for the cur- 
rent problem is equal to the optimal expected discounted cost until the 
termination of the stochastic process. However, the process considered 
here terminates exactly when the process considered in the proof of Theo- 
rem 3.2 makes a transition from [O, l/3]” to the zero-cost set [2/3, 11”. For 
this reason, the function j* is the same as the function j* in the proof of 
Theorem 3.2, and the result follows with the same reasoning. Q.E.D. 
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Remarks 

1. Suppose that we replace the correctness requirement /I./ - ./*/IX 5 E 
by the requirement [(J - J*[(, 5 E, where 1 I p < CC and I(.(lp is the usual 
&-norm. Then, Theorems 3.1-3.3 remain true, with exactly the same 
proofs. The reason is that in all of our proofs we have constructed our 
perturbed instances so that J*(X) - j*(r) is “large” on a set whose mea- 
sure is bounded below by an absolute constant [cf. Eq. (3.20) or Eq. 
(3.28)]. But this implies that J * - j* is also large when measured by the 
&-norm and the proofs remain valid, except that certain constants must 
be changed. 

2. The lower bounds of Theorem 3.3 can also be proved for all values 
of the constants K and p. The proof is similar except that we should let 
P( y/x, U) = 3” for all (y, x, U) E S x S x U, so that P satisfies the 
Lipschitz continuity assumption for any value of K. Furthermore, the 
perturbing pyramids should be multiplied by a factor that ensures that 
their Lipschitz constant is less than K and that Assumption 2.3 is not 
violated. 

3. We are not able to establish the lower bound of Theorem 3.2 for an 
arbitrary choice of K. There is a simple reason for that: if K is taken very 
small, then Assumption 2.3 is automatically satisfied and the best prov- 
able lower bound is the one in Theorem 3.1. 

4. Given some E > 0, we say that a function p: S I+ U is a-optimal if 
J*(x) 5 J,(x) 5 J*(x) + E, for all x E S, where rr = (p p, . . .>. If an E- 
optimal function p is available, then the function J” is automatically 
determined within an error of E, the error being measured according to a 
norm [I*/[,,. Thus, the number,of oracle queries needed for computing an E- 
optimal function p is at least as large as the number of queries needed to 
determine J* within E. It follows that the lower bounds of Theorems 3. I- 
3.3 also apply (under their respective assumptions) to the computation of 
e-optimal functions CL. 

4. DISCUSSION 

The lower bounds of Section 3 agree with the upper bounds of Section 
2. Thus, we have completely characterized the number of queries needed 
for approximating J*. This leaves the further question of evaluating the 
total complexity of approximating J*, when arithmetic computations are 
taken into account. This issue is addressed by Chow and Tsitsiklis (1989). 
In particular, they introduce a multigrid version of the iterative algorithm 
J := TJ and show that the total number of arithmetic operations and 
comparisons is 
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(4.1) O ku - &2n+* ) ’ 
for the problem GPmix, and 

1 
O (((1 - &p+m Jlog a/ 

.- 
) ( = 0 ((1 - a;242n+m 1 ! Ly ' 

.- 
1 (4.2) 

for the problems GPPprot, and GPSut,. Thus, for problem Y)mix, we have an 
optimal algorithm. For the problems Pgprob and PSu,, , we are within a factor 
of O(l/(l - a)) from the optimum. One might wish to close this gap but 
the prospects are not particularly bright because (a) there are no effective 
methods for proving lower bounds tighter than those provided by lower 
bounding the number of queries, and (b) it can be shown (Chow, 1989) 
that no algorithm in a certain family of multigrid methods can have com- 
plexity better than the one provided by Eq. (4.2). 

We expect that our results can be extended to the case where bounds 
are imposed on second derivatives (more generally, derivatives of order r) 
of the functions P and g. Of course, the bounds should change, with the 
exponent 2n + m being replaced by a lower exponent, depending on r. 

As mentioned in the Introduction, the case where the functions g and P 
do not depend on u (equivalently, the case where U is a singleton) makes 
the equation J = TJ a linear Fredholm equation of the second kind. Our 
proofs and our results remain true, provided that the exponent m in our 
bounds is replaced by 0. In particular, if we let n = 1, our results agree 
with the results of Werschulz ( 1985).2 Our results are different from those 
of Werschulz in a number of respects: 

(a) We are not limited to the one-dimensional case. 
(b) We quantify the dependence of the complexity on the parameter 

(Y, which is a measure of the ill-conditioning of the problem. 
(c) On the other hand, unlike Werschulz (1983, we do not study the 

dependence of the complexity on the smoothness properties (e.g., bounds 
on higher derivatives) of the functions P and g. 
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