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Abstract— We infer local influence relations between net-
worked entities from data on outcomes and assess the value of
temporal data by formulating relevant binary hypothesis testing
problems and characterizing the speed of learning of the correct
hypothesis via the Kullback-Leibler divergence, under three
different types of available data: knowing the set of entities
who take a particular action; knowing the order that the entities
take an action; and knowing the times of the actions.

I. INTRODUCTION

An article trending in the blogosphere [17], a topic trend-
ing on an online social network [24], computer malware
spreading across a network [15], customers sequentially
adopting a new product on an e-commerce platform [14],
are all examples of temporal processes governed by local
interactions between networked entities, which influence one
another. Due to the increasing capability of data acquisition
technologies, rich data on the outcomes of such processes
are oftentimes available (possibly with time stamps), yet
the underlying network of local interactions is hidden. In
this work, we infer who influences whom in a network of
interacting entities based on data of their actions/decisions,
and quantify the gain of learning based on times of actions,
versus sequences of actions, versus sets of actions.

a) Background and related literature: Untangling
and quantifying local influences in a principled manner,
based on observed outcomes, is a challenging task, as there
are many different confounding factors that may lead to
seemingly similar phenomena. In recent work, inference
of causal relationships has been possible from multivariate
time-series data [18], [20], [16]. Solutions for the influence
discovery problem have been proposed, which, similarly
to this work, treat time explicitly as a continuous random
variable and infer the network through cascade data, e.g.,
[10], [21], [12], [11]. The focus of our work is not just to
infer the underlying network, but rather to quantify the gain
in speed of learning, due to having access to richer temporal
information.

Most closely related to this work are [8], [2], [1], [22],
[9], [13]. The first five all derive sample/trace complexity
results for the network inference problem. [2] and [13] share
with us the question of reconstructing a graph from traces
defined as sets of unordered nodes. Similarly to [1], we
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assume exponentially distributed infection times, yet we are
after the influence rate of each edge, rather than learning
whether each edge exists or not. Our scope differs from the
works mentioned above, as we wish to compare explicitly
the speed of learning when having access to datasets with
times of actions, versus just sequences of actions, versus just
sets of actions; and we expand our discussion in [8] by using
Kullback-Leibler divergence as a measure for the speed of
learning.1 Furthermore, the models assumed by the works
mentioned above differ from the model we study, mainly
in that we allow for self-induced infections (not just in the
initial seeding), which makes the inference problem harder.

Recent research has focused on learning graphical models
(which subsumes the question of identifying the connectivity
in a network), either allowing for latent variables (e.g., [5],
[6]) or not (e.g.,[3]). Instead of proposing and learning a gen-
eral graphical model, we focus on a simple parametric model
that can capture the sequence and timing of actions naturally,
without the descriptive burden of a standard graphical model.

b) Overview: The overarching theme of our work is
to quantify the gain in speed of learning of parametric
models of influence, due to having access to richer temporal
information. Using Kullback-Leibler (KL) divergence as a
measure for speed of learning, we compare learning under
three different cases of available data: (i) the data provides
merely the set of agents/entities who took an action; (ii)
the data provides the (ordered) sequence of agents/entities
who took an action, but not the times; and (iii) the data
provides the times of the actions. It is clear that learning
is no slower with times than it is with sequences, and no
slower with sequences than with sets; yet, what can we
say about how much faster learning is with times than with
sequences, and with sequences than with sets? This is, to
the best of our knowledge, a comparison that has not been
studied systematically before.2

We propose a parametric model of influence which cap-
tures directed pairwise interactions. We focus on learning the
influence model in three particular instances, which we cast
as respective binary hypothesis testing problems: Which of
two agents influences a third agent? Is an agent influenced
by another agent, or are her decisions self-induced? And is
the influence between two agents large or small? We view
these three questions as building blocks for understanding
complex interactions in general networks. Given a hypothesis
testing problem, the Kullback-Leibler divergence between

1[1] also makes use of the Kullback-Leibler divergence, in order to
quantify the sample complexity when timestamps are disregarded.

2[22] finds such a comparison highly relevant.



the distributions pertaining to the two competing hypothe-
ses yields the best achievable asymptotic exponent for the
probability of error in a Neyman-Pearson setting. For each
of the proposed hypothesis testing problems, we compare
the Kullback-Leibler divergences in the cases of learning
based on data of sets of decisions; learning based on data of
sequences of decisions; and learning based on data of times
of decisions.

We show that, when the data for each independent ob-
servation is collected over a small horizon, the sets of
decisions provide almost all the necessary information for
learning, and there is no value in richer temporal data
for moderate values of the influence parameter. When the
data for each independent observation is collected over a
large horizon, then sequences have a large gain over sets,
and times have smaller gain over sequences for moderate
values of the influence parameter, for the first and second
hypothesis testing problems; for the third problem, in which
the two hypotheses are asymmetric with respect to the rate
with which the influenced agent adopts, sequences have
no gain over sets, while times have a large gain even for
small values of the influence parameter. When the data for
each independent observation is collected over a moderate
horizon, times have some gain over sequences and sets for
moderate values of the influence parameter.

The rest of the paper is organized as follows. Section II
introduces the influence model and formulates the binary
hypothesis testing problems. Section III studies the problem
of which of two peers influences a third agent crucially
(“peer” and “agent” are used interchangeably). Section IV
studies the problem of whether an agent is influenced by
another, or her decisions are self-induced. Section V studies
the problem of whether the influence between two agents is
large or small. Section VI concludes.

II. MODEL AND PROBLEM FORMULATION

A product becomes available at time t = 0 and each of a
collection of n agents may adopt it or not. (In this paper the
word “product” is used throughout, but could be interchanged
by any of the following: information, behavior, opinion,
virus, etc., depending on the context.) Agent i adopts it at
a time that is exponentially distributed with rate λi ≥ 0.
After agent i adopts, the rate of adoption for all other agents
j 6= i increases by λij ≥ 0. The overall time horizon,
capturing the duration of the adoption process, is modeled as
an exponentially distributed random variable with rate λhor.
No adoptions are possible after the end of the horizon. We
study the adoption decisions for a collection of products,
assuming that the parameters are static across products, and
adoptions across products are independent.

As in our work [8], the proposed cascade model suggests
a recursive definition for the times of adoption for each agent
given a product c, which we denote {T ic}ni=1. We define T ic =
∞ if agent i does not adopt product c. Given product c, we
consider the following three data modes:
• learning with sets of adoptions: the learner observes

vector
(
1{T 1

c<∞}, . . . , 1{Tnc <∞}
)
, i.e., whether each

agent adopts or not;
• learning with sequences of adoptions: the learner ob-

serves vector
(
R1
c , . . . , R

n
c

)
, where Ric denotes the

relative order of T ic in {T jc }nj=1. If T ic = ∞, define
Ric =∞. The learner, that is, observes who adopts and
in what order.

• learning with times of adoptions: the learner observes
vector

(
T 1
c , . . . , T

n
c

)
, i.e., the times at which agents

adopt (if at all).
We propose three binary hypothesis testing problems:

1) Which of two peers influences you crucially?
2) Are you influenced by your peer, or is it yourself?
3) Does your peer influence you a lot or a little?
In the context of binary hypothesis testing in the Neyman-

Pearson setting, the Chernoff-Stein lemma yields the asymp-
totically optimal exponent for the probability of error of one
type, under the constraint that the probability of error of the
other type is less than ε. More specifically, given hypotheses
H1 and H2, and corresponding probability measures P1, P2,
the best achievable exponent for the probability of error of
deciding in favor of H1 when H2 is true, given that the
probability of deciding in favor of H2 when H1 is true is less
than ε, is given by the negative Kullback-Leibler divergence
between the two measures −D(P1||P2) ≡ −EP1

[
log dP1

dP2

]
,

where dP1

dP2
denotes the Radon-Nikodym derivative of the two

measures (see, for example, [7]).
For each hypothesis testing problem, we observe i.i.d.

observations drawn from the true distribution; the observa-
tions can be a collection of sets of adopters, a collection of
sequences of adopters, or a collection of times of adoptions,
depending on how much information is provided in the
available data. We use KLset,KLsequence,KLtime to denote
the Kullback-Leibler divergence of the two distributions
pertaining to the two hypotheses under the cases of learning
with data which only provides the sets of adopters, learning
with data which provides the sequence of adopters but not
exact times, and learning with data which provides exact
times of adoptions, respectively. A greater Kullback-Leibler
divergence implies a faster decaying probability of error,
which in turn means that fewer i.i.d. observations are needed
in order for the probability of error to become sufficiently
small. We are interested in the relation between the Kullback-
Leibler divergences for the cases of sets, sequences, and
times of adoptions;3 this relation reveals how faster learning
becomes asymptotically with temporally richer data.

III. WHICH OF TWO PEERS INFLUENCES YOU
CRUCIALLY?

We consider the hypothesis testing problem illustrated
in Figure 1. In words, according to Hypothesis I, agent 1
influences agent 3 with rate α, while agent 2 influences agent
3 with rate 1; according to Hypothesis II, agent 1 influences
agent 3 with rate 1, while agent 2 influences agent 3 with
rate α.

3It is clear that KLset ≤ KLsequence ≤ KLtime; we are interested
in the relative scaling of the KL divergences and how it changes with the
parameters.



Fig. 1. The hypothesis testing problem: which of agents 1, 2 crucially
influences agent 3?

The probability mass functions needed for the calculation
of KLset,KLsequence are straightforward to compute. For
example, the probability of the sequence of agents {1, 2}
occurring is λ1/(λ1 + λ2 + λhor) · λ2/(λ2 + λ13 + λhor) ·
λhor/(λ13 + λ23 + λhor), the probability of the sequence of
agents {2, 1} is λ2/(λ1+λ2+λhor) ·λ1/(λ1+λ23+λhor) ·
λhor/(λ13 + λ23 + λhor), and the probability of the set of
agents {1, 2} is the sum of the two. Denoting with piA the
probability of a sequence of adopters given by ordered set
A according to Hypothesis i, we can write

KLset = pI∅ log
pI∅
pII∅

+ pI{1} log
pI{1}

pII{1}
+ pI{2} log

pI{2}

pII{2}

+
(
pI{1,2} + pI{2,1}

)
log

pI{1,2} + pI{2,1}

pII{1,2} + pII{2,1}

+pI{1,3} log
pI{1,3}

pII{1,3}
+ pI{2,3} log

pI{2,3}

pII{2,3}

+
(
pI{1,2,3} + pI{2,1,3} + pI{1,3,2} + pI{2,3,1}

)
· log

pI{1,2,3} + pI{2,1,3} + pI{1,3,2} + pI{2,3,1}

pII{1,2,3} + pII{2,1,3} + pII{1,3,2} + pII{2,3,1}

and

KLsequence = pI∅ log
pI∅
pII∅

+ pI{1} log
pI{1}

pII{1}
+ pI{2} log

pI{2}

pII{2}

+pI{1,2} log
pI{1,2}

pII{1,2}
+ pI{2,1} log

pI{2,1}

pII{2,1}

+pI{1,3} log
pI{1,3}

pII{1,3}
+ pI{2,3} log

pI{2,3}

pII{2,3}

+pI{1,2,3} log
pI{1,2,3}

pII{1,2,3}
+ pI{2,1,3} log

pI{2,1,3}

pII{2,1,3}

+pI{1,3,2} log
pI{1,3,2}

pII{1,3,2}
+ pI{2,3,1} log

pI{2,3,1}

pII{2,3,1}
.

From the log-sum inequality
∑n
i=1 ai log

ai
bi

≥
(
∑n
i=1 ai) log

∑n
i=1 ai∑n
i=1 bi

for nonnegative numbers,
a1, a2, . . . , an and b1, b2, . . . , bn, it is clear that
KLset ≤ KLsequence.

For the probability density functions needed for the cal-
culation of KLtime, one can consider T1, T2, T13, T23, Thor,
the exponentially distributed random variables modeling the
time of adoption by agent 1, the time of adoption by agent
2, the time of adoption by agent 3 due to agent 1, the
time of adoption by agent 3 due to agent 2, and the end of
the horizon, respectively. Then T3 = min(T13, T23) models
the time of adoption by agent 3 (due to either agent 1

or agent 2). One can then consider the joint density of
T1, T2, T13, T23, Thor. Nevertheless, the available data only
captures realization of random variables that occurred before
the realization of Thor. Therefore, the calculation of the joint
densities should account only for observed outcomes.

In Figures 2 and 3 we plot the KL divergences and their
ratios against influence rate α, for different horizon rates.

Fig. 2. Which of two peers influences you? Plots of KLset (circles),
KLsequence (crosses), KLtime (squares) against influence rate α for dif-
ferent horizon rates.

Fig. 3. Which of two peers influences you? Plots of KLsequence/KLset
(crosses), KLtime/KLsequence (squares) against influence rate α for dif-
ferent horizon rates.

In the large horizon regime (i.e., when λhor is small),
knowing the sequences of adoptions has a large gain over
knowing the sets of adoptions. On the other hand, knowing
the times of adoptions has large gain over knowing the
sequences of adoptions only for large enough values of the



influence rate α. For small values of α, the gain of times
over sequences is small compared to the gain of sequences
over sets.

In the small horizon regime (i.e., when λhor is large), the
sets of adoptions give almost all the information for learning,
and there is no much further value in richer temporal data.
Sequences have no gain (in the limit as λhor −→ ∞) over
sets, while for times to have significant gain over sequences,
the rate of influence α has to be large.

In the moderate horizon regime, knowing the times of
adoptions has some value over knowing merely sequences
or sets of adoptions even for small values of the influence
rate α.

IV. ARE YOU INFLUENCED BY YOUR PEER OR IS
IT YOURSELF?

We consider the hypothesis testing problem illustrated
in Figure 4. In words, according to Hypothesis I, agent 1
influences agent 2 with rate α, while agent 2 adopts herself
with rate 1; according to Hypothesis II, agent 1 influences
agent 2 with rate 1, while agent 2 adopts herself with rate
α.

Fig. 4. The hypothesis testing problem: is agent 2 influenced by agent 1,
or does she have a high individual rate?

The plots of the KL divergences and their ratios are omit-
ted, as the qualitative analysis is similar to the analysis of the
hypothesis testing problem of which of two peers influences
crucially another agent. In the large horizon regime (i.e.,
when λhor is small), knowing the sequences of adoptions
has a large gain over knowing the sets of adoptions, and
knowing the times of adoptions yields much smaller gain
over knowing just sequences for small values of the rate α.
In the small horizon regime (i.e., when λhor is large), the
sets of adoptions give almost all the information for learning,
and there is no much further value in richer temporal data. In
the moderate horizon regime, knowing the times of adoptions
has some value over knowing merely sequences or sets of
adoptions even for small values of the rate α.

The value of learning with sequences of adoptions over
learning with sets of adoptions can be readily decided
analytically by looking at the relevant limits. First we write

KLset(α, λhor) =
λhor

2 + λhor
log

1 + α+ λhor

2 + λhor

+
1

2 + λhor

λhor

1 + α+ λhor
log

1 + α+ λhor

2 + λhor

+
1

2 + λhor

λhor

1 + λhor
log

1 + α+ λhor

α(2 + λhor)

+

(
1

2 + λhor

1 + α

1 + α+ λhor
+

1

2 + λhor

1

1 + λhor

)

· log
1

2+λhor

1+α
1+α+λhor

+ 1
2+λhor

1
1+λhor

1
1+α+λhor

1+α
1+α+λhor

+ α
1+α+λhor

1
1+λhor

and

KLsequence(α, λhor) =
λhor

2 + λhor
log

1 + α+ λhor

2 + λhor

+
1

2 + λhor

λhor

1 + α+ λhor
log

1 + α+ λhor

2 + λhor

+
1

2 + λhor

λhor

1 + λhor
log

1 + α+ λhor

α(2 + λhor)

+
1

2 + λhor

1 + α

1 + α+ λhor
log

1 + α+ λhor

2 + λhor

+
1

2 + λhor

1

1 + λhor
log

1 + α+ λhor

α(2 + λhor)
.

For fixed α, we have

lim
λhor−→0

KLset(α, λhor) = 0

lim
λhor−→0

KLsequence(α, λhor) =
1

2
log

1 + α

2
+

1

2
log

1 + α

2α
,

which implies

lim
λhor−→0

KLsequence(α, λhor)

KLset(α, λhor)
=∞,

for α 6= 1, establishing that in the large horizon regime,
learning with sequences yields significant gain over learning
with sets.

For fixed α, and adopting the definition of the Kullback-
Leibler divergence which uses the convention 0 log 0

0 = 0,
we have

lim
λhor−→∞

KLsequence(α, λhor)

KLset(α, λhor)
=

λhor
2+λhor

log 1+α+λhor
2+λhor

λhor
2+λhor

log 1+α+λhor
2+λhor

= 1,

which establishes that in the small horizon regime, learning
with sequences has insignificant gain over learning with sets.

We can reach the same conclusions by looking at the limit
as α −→∞, for fixed λhor. Indeed, for fixed λhor, we have

lim
α−→∞

KLsequence(α, λhor)

KLset(α, λhor)
=
λhor + 1

λhor
,

which in turn becomes arbitrarily large for λhor −→ 0, and
converges to 1 for λhor −→∞.

V. DOES YOUR PEER INFLUENCE YOU A LOT OR
A LITTLE?

We consider the hypothesis testing problem illustrated
in Figure 5. In words, according to Hypothesis I, agent 1
influences agent 2 with rate α; according to Hypothesis II,
agent 1 influences agent 2 with rate 1.

Fig. 5. The hypothesis testing problem: is agent 2 influenced by agent 1
a lot or a little?

In Figures 6 and 7 we plot the KL divergences and their
ratios against influence rate α, for different horizon rates.

In the large horizon regime (i.e., when λhor is small),
knowing the times of adoptions has a large gain over



Fig. 6. Does your peer influence you a lot or a little? Plots of KLset
(circles), KLsequence (crosses), KLtime (squares) against influence rate α
for different horizon rates.

Fig. 7. Does your peer influence you a lot or a little? Plots of
KLsequence/KLset (crosses), KLtime/KLsequence (squares) against in-
fluence rate α for different horizon rates.

knowing the sequences or sets of adoptions. On the other
hand, knowing the sequences of adoptions does not have
value over knowing just the sets of adoptions.

In the small horizon regime (i.e., when λhor is large), the
sets of adoptions give almost all the information for learning,
and there is no much further value in richer temporal data.
Sequences have no significant gain over sets, while times
have even less gain over sequences for moderate values of
the influence rate α.

In the moderate horizon regime, knowing the times of
adoptions has some value over knowing merely sequences
or sets of adoptions even for small values of the influence
rate α. For constant α, the gain becomes larger for larger

horizon.
The reason why time has significant gain in the large

horizon regime, even for small values of the influence rate, is
the difference between the two hypotheses with respect to the
total rate with which agent 2 adopts, after agent 1 has adopted
(which is 1+α under Hypothesis I, and 2 under Hypothesis
II). When the horizon is long, having time information allows
for more accurate learning of the rate with which agent 2
adopts after agent 1 has adopted, and therefore for better
asymptotic optimal error exponent in the hypothesis test.

The value of learning with sequences of adoptions over
learning with sets of adoptions can be readily decided
analytically by looking at the relevant limits. First we write
that KLset(α, λhor) is equal to

1

2 + λhor

λhor
1 + α+ λhor

log
2 + λhor

1 + α+ λhor

+

(
1

2 + λhor

1 + α

1 + α+ λhor
+

1

2 + λhor

1

1 + λhor

)
· log

1+α
1+α+λhor

+ 1
1+λhor

2
2+λhor

+ 1
1+λhor

and KLsequence(α, λhor) is equal to

1

2 + λhor

λhor
1 + α+ λhor

log
2 + λhor

1 + α+ λhor

+
1

2 + λhor

1 + α

1 + α+ λhor
log

(1 + α)(2 + λhor)

2(1 + α+ λhor)
.

For fixed λhor, we have

lim
α−→∞

KLsequence(α, λhor)

KLset(α, λhor)
=

1
2+λhor

log 2+λhor
2

1
1+λhor

log
1+ 1

1+λhor
2

2+λhor
+ 1

1+λhor

=
1 + λhor
2 + λhor

log 2+λhor
2

log (2+λhor)2

3λhor+4

,

which in turn converges to 1 both for λhor −→ 0 and for
λhor −→∞, using l’Hôpital’s rule. In fact, the gain of learn-
ing with sequences over learning with sets is insignificant
asymptotically as α −→∞, for all horizon rates.

VI. CONCLUSION

Understanding the value of temporal data for learning
interactions between networked agents or entities can provide
valuable insights for a broad spectrum of disciplines. Theo-
rists and practitioners alike in marketing and sociology are
interested in learning models of influence among individuals;
biologists want to infer how genes interact in gene regulatory
networks; financial analysts and economists want to know
how firms or sectors interconnect in the economy. The
nodes in the network can be taken to be individuals, genes,
or firms/sectors, respectively. Of course, the details of a
parametric influence model should be tuned according to the
needs of its specific application.

In this work, we studied and compared the speed of
learning an influence model when learning based on sets,
sequences, and times of adoptions, by means of the Kullback-
Leibler divergence, for three hypothesis testing problems:



Which of two agents influences a third agent? Is an agent in-
fluenced by another agent, or are her decisions self-induced?
And is the influence between two agents large or small?
We view these three problems as the building blocks for
understanding complex patterns of influence that can arise
in general networks.

In [25], we also propose a characterization of the speed of
learning using the Fisher information. In addition, in [25],
[8], we characterize the learnable networks and the sample
complexity of learning which edges truly exist, assuming
prior knowledge of a “super graph”, and we recover reliably
the network of influence from real data using a maximum
likelihood estimator. In agreement with our findings in this
paper, it is shown that when the horizon is small, the sets
of decisions provide almost all the necessary information
for learning, and there is no value in richer temporal data
(sequences or times of decisions).

The discussion in this work remains silent about more
general network topologies, and casts the problem of learn-
ing the parameters of the influence model as a hypothesis
testing problem between only two competing hypotheses.
This limitation can be addressed by studying families of
more complex networks and characterizing the growth of
the number of i.i.d. observations required for learning with
respect to the size of the network, especially under different
scenarios for the richness of the temporal information in the
available data. In addition, one can study the same question
assuming different infection and horizon models.
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