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Communication Complexity of Convex Optimization* 
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We consider a situation where each of two processors has access to a different 
convex functionA, i = 1,2, defined on a common bounded domain. The proces- 
sors are to exchange a number of binary messages, according to some protocol, 
until they find a point in the domain at which f, + h is minimized, within some 
prespecified accuracy E. Our objective is to determine protocols under which the 
number of exchanged messages is minimized. 0 1987 Academic Press. Inc. 

I. INTRODUCTION 

Let $ be a set of convex functions defined on the n-dimensional 
bounded domain [0, 11”. (Typically, 9 will be defined by imposing certain 
smoothness conditions on its elements.) Given any 8 > 0, andfE 3, let 
Z(f; E) be the set of all x E [O, 11” such thatf(x) ~:f(y) + E, Vy E [0, 11”. 

Let there be two processors, denoted by PI and Pz. Each processor is 
given a function fi E 3. Then they start exchanging binary messages, 
according to some protocol 7rr until processor PI determines an element of 
Z(f, + f2 ; E). Let C(f, , fi ; E, z-) be the total number of messages that are 
exchanged; this is a function of the particular protocol being employed 
and we are looking for an optimal one. More precisely, let 
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be the communication requirement (in the worst case) of the particular 
protocol and let 

C(B; F) = inf C(B; E, 5~) (1.2) TEllI&) 

be the communication requirement under an optimal protocol, where II(&) 
is the class of all protocols which work properly, for a particular choice of 
E. The quantity C(B; E) may be called the e-communication complexity of 
the above-defined problem of distributed, approximate, convex optimi- 
zation . 

For the above definition to be precise, we need to be specific regarding 
the notion of a protocol; that is, we have to specify the set fI(&) of admissi- 
ble protocols and this is what we do next. A protocol 7r consists of 

(a) A termination time T; 
(b) A collection of functions M;., : L% x (0, I}’ H (0, l}, i = 1, 2, 

t = 0, 1, 2, . . . , T - 1; 
(c) A final function Q : 9 x (0, 1)r H [0, I]“. 

A protocol corresponds to the following sequence of events. Each pro- 
cessor Pi receives its “input”J and then, at each time t, transmits to the 
other processor Pj a binary message mi(t) determined by 

mi(t) = Mi,t(JT m,j(O), . . . , mj(t - 1)). 

Thus the message transmitted by a processor depends only on the func- 
tion& known by it, together will all messages it has received in the past. 
At time T the exchange of messages ceases and processor PI picks a point 
in [0, 11” according to 

x = QU, m(O), . . . , MT - 1)). (1.3) 

The number C(f, , fi ; E, rr) of messages transmitted under this protocol is 
simply 2T. We define TI(&) as the set of all protocols with the property that 
the point x generated by (1.3) belongs to Z(fi + f2 ; E), for every f, , f2 E 4. 

A couple of remarks on our definition of protocols are in order. 
(i) We have constrained each processor to transmit exactly one binary 

message at each stage. This may be wasteful if, for example, a better 
protocol may be found in which PI first sends many messages and then P2 
transmit its own messages. Nevertheless, the waste that results can be at 
most a factor of two. Since, in this paper, we study only orders of magni- 
tude, this tissue is unimportant. 

(ii) We have assumed that the termination time T is the same for allfi , 
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fz E 9, even though for certain “easy” functions the desired result may 
have been obtained earlier. Again, this is of no concern because we are 
interested in a worst case analysis. 

Related Research 

The study of communication complexity was initiated by Abelson 
(1980) and Yao (1979). Abelson deals with problems of continuous vari- 
ables, in which an exact result is sought, and allows the messages to be 
real-valued, subject to a constraint that they are smooth functions of the 
input. This is a different type of problem from ours, because we are 
interested in an approximate result and we are assuming binary messages. 

Yao (1979) deals with combinatorial problems, in which messages are 
binary and an exact result is obtained after finitely many stages. This 
reference has been followed by a substantial amount of research which 
developed the theory further and also evaluated the communication com- 
plexity of selected combinatorial problems (Papadimitriou and Sipser, 
1982; Papadimitriou and Tsitsiklis, 1982; Aho et al., 1983; Pang and El 
Gamal, 1986; Mehlhorn and Schmidt, 1982; Ullman, 1984). The main 
application of this research has been in VLSI, where communication 
complexity constrains the amount of information that has to flow from 
one side of a chip to the other; this in turn determines certain trade-offs on 
the achievable performance of special-purpose VLSI chips for computing 
certain functions (Ullman, 1984). 

Finally, communication complexity has been also studied for models of 
asynchronous distributed computation, in which messages may reach 
their destination after an arbitrary delay (Awerbuch and Gallager, 1985). 

The communication complexity of the approximate solution of prob- 
lems of continuous variables has not been studied before, to the best of 
our knowledge. However, there exists a large amount of theory on the 
information requirements for solving (approximately) certain problems 
such as nonlinear optimization, and numerical integration of differential 
equations (Nemirovsky and Yudin, 1983; Traub and Woiniakowski, 1980) 
(“information based complexity”). Here one raises questions such as, 
How many gradient evaluations are required for an algorithm to find a 
point which minimizes a convex function within some prespecified accu- 
racy E? We can see that, in this type of research, information flows one 
way-from a “memory unit” (which knows the function being mini- 
mized) to the processor-and this is what makes it different from ours. 

Outline 

In Section II we establish straightforward lower bounds such as C(9; E) 
2 O(n log(l/e)). In Section III we show that the naive distributed version 
of ellipsoid-type algorithms leads to protocols with O(n2 log(l/s)(log n + 
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Let %sc.M,L (“strongly convex functions”) be the set of ail continuously 
differentiable convex functions f with the properties 

Lllx - yl12 5 (f’(x) - f’(Y)lX - Y> 5 M4lx - Yl12, (2.1) 
Ijf’(x)II 5 MLn”?, Vx E [O, 11”. (2.2) 

(Note that (2.1) implies that M L 1.) Also, let 9~ be the set of convex 
functions which are bounded by 4 and satisfy 

If(x) - f(y)1 2 t maxlx; - yi], VX, y. 

PROPOSITION 2.3. (i) C(Z$c,M,L; E) L O(n(log n + lOg(l/E)). 

(ii) C(sL; E) 2 O(n log(l/&)). 

Proof. Part (ii) follows from Proposition 2.2 and Lemma 2.1, because 
SW C sL. For part (i), we note that 9, C !&M,Z and Lemma 2.1 proves 
the result for %SC,M,Z. The result for general L follows because any f E 
%~c,~,~ can be scaled so that it belongs to %~c,~,~. n 

III. NAIVE UPPER BOUNDS 

We consider here a straightforward distributed version of the method of 
the centers of gravity (MCG), which has been shown by Nemirovsky and 
Yudin (1983) to be an optimal algorithm in the single-processor case, for 
functions in sL, in the sense that it requires a minimal number of gradient 
evaluations. This method may be viewed as a generalization of the well- 
known ellipsoid algorithm for linear programming (Papadimitriou and 
Steiglitz, 1982). We start by describing the uniprocessor version of this 
method and then analyze the communication requirements of a distrib- 
uted implementation. 

The MCG Algorithm (Nemirovsky and Yudin, 1983, p. 62) 

Let f E sL be a convex function to be minimized with accuracy E. Let 
Go = [O, 11” and let x0 be its center of gravity. At the beginning of the kth 
stage of the computation, we assume that we are given a convex set Gk-, 
C [O, I]” and its center of gravity x~. Let zk be a scalar and let yh be a 
vector in R” with the following properties: 

(i) zk + (yk, x - xk) s-(x), Vx E 10, II”; 
(ii) zk 2 f(xk) - (c/2). 

(Note that if the term ~$2 were absent in condition (ii), we would have zk = 
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f(xk) and yk = fl(xk), if xk is an interior point. The presence of the &/2 term 
implies that these relations need to hold only approximately.) 

Let ‘& = Itlitljlk{Zj} and let Gk = {x E Gk-, : (yk, X - xk) + zk 5 ah}. The 
algorithm terminates when the Lebesgue volume of Gk becomes smaller 
than (z/2)” and returns a point xj associated with the smallest value of zi 
encountered so far. 

The following facts are quoted from Nemirovsky and Yudin (1983). 
(a) The volume of G, is no larger than CI~, where (Y is an absolute constant, 

smaller than one and independent of the dimension n. Thus a total of 
n(log(2lE)llog( l/a)) = O(n log( I/E)) stages are sufficient. 

(b) The result x, of the algorithm satisfies,f(x,) 5 inf,EI,,,,Ij,j’(x) + EV(~), where 
V(f) = ~up,~~~,~~~~f(x) - inf,,l,l.ll~lf’(.d. 

Note that V(f) 5 1, for f = J’, + fi, f, , fi E SL so that the algorithm 
indeed produces a result belonging to I(f; E). 

We now consider a distributed implementation of this algorithm. The 
distributed protocol will consist of stages corresponding to the stages of 
the MCG algorithm. At the beginning of the kth stage, both processors 
know the current convex set GA-, and are therefore able to compute its 
center of gravity x~. Processor Pi evaluatesJ(xk) and transmits the binary 
representation of a message b(i, k) satisfying b(i, k) E [ J(xJ - (c/4), h(xr) 
- (E/S)]. Clearly, b(i, k) may be chosen so that its binary representation 
has at most O(log(1l.s)) bits. Also, each processor evaluates the gradient 
g;,k of its function A, at X~ (with components g;.~,,~, j = 1, . . . , n) and 
transmits the binary representation of messages c(i, k, j) satisfying 1gi.k.j 
- c(i, k, j)l 5 ~l(16n). Clearly the c(i, k, j)‘s may be chosen so that they 
can be all transmitted using O(n log(nls)) = O(n log n + n log( l/E)) bits. 

Next, each processor lets zI = h( I, k) + b(2, k) and lets yk be the vector 
with components c( 1, k, j) + ~(2, k, j). It then follows by some simple 
algebra that zh and yh satisfy the specifications of the MCG algorithm. 
Finally, each processor determines GI and its center of gravity XL+, , and 
the algorithm proceeds to its next stage. 

We now combine our estimates of the number of stages of the MCG 
algorithm and of the communication requirements per stage to conclude 
the following. 

PROPOSITION 3.1. C(SL; E) 5 O(n2 log(l/s)(log n + log( l/E)). In par- 
ticular, the above-described distributed version of the MCG algorithm 
stays within this bound. 

The upper bound of Proposition 3.1 is quite far from the lower bound of 
Proposition 2.2. We show next that within a certain class of protocols this 
upper bound cannot be substantially improved. 

We consider protocols which consist of stages. At the kth stage there is 
a current point xh E [0, 11” known by both processors. Then, the proces- 
sors transmit to each other approximate values ofA and of the gradient of 
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h, all evaluated at xk. Using the values of these messages, together with 
any past common information, they determine the next point xk+i , ac- 
cording to some commonly known rule, and so on. We place one addi- 
tional restriction: when a processor transmits an approximate value of 
J;(xJ it does so by transmitting a sequence of bits of the binary representa- 
tion offi starting from the most significant one and continuing with 
consecutive less significant bits. (So, for example, a processor is not 
allowed to transmit the first and the third most significant bits ofJ(xn), 
without transmitting the second most significant bit.) The same assump- 
tion is made concerning the components of the gradient ofA. Finally, we 
require that the same number of bits ofJ;(xk) and of each component of the 
gradient off; get transmitted. 

The above restrictions turn out to be quite severe. 

PROPOSITION 3.2. There exists a constant A such that for any protocol 
rr E n(s) satisjjkg the above restrictions, there existf, , f2 E SL such that 
C(f,, fi; E, 7~) e An* log* (l/c). This is true, euen if we restrict f, to be 
equal to the identically zero function. 

Proof. Using an argument similar to Lemma 2.1, it is sufficient to 
prove the result under the restriction that f, = 0 and under the restriction 
that f2 be differentiable and bounded, together with every component of 
its derivative, by &I’*. Using the results of Nemirovsky and Yudin (1983), 
for processor PI to determine a point which is optimal within E, it must 
acquire nontrivial information on the values and the derivatives off2 for at 
least An log( I/E”*) different points. Note that the O(log(E”*)) most signifi- 
cant bits of f2 and each component of its derivative, evaluated at any 
point, are always zero. Thus, for processor P, to obtain nontrivial infor- 
mation at a certain point at least O(n log( I/E:“*)) bits have to be transmit- 
ted. This leads to a total communication requirement of O(n* log*( l/E”*)) 
= O(n? log*(l/&)) bits, which proves the result. n 

If we relax the requirement that the same number of bits be transmitted 
for each component of the gradient, at each stage, then the same proof 
yields the lower bound C( fl , f2 ; E, 7~) 2 An log*( l/E). 

IV. AN OPTIMAL ALGORITHM FORTHEONE-DIMENSIONALCASE 

We prove here a result which closes the gap between upper and lower 
bounds for the one-dimensional case. The proof consists of the construc- 
tion of an optimal protocol. We only present the protocol under the as- 
sumption that eachfi is differentiable. The argument is the same in the 
nondifferentiable case, except that each f f is to be interpreted as a subgra- 
dient . 

PROPOSITION 4.1. If n = 1 then C(B,; E) % O(log(ll&)). 
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Proof. The protocol consists of consecutive stages. At the beginning 
of the kth stage, both processors have knowledge of four numbers, &, bk, 
ck, and dk, with the following properties: 

(i) The interval [ax, bl] contains a point x* which minimizes5 + f2. 
(ii) The derivative offi at any minimizer off, + fi and the derivative 

off, and of -f2 at (U~ + bk)/2 belong to the interval [c~ , dk]. (Note that the 
derivative of eachh has to be constant on the set of minimizers offi + f2.) 

At the first stage of the algorithm we start with al = 0, b, = 1, cl = - I, 
and dl = 1. At the kth stage, the processors do the following: processor Pi 
transmits a message m;,k = 0 if (-l)‘-‘.f/((ur + bJ2) 5 (CL + d&2; 
otherwise it transmits mi,r = 1. 

If m I,r = 0 and m2,k = I, thenf;((uk + bx)/2) + fi((ux + bk)/2) 5 0. We 
may then let ak+, = (ur + ba)/2 and leave bk, ch , dA unchanged. Similarly, 
if m],k = 1 and m2,x = 0, we let bk+, = (ax + bA)/2 and leave a~, CA, dk 
unchanged. 

We now consider the case mi.h = mz.r = I. Let x* be a minimizer off, + 
f2 belonging t0 [&, bk]. If X* 2 (Q + bJ2, thenf;(x*) 2 f;((& + bk)/2) 2 
(ck + dk)/2. Ifx* 5 (aa + bJ2, thenf;(x*) 2 -f;(x*) 2 -fS((uk + bk)/2) 2 
(CL + dk)/2. In either case, we may let cI+, = (c~ + dJ2 and leave ax, bk, 
dk unchanged. Finally, if ml,k = rn2.a = 0, a similar argument shows that 
we may let dk, r = (CL + dk)/2 and leave aa, bl,, ch unchanged. 

For each of the four cases, we see that Us, . . . , dA will preserve 
properties (i), (ii), which were postulated earlier. Furthermore, at each 
stage, either bl, - ah or dk - cx is halved. Therefore, after at most k = 2 
log(l/e) stages, we reach a point where either bh - ak I E or dh - c/, 5 F. If 
bk - ak 5 E, then there exists a minimizer which is within & of a!,; given 

that the derivative off, + f2 is bounded by one, it follows that fi(&) + 
fi(&.) comes within E of the OptiUNIIII, as desired. Alternatively, if dh - ck 
5 E, then [f;((uk + bJ2) + f;((ah + b&2)1 5 dh - (‘k 5 &. It fOllOWS that 
foraIly.X E [o, 11, We havefi(x) +J;(X)'fi((ak + bk)/2) +f2((LQ + bk)/2) - 
Ix - (a!, + bh)/2[&, which shows that (f, +fZ)((& + bk)/2) comes within E of 
the optimum. n 

V. AN ALMOSTOPTIMAL PROTOCOL FOR STRONGLY 
CONVEX PROBLEMS 

We consider here the class SsC,M,L of strongly convex functions which 
was defined in Section III as the set of continuously differentiable convex 
functions satisfying (2.1)-(2.2). In this section we show that a suitable 
distributed version of the gradient projection algorithm comes close to the 
lower bound of Proposition 2.3, within an O(log n) factor. In particular, 
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for any fixed dimension n, we have a protocol whose dependence on F is 
optimal. 

In the protocol to be considered each processor computes the same 
sequence {.Q} of elements of [0, 11” according to the iteration 

xk+l = [Xk - Y%l+; x0 = 0. (5.1) 

We use the notation [y], to denote the projection (with respect to the 
Euclidean metric) of a vector y E >HH” onto the convex set [0, 11”. Also, y is 
a positive scalar stepsize and SL is an approximation of the gradient off, + 
fi, evaluated at xk . In particular, we let gk = f; (x,J + f;(xx) and we require 
that sh satisfy 

where a! is some positive constant, independent of k, belonging to (0, 1). 
Naturally, we will have to ensure that there is enough communication so 
that each processor knows So at the beginning of the kth stage. 

We start by estimating the number of steps required by the above 
algorithm to come to a small neighborhood of the optimal point. The 
argument is very similar to the standard proof that the gradient projection 
algorithm has a linear rate of convergence (Nemirovsky and Yudin, 1983, 
pp. 258-260) except that we need to take care of the fact that we use sx 
instead of the exact gradient gl,. We denote by x* the unique vector in [0, 
11” which minimizes fi + f2 over that domain. (Uniqueness is a conse- 
quence of strict convexity, which follows from strong convexity.) 

PROPOSITION 5.1. Zff E &,C.M.L, if xk, sh satisfy (5. I)-(5.2), if the 
stepsize y is small enough, and if (Y is sufjciently close to 1, then there 
exist A, B, C > 0, depending only on M, L, such that 

(i) f(xk) - f(x*) I Ancu2k, (5.3) 
(ii) ]]xk - x*]12 5 Bna2k, (5.4) 
(iii) I]xk+l - Xk]] 5 Cn”2ak. (5.5) 

Proof. We will prove the result with the following choices of con- 
stants: we let y = lI(ML), B = 2A/L, and C = 2B’j2. The constants A and (Y 
will be fixed later. 

We state without proof the following properties of functions in SS~,~,~ 
(Nemirovsky and Yudin, 1983, pp. 254-255): 

(9 If’(x) - f’<y>ll 5 MLllx - YII. (5.6) 
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(ii) f(x + Y) 2 f(x) + (f’(x)l~) + W2)lly II*. (5.7) 

(iiOf(x + Y) 5 f(x) + (f’(x)ly) + WMI2)(ly II*. (5.8) 

We will be also using the inequality 

(f’(x*)lY - x*> 2 0, VY E LO, ll”, (5.9) 

which is a necessary and sufficient condition for optimality of x*. 
We continue with the main part of the proof, which proceeds by induc- 

tion on k. We first show that part (i) holds for k = 0. Using the convexity 
off, we have 

f(x*) 2 f(xo) + cf-Y%l)lx* - %I) 2 fh, - Ilf’cxn,ll-11x* - XrJll. 

Using (2.2), we see that Ilf’(~~)Jl is bounded by MLn”*; also, /Ix* - x0/ = 
[Ix* II is bounded by ni’*. It follows thatf(x,,) - f(x*) 9 MLn I An, as long 
as A is chosen larger than ML. 

Suppose now that (5.3) is valid for some nonnegative integer k. Using 
(5.7) and then (5.9) we obtain 

f(xr) of + (f’(x”)lxx - x*> + 4 IIXh - x*11* 
(5.10) 

of + ; [[XL - x*11*. 

We now use (5.10) and the induction hypothesis to obtain 

11~~ - X*/I* 5 g [f(xh) - f(x*)] I i Arm*” = Bnazh. (5.11) 

We have therefore shown that (5.4) is also valid for that particular k. We 
then use (5.4) and the triangle inequality to obtain 

II &+I - &II 5 IIxk+I - x*1/ + (lxx - x*(1 zs 2B”*n’%“, (5.12) 

which proves (5.5) for that same value of k. 
We now prove (5.3) for k + 1, which will complete the induction. Using 

the definition of the projection, xk+l minimizes I/y - xk + yskll* over y E 
1% ll”, which is equivalent to minimizing 

1 
f(Xk) + (SklY - -4 + 5 IIY - 412 (5.13) 
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over all y E [0, 11”. Let us use the notation Jk(y) to denote the expression 
(5.13) as a function of y. Let z = xk + (l/M)(x* - xk). Note that z E 
[0, 11” because xk, x* belong to [0, I]“. Thus, by the minimizing property 
of xk+r we have 

Now, 

f(xk+,) sj-(xk) + (gklXk+I - XL> + y IIxk+l - xkl12 

If(xk) + (skIxk+, - xk) + F I/xk+l - xkl12 + [[Sk - gkil./xk+l 

5 J&k+,) + (n”2,k)(2B “2d’2ak) 

5 Jk(z) + 2B”2na2” 

- xkll 

=f(Xk) + (Sk1 $j (X* - xk)) + y$ l/X* - X/,l12 + 2B”2na2” 

(5.14) 

sj-(xk) + (&I t (X* - XL)) + &11X* - Xkl12 + 2B”2na2” 

+ Ibk - gkll ; 11x* - XIII 

+ (&lx* - 

+ 3B1’2na2k 

f(xk) + hf(x*) + 3B”2ncx2L. 

Jd12 I 

Here, the first inequality followed from (5.8); the second from the 
Schwarz inequality; the third from (5.2), (5.12), and the definition of 
Jk(xk+t); the fourth from (5.14). In the equality we made use of the defini- 
tion of z and Jk, and the next step followed from the Schwarz inequality; 
then, we used the fact M L 1, (5.2), and (5.11); finally, the last line 
followed from (5.7). We therefore have, using the induction hypothosis, 

f(Xk+l) - .I%*) 5 (1 - t) (f(xk) - f(x*)) + 3B”2na2L (5 15) 

na2k. 
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The induction will be completed if the right-hand side of (5.15) is smaller 
than An#+‘). This is accomplished by taking (Y E (0, 1) close enough to 1 
so that 1 - I/M < (Y* and then choosing A large enough so that the term 
involving A”* is negligible in comparison with the first term in the right- 
hand side of (5.15). This concludes the proof. n 

We now return to the distributed protocol. Since f, , f2 E %c,~J,, it 
follows thatf, + f2 E $sC,M,ZI.. Consequently, Proposition 5.1 applies tof, 
+ f~ and shows that after O(log( l/a) + log n) stages, the algorithm (5. I)- 
(5.2) reaches a point which is within E from optimality. 

We now indicate how the protocol may be implemented with O(n log n) 
bits being communicated at each stage. All we need to do is to make sure 
that the processors share enough information at each stage to be able to 
compute a vector Sk satisfying (5.2). This is accomplished by letting each 
processor know a set of scalars ~(i, j ), i = 1, 2, j = 1, . . . , n, such that 
lsk(i,j) - gk(i,j)( 5 ak, where gx(i,j) is thejth component offi’( We 
first consider stage k = 0. Using (2.2) we see that Igo(i,j)l is bounded by 
O(n”*), for each i, j. Therefore, it is sufficient to transmit O(log n) bits, to 
specify each component with accuracy a0 = 1. 

Suppose now that k > 0 and that quantities skm,(i, j) with the desired 
properties have been shared at stage k - I. We have Igk(i, j) - sr-,(i,j)l 4 
yu; - gk-,(Lj)l + IgrdiJ) - Sk-,(i,.i)l 5 LMJlXk - Xk-III + n”‘&’ 5 

I’? + n”%~‘. (Here we have made use of (5.6), our hypotheses 
that sk satisfies (5.2), and part (iii) of Proposition 5. I .) Let us impose the 
additional requirement that sL(i. j) be an integer multiple of (Ye. This re- 
quirement does not prohibit the attainment of our goal, which is to satisfy 
inequality (5.2). With this requirement, there are at most (Y-’ (LMCn”? + 
I) + I possible choices for sk(i, j). Therefore, each processor P; may 
choose sk(i, j) as above and transmit its value to the other processor, 
while communicating only O(log n) bits for each component j, thus lead- 
ing to a total of O(n log n) communications per stage. We have thus 
proved the following result. 

PROPOSITION 5.2. For any$xed M, L, we have C(&.C.,W,L; E) 5 O(n 
log n(log n + log(l/&))). 

VI. POSSIBLE EXTENSIONS AND OPEN QUESTIONS 

1. The protocol of Section V is likely to be far from optimal concern- 
ing the dependence on the parameters M and L. The gradient algorithm 
tends to be inefficient for poorly conditioned problems (large M), as op- 
posed to variations of the conjugate gradient method (Nemirovsky and 
Yudin, 1983). It remains to be seen whether a suitable approximate ver- 
sion of the conjugate gradient method admits a distributed implementa- 
tion with low communication requirements as a function of M. 
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2. For the class sL, gradient methods do not work and the gap be- 
tween the lower bound of Section II and the upper bound of Section III 
remains open. We believe that the factor of n2 in the upper bound cannot 
be reduced. The reason is that any conceivable algorithm would need to 
consider at least O(n log(l/&)) points and it is hard to imagine any useful 
transfer of information concerning the behavior of the function in the 
vicinity of a point which does not require O(n) messages. On the other 
hand, it may be possible to reduce the factor log*(lle) to just log(l/&) 
although we do not know how to accomplish this. A related open problem 
concerns the O(log n) gap between Propositions 5.2 and 2.3, for the class 
%C,af,L . 

3. Some directions along which it is likely that the results can be 
extended concern the case of K > 2 processors and the case where the 
constraints under which the optimization is carried out are not commonly 
known: for example, we may have a constraint of the form gi(x) + g&) I 
0, where each g; is a convex function known by processor P;. 
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