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Abstract— We consider an SIS-type epidemic process that
evolves on a known graph. We assume that a fixed curing budget
can be allocated at each instant to the nodes of the graph,
towards the objective of minimizing the expected extinction
time of the epidemic. We provide a lower bound on the
optimal expected extinction time as a function of the available
budget, the epidemic parameters, the maximum degree, and the
CutWidth of the graph. For graphs with large CutWidth (close
to the largest possible), and under a budget which is sublinear
in the number of nodes, our lower bound scales exponentially
with the size of the graph.

I. INTRODUCTION

We consider an SIS-type epidemic model with a common
infection rate β and an endogenous, node specific curing rate
ρi(t). A network planner has a total curing budget, which is
allocated to different nodes at each point in time according
to a dynamic policy based on the history of the epidemic
and the network structure.

In earlier work [6], [5] we propose a policy which achieves
rapid containment for any set of initially infected nodes under
some conditions on the total curing budget. More specifically,
we prove that if the CutWidth of the underlying graph is
much smaller than the available curing budget, then rapid
containment of any epidemic is achieved by the proposed
policy.

In this paper we study the case where the CutWidth of
the graph is larger than the available budget. Specifically,
we focus on a class of graphs for which the CutWidth of
the graph is close to the largest possible value and obtain a
lower bound on the optimal expected extinction time. When
the curing budget scales sublinearly in the number of nodes,
our bound implies that under any dynamic curing policy,
the expected time to extinction scales exponentially in the
number of nodes, in the worst case where all nodes are
initially infected. This complements our results in [7], where
we provide (weaker) lower bounds for the case where the
CutWidth is larger than the available budget, linear in the
number of nodes, but not necessarily close to the largest
possible value.

A similar model, but in which the curing rate allocation
is static (open-loop) has been studied in [4], [8], [3], [12],
and the proposed methods were either heuristic or based on
mean-field approximations of the evolution process. Closer
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to our work, the authors of [2] let the curing rates be propor-
tional to the degree of each node — but again independent
of the current state of the network, which means that curing
resources may be wasted on healthy nodes. On a graph with
bounded degree, the policy in [2] achieves sublinear time to
extinction, but requires a curing budget that is proportional
to the number of nodes. Moreover, when the underlying
graph is an expander and the curing budget is sublinear, it is
established in [2] that the optimal expected extinction time
scales exponentially in the size of the graph. We extend this
result by obtaining an exponential lower bound for all graphs
whose CutWidth is close to the largest possible. This class of
graphs contains expander graphs but is substantially larger.
Furthermore, our result also applies to dynamic policies.

The rest of the paper is organized as follows. In Section
II we present the details of our model. In Section III we
study relevant graph-theoretic properties and present some
key combinatorial results that are used in our analysis. In
Section IV we present the lower bound on the optimal
expected extinction time.

II. THE MODEL

We consider a network, represented by a connected undi-
rected graph G = (V, E), where V denotes the set of
nodes and E denotes the set of edges. We use n to denote
the number of nodes. Two nodes u, v ∈ V are neighbors
if (u, v) ∈ E . We denote by ∆ the maximum of the
node degrees. To exclude trivial cases, and without loss of
generality, we assume throughout that G is connected and,
in particular, ∆ > 0.

We assume that the nodes in a set I0⊆ V are initially
infected and that the infection spreads according to a con-
trolled contact process where the rate at which infected
nodes get cured is determined by a network controller.
Specifically, each node can be in one of two states: infected
or healthy. The controlled contact process — also known
as the controlled SIS epidemic model — on G is a right-
continuous, continuous-time Markov process {It}t≥0 on the
state space {0, 1}V , where It stands for the set of infected
nodes at time t. We refer to It as the infection process.

State transitions at each node occur independently accord-
ing to the following dynamics.

a) The process is initialized at the given initial state I0.
b) If a node v is healthy, i.e., if v /∈ It, the transition rate

associated with a change of the state of that node to being
infected is equal to an infection rate β times the number



of infected neighbors of v, that is,

β ·
∣∣{(u, v) ∈ E : u ∈ It}

∣∣,
where we use | · | to denote the cardinality of a set. By
rescaling time, we can and will assume throughout the
paper that β = 1.

c) If a node v is infected, i.e., if v ∈ It, the transition rate
associated with a change of the state of that node to being
healthy is equal to a curing rate ρv(t) that is determined
by the network controller, as a function of the current and
past states of the process. We are assuming here that the
network controller has access to the entire past evolution
of the process.

We assume a budget constraint of the form
∑

v∈V
ρv(t) ≤ r, (1)

at each time instant t, reflecting the fact that curing is costly.
A curing policy is a mapping which at any time t maps
the past history of the process to a curing vector ρ(t) =
{ρv(t)}v∈V that satisfies (1). The continuous time nature of
the problem allows us to restrict out attention to policies that
focus on one node at each time, without loss of generality.

We define the time to extinction as the time until the
process reaches the absorbing state where all nodes are
healthy:

τ = min{t ≥ 0 : It = ∅}. (2)

The expected time to extinction (the expected value of τ ) is
the performance measure that we will be focusing on.

A. A perspective on our main result

If the graph G is complete, all policies that always allocate
the entire curing budget to infected nodes are essentially
equivalent, in the sense that the dynamics of |It|, the number
of infected nodes, are identical under all such policies.
Furthermore, It evolves as a birth-death Markov chain which
is easy to analyze, and it is not hard to show that the expected
time to extinction increases exponentially with n. On the
other hand, for more general graphs with large CutWidth but
bounded degree, an analysis using a one-dimensional birth-
death chain or a simple Lyapunov function does not seem
possible.

A related, and conceptually simple, way of deriving lower
bounds for more general graphs is to try to show that the pro-
cess must make consistent progress through configurations
(subsets I of V ) where the total curing rate is significantly
lower than the total infection rate. Such progress must then
be a low-probability event, implying an exponential lower
bound on the time to extinction. Unfortunately, it is not
clear whether this line of argument, based only on the
instantaneous infection rates (namely, the “cuts” that are
encountered — see Section III for precise definitions) is
possible for general graphs. Indeed, the lower bounds in [7],
for more general regimes, rely on a much more sophisticated
argument.

The main technical contribution in this paper is to show
that in the regime examined (large CutWidth), the above
outlined simple approach to deriving lower bounds is suc-
cessful. Based on some nontrivial combinatorial properties
of the CutWidth, and the related concept of the resilience
of a set of nodes, we will show that there is a sizeable part
of the configuration space in which |It| has a strong upward
drift.

III. GRAPH THEORETIC PRELIMINARIES

In this section we consider a deterministic version of
the problem in which we start with all nodes infected,
and then cure them one at a time, deterministically, in a
way that minimizes the maximum cut encountered in the
process. This problem has been studied in various forms
in the literature [9], [11] and its optimal value is called
the CutWidth of a graph. Our analysis will be based on a
related quantity, the resilience of a set of nodes, defined in
a similar fashion as the CutWidth, except that we start with
a given arbitrary set of nodes, and we are also allowed to
deterministically infect nodes in the process. We study the
properties of the resilience of a set of nodes and relate it
to the size of the subset (Section III-B). Then, in Section
III-C, we relate the resilience and the cut associated to a set
of nodes, which is the key combinatorial result behind our
analysis.

A. CutWidth and resilience

We first introduce some terminology: “bags” and “cru-
sades.”

Definition 1: A bag is a subset A ⊆ V of the set of nodes
V . We denote by |A| the number of nodes in A.

We introduce two common operations on a bag A and we
write

A+ v = A ∪ {v}, for any v /∈ A,
and

A− v = A \ {v}, for any v ∈ A.
We also use the notations A \ B = {v ∈ A : v /∈ B}
ANB = (A \B) ∪ (B \A).

We next define the concept of a crusade. A crusade from
A to B is a sequence of bags that starts from A and ends
at B with the restriction that at every step of this sequence
arbitrarily many nodes may be added to the previous bag,
but at most one can be removed.

Definition 2: For any two bags A and B, an (A − B)-
crusade ω is a sequence (ω0, ω1, . . . , ωk) of bags, of length
|ω| = k + 1, with the following properties:

(i) ω0 = A,
(ii) ωk = B, and

(iii) |ωi \ ωi+1| ≤ 1, for i ∈ {0, . . . , k − 1}.
Property (iii) states that at every step of a crusade arbitrarily
many nodes can be added to the current bag but at most one
node may be removed from the bag. Note that the definition
of a crusade allows non-monotone moves, since a bag at
any step can be a subset, a superset or not comparable to



the preceding bag. We denote by Ω(A − B) the set of all
(A−B)-crusades.

We also consider a special case of crusades, the monotone
crusades for which only removal of nodes is allowed at each
step. Specifically, for any two bags A and B, A,B ⊆ V ,
an (A ↓ B)-monotone crusade ω is an (A − B)-crusade
(ω0, ω1, . . . , ωk) with the additional property: ωi ⊇ ωi+1,
for i ∈ {0, . . . , k − 1}. We denote by Ω(A ↓ B) the set of
all (A ↓ B)-crusades.

The number of edges connecting a bag A with its com-
plement is called the cut of the bag. Its importance comes
from the fact that it is equal to the total rate at which new
infections occur, when the set of currently infected nodes
is A.

Definition 3: For any bag A, its cut, c(A), is defined as
the cardinality of the set of edges

{
(u, v) : u ∈ A, v ∈ Ac

}
.

In Proposition 1 below, we record, without proof, four
elementary properties of cuts.

Proposition 1: For any two bags A and B, we have

(i) c(A ∪B) ≤ c(A) + c(B) ≤ c(A) + ∆ · |B|.
(ii) If A ⊆ B, then for any v ∈ A,

c(A− v)− c(A) ≤ c(B − v)− c(B).

(iii) c(A) ≤ min{|A| ·∆, (n− |A|) ·∆}
(iv) |c(A)− c(B)| ≤ ∆|ANB|.
Note that Proposition 1(ii) states the well-known submodu-
larity property of the function c(·).

We define the width of a crusade ω as the maximum cut
encountered during the crusade. Intuitively, this is the largest
infection rate to be encountered if the nodes were to be cured
deterministically according to the sequence prescribed by the
crusade (assuming no new infections happen in between) .

Definition 4: The width z(ω) of an (A−B)-crusade ω =
(ω0, . . . , ωk) is defined by

z(ω) = max
i∈{1,...,k}

{c(ωi)}.
Note that in the definition above, the maximization starts
after the first step of the crusade, i.e., we exclude the first
bag ω0 from the maximization.

We now formally define the CutWidth of a graph G as the
minimum over all monotone crusades from V to the empty
set of the corresponding crusade width.

Definition 5: For any given graph G, its CutWidth W is
given by

W = min
ω∈Ω(V ↓∅)

z(ω). (3)

Intuitively, this metric indicates the maximum cut that is
encountered after the first step during an “optimal” monotone
crusade that clears the graph.

The largest possible value of a cut, for graphs with
maximum degree ∆, is n∆/2, and therefore the CutWidth
is also upper bounded by n∆/2. For notational convenience,
we define

E =
2

∆

(
(n+ 2)∆

2
−W

)
, (4)

and observe that E ≥ 2. Note that “small” values of E
indicate that the CutWidth is not too far from the largest
possible value, n∆/2. In Section III we relate E to cuts and
show that when E is small, then bags with large resilience,
as defined below, also have a large cut.

Definition 6: The resilience, γ(A), of a bag A is defined
by

γ(A) = min
ω∈Ω(A−∅)

z(ω). (5)

We denote by ΩA ⊆ Ω(A − ∅) the set of crusades ω that
attain the minimum, i.e.,

z(ω) = γ(A).

Crusades in ΩA are referred to as A-optimal, or simply as
optimal, when the set A is clear from the context.

Intuitively, γ(A) indicates the maximum cut that is en-
countered, after the first step, during a crusade that clears a
bag A. Note that in contrast to the definition of the CutWidth
of a graph, the minimization, in the definition of resilience,
is over all crusades, not just monotone crusades.

It can be seen that the resilience of a bag A satisfies the
Bellman equation:

γ(A) = min
|A\B|≤1

{max{c(B), γ(B)}} . (6)

B. Properties of the resilience

This section explores some properties of the resilience. We
first prove (Lemma 1(i)) that if A and B are two bags with
A ⊆ B, then γ(A) ≤ γ(B). Intuitively, one can construct a
crusade from A to ∅ as follows: The crusade starts from
A, then continues to the first bag encountered by a B-
optimal crusade ωB , and then follows ωB . The constructed
crusade and ωB are the same except for the initial bag of
the crusade. By the definition of the resilience, the initial bag
does not affect the maximization and thus the width of the
new crusade is equal to γ(B).

We also prove (Lemma 1 (ii)) that if two bags differ
by only one node v, then the corresponding resiliences are
at most ∆ apart. Intuitively, one can attach node v to the
optimal crusade for the smaller of the two bags and achieve a
maximum cut which is at most ∆ different from the original.

Lemma 1: Let A and B be two bags.

(i) [Monotonicity] If A ⊆ B, then γ(A) ≤ γ(B).
(ii) [Smoothness] If B = A+ v, then γ(B) ≤ γ(A) + ∆.

Proof:

(i) Let ωB = (ωB0 , . . . , ω
B
k ) ∈ ΩB . Consider the sequence

ω̂ = (ω̂0, . . . , ω̂k) of bags for which ω̂0 = A, and
ω̂i = ωBi , for i = 1, . . . , k. We claim that ω̂ is a crusade
ω̂ ∈ Ω(A− ∅). Indeed,

a) ω̂0 = A;
b) ω̂k = ωBk = ∅
c) |ω̂0 \ ω̂1| = |A \ ω̂1| ≤ |B \ ωB1 | = |ωB0 \ ωB1 | ≤

1, where the first inequality follows from A ⊆ B
and ω̂1 = ωB1 . Moreover, for i = 1, . . . , k, we have
|ω̂i \ ω̂i+1| = |ωBi \ ωBi+1| ≤ 1.



Clearly,

z(ω̂) = max
i∈{1,...,k}

{c(ω̂i)} = max
i∈{1,...,k}

{c(ωBi )} = γ(B).

Concluding, by the definition of γ(A),

γ(A) = min
ω∈Ω(A−∅)

z(ω) ≤ z(ω̂) = γ(B).

(ii) Let ωA = (ωA0 , . . . , ω
A
k ) ∈ ΩA. Consider the sequence

ω̂ = (ω̂0, . . . , ω̂k+1) of bags with ω̂i = ωAi ∪ {v}, for
i = 0, . . . , k, and ω̂k+1 = ∅. Clearly, ω̂ is a crusade
ω̂ ∈ Ω(B − ∅) for which

γ(B) ≤ z(ω̂) ≤ max
i∈{1,...,k}

{c(ωAi )}+ ∆ = γ(A) + ∆,

since the addition of one node can change the cut at
each stage of the crusade by at most ∆ (Proposition
1(i)).

So far the notion of the resilience of a bag has not been
related to the infection process under consideration. Recall
that for the infection process defined in Section II, the
number of infected nodes tends to increase at a rate equal to
the cut of It. Therefore, in order to study the evolution of
the set of infected nodes It through γ(It), we relate γ(It) to
c(It). To this end, we define a special class of bags, called
improvement bags.

Definition 7: Let C = {A ⊆ V : there exists v ∈
A for which γ(A − v) < γ(A)}. Any bag in C is called
an improvement bag.

Improvement bags have the important property that their
cut can be approximately lower bounded by their resilience.
Consequently, whenever an improvement bag with high
resilience is encountered, the infection rate is also high. This
observation will play a central role in subsequent sections.

Lemma 2: For any improvement bag A ∈ C,

c(A) ≥ γ(A)−∆.
Proof: Let v be such that γ(A − v) < γ(A) and let

B = A− v. Since |A \B| = 1, Eq. (6) yields

γ(A) ≤ max{c(B), γ(B)}. (7)

Having assumed that γ(B) < γ(A), Eq. (7) implies that
γ(B) < c(B). Hence, γ(A) ≤ c(B) ≤ c(A) + ∆, where the
last inequality follows from Proposition 1(i).

The next step is to characterize the initial resilience γ(I0).
The following, highly nontrivial theorem from [1] provides
an answer when I0 = V .

Theorem 1: For any graph, γ(V ) = W
Theorem 1 implies that finding a minimum-width (V −∅)-

crusade is equivalent to finding a minimum-width (V ↓ ∅)-
crusade. This property is not true in general for a general
initial set I0; however, a related poperty will be established
in Lemma 5.

Next, we explore the connection between the size of a
bag and its resilience. We first obtain a bound on γ(A) by
considering a crusade which removes all nodes of A, one at
a time, in an arbitrary order. We then obtain a related bound

γ(A)

|A|

W

n− W
∆ n

|A|∆
2W − (n+ 2)∆ + ∆|A|

E
.
= 2

∆

(
(n+2)∆

2 −W
)

Fig. 1: Admissible region for the pair (γ(A), |A|). If γ(A) <
W , Lemma 3 implies that (γ(A), |A|) belongs to the paral-
lelogram shown in the figure. On the other hand, there is no
restriction on the size |A| of bags with γ(A) = W , and so the
admissible region also includes the horizontal line segment
at the top of the figure.

on W by constructing a crusade in Ω(V − ∅) that removes
the nodes of the complement of A, one at a time, and
then uses an A-optimal crusade ωA. These two observations
imply certain constraints (an “admissible region”) for the
pair (γ(A), |A|) on the two dimensional plane, which are
illustrated in Figure 1. Finally, using the properties of the
function γ(·) that have been established so far, we obtain a
refinement of the admissible region, which is again illustrated
in Figure 1.

Lemma 3: Consider a graph with W ≥ ∆ and a bag A.
Let E be as defined in Eq. (4).

(i) γ(A) ≤ |A|∆;

(ii) If γ(A) < W , then W ≤ (n− |A|)∆;

(iii) If γ(A) < W , then γ(A) ≥ ∆(|A| − E).

Proof:

(i) Consider some enumeration (a1, a2, . . . , a|A|) of the
nodes of A. We construct a crusade ω̂ ∈ Ω(A− ∅) by
letting ω̂0 = A, and ωi = ωi−1\{ai} for i = 1, . . . , |A|.
By Proposition 1 (i), the maximum cut encountered by
ω̂ is bounded by |A|∆. Therefore,

γ(A) ≤ z(ω̂) ≤ |A|∆.

(ii) Consider some enumeration (ac1, a
c
2, . . . , a

c
n−|A|) of

the nodes of Ac, the complement of A. Let ωA =
(ωA0 , . . . , ω

A
k ) ∈ ΩA. We construct a crusade ω ∈

Ω(V − ∅) by letting ω0 = V , ωi = ωi−1 \ {aci}
for i = 1, . . . , n − |A|, and ωi = ωAi−n+|A| for i =



n− |A|+ 1, . . . , k + n− |A|. Then,

W= γ(V ) ≤ z(ω) = max{γ(A), max
i∈{1,...,n−|A|}

c(ωi)}
(8)

≤ max{γ(A), (n− |A|)∆}.
The first equality above follows from Theorem 1; the
second equality follows from the construction of ω; the
last inequality follows from Proposition 1(i). Using the
assumption γ(A) < W , Eq. (8) implies that

W ≤ (n− |A|)∆.
(iii) Consider some bag A for which γ(A) < W . From (ii),

|A| ≤ n−W/∆. (9)

Let C ⊆ V \ A be some nonempty bag with |C| =
n− bW/∆c − |A|+ 1. Note that Eq. (9) implies that

|C| = n−bW/∆c−|A|+1 ≥ n−W/∆−|A|+1 ≥ 1,

and that the assumption W ≥ ∆ implies that

|C| = n− bW/∆c − |A|+ 1 ≤ n− |A|.
This shows the existence of a bag with the desired
properties exists.
We define F = A ∪ C. Note that

|F | = |A|+ |C| ≥ n− bW/∆c+ 1

> n− bW/∆c ≥ n−W/∆,
and thus

W > (n− |F |)∆.
Then, part (ii) of the Lemma implies that γ(F ) = W .
The resilience of F satisfies

W = γ(F ) = γ(A ∪ C) ≤ γ(A) + |C|∆,
where the inequality follows from applying Lemma
1(ii) |C| times. Therefore,

γ(A) ≥W − |C|∆
= W − (n− bW/∆c − |A|+ 1)∆

≥W − (n−W/∆ + 1− |A|+ 1)∆

≥ 2W − (n+ 2)∆ + ∆|A|
= ∆(|A| − E),

which concludes the proof.

C. Characterization of optimal crusades and some implica-
tions

In this section we prove that when E is small, i.e., when
the CutWidth is close to the largest possible value, then bags
with large resilience also have large cuts.

Lemma 4: Suppose that W ≥ ∆ and that the bag A
satisfies 0 < γ(A) < W . Then,

c(A) ≥ γ(A)− 2(E + 2)∆.

The rest of the section is devoted to proving this property.
We start with a characterization of optimal crusades for a
given bag A. Specifically, Lemma 5 states that for any bag
A, there exists an optimal crusade which: (i) can add nodes,
and potentially remove one node at the first step; (ii) cannot
add nodes (i.e., is monotone) after the first step (parts (i)-
(ii)). Moreover, we argue that except for trivial cases, an
improvement bag must be encountered before the end of
the crusade (part (vi)). These properties allow us to make a
connection between resilience and cuts.

Lemma 5: For any nonempty bag A with γ(A) > 0,
there exists a crusade ω̂= (ω̂0, ω̂1, . . . , ω̂k) ∈ ΩA with the
following properties:

(i) For i ∈ {1, . . . , k}, ω̂i 6= ω̂i−1

(ii) For i ∈ {2, . . . , k}, ω̂i ⊂ ω̂i−1.
(iii) For i ∈ {0, . . . , k}, γ(ω̂i) ≤ γ(A).
(iv) γ(ω̂1) ≥ γ(A)−∆.
(v) c(A) ≥ c(ω̂1)−∆(E + 2).

(vi) Let l = min{i ≥ 0 : ω̂i ∈ C}. Then, l <∞.
Proof: We assign to every (A− ∅)-crusade ω ∈ ΩA a

value P (ω) =
(∑|ω|−1

i=0 (c(ωi) + 1),
∑|ω|−1
i=0 |ωi|

)
. Let ω̂ ∈

argminω∈ΩA P (ω), where the minimum is taken with respect
to the lexicographic ordering.

(i) We first prove that for all i ∈ {0, . . . , k − 1},
ω̂i 6= ω̂i+1. (10)

For the purposes of contradiction, assume that for some
q ∈ {1, . . . , k−1}, ω̂q = ω̂q+1, and construct a crusade
ω̃ = (ω̃0, . . . , ω̃k−1) by setting ω̃i = ω̂i for all i ≤ q,
and ω̃i = ω̂i+1 for i = q + 1, . . . , k − 1.
Clearly, ω̃= (ω̃0, . . . , ω̃k−1) is a crusade, i.e.,
ω̃ ∈ Ω(A − ∅). Moreover, ω̃ ∈ ΩA, because
max1≤i≤k−1 c(ω̃i) = z(ω̂) = γ(A). But∑k−1
i=0 (c(ω̃i) + 1) <

∑k
i=0(c(ω̂i) + 1), which

implies that P (ω̃) < P (ω̂), and contradicts the
minimality of ω̂.

(ii) The idea of the proof of this property is borrowed from
[1], and is based on the submodularity of c(·). We first
argue that for all i ∈ {1, . . . , k − 1},

c(ω̂i+1 ∪ ω̂i) ≥ c(ω̂i). (11)

For the purposes of contradiction, assume that there
exists some q ∈ {1, . . . , k − 1} such that

c(ω̂q+1 ∪ ω̂q) < c(ω̂q), (12)

and construct the sequence of bags ω̃ = (ω̃0, . . . , ω̃k),
by setting ω̃i = ω̂i for all i 6= q and ω̃q = ω̂q+1 ∪ ω̂q .
We first claim that ω̃ is a crusade, i.e., ω̃ ∈ Ω(A− ∅).
Indeed, since ω̂ is a crusade, we get |ω̂q \ ω̂q+1| ≤ 1
and |ω̂q−1 \ ω̂q| ≤ 1. Therefore,

|ω̃q−1 \ ω̃q| = |ω̂q−1 \ (ω̂q+1∪ ω̂q)| ≤ |ω̂q−1− ω̂q| ≤ 1,

where the first equality follows from the construction
of ω̃ and the second inequality from ω̂q+1 ∪ ω̂q . Fur-



thermore,

|ω̃q \ ω̃q+1| = |(ω̂q+1 ∪ ω̂q) \ ω̂q+1| ≤ |ω̂q − ω̂q+1| ≤ 1,

where the the first equality follows from the construc-
tion of ω̃ and the second inequality from ω̂q+1 ∪ ω̂q ⊃
ω̂q+1.
Moreover, we claim that ω̃ ∈ ΩA. Indeed

max
1≤i≤k

c(ω̃i) = max{c(ω̃q), max
1≤i≤k,i 6=q

c(ω̂i)}

≤ max
1≤i≤k

c(ω̂i) = γ(A),

where the inequality follows from (12).
On the other hand, it follows from (12) that∑k
i=0(c(ω̃i)+1) <

∑k
i=0(c(ω̂i)+1) and thus P (ω̃) <

P (ω̂), which contradicts the minimality of ω̂. We have
therefore established (11).
Using the submodularity of the cut as well as Eq. (11),
we have that for all i ∈ {1, . . . , k − 1},

c(ω̂i+1 ∩ ω̂i) ≤ c(ω̂i+1). (13)

We now prove that |ω̂i+1 ∩ ω̂i| ≥ |ω̂i+1| for all i ∈
{1, . . . , k − 1}.
For the purposes of contradiction, assume that there
exists some q ∈ {1, . . . , k − 1} such that

|ω̂q+1 ∩ ω̂q| < |ω̂q+1|. (14)

Construct the sequence ω̃i = ω̂i for all i 6= q + 1 and
ω̃q+1 = ω̂q+1 ∩ ω̂q .
We first claim that ω̃ is a crusade, i.e. ω̃ ∈ Ω(A − ∅).
Indeed, since ω̂ is a crusade we get |ω̂q \ ω̂q+1| ≤ 1
and |ω̂q+1 \ ω̂q+2| ≤ 1. Therefore,

|ω̃q \ ω̃q+1| = |ω̂q \ (ω̂q+1 ∩ ω̂q)| = |ω̂q − ω̂q+1| ≤ 1,

where the the first equality follows from the construc-
tion of ω̃ and the second inequality from ω̂q+1 ∩ ω̂q ⊂
ω̂q+1. Furthermore,

|ω̃q+1 \ ω̃q+2| = |(ω̂q+1 ∩ ω̂q) \ ω̂q+2|
≤ |ω̂q+1 − ω̂q+2| ≤ 1,

where the the first equality follows from the construc-
tion of ω̃ and the second inequality from ω̂q+1 ∩ ω̂q ⊂
ω̂q+1. Moreover, we claim that ω̃ ∈ ΩA. Indeed

max
1≤i≤k

c(ω̃i) = max{c(ω̃q), max
1≤i≤k,i 6=q+1

c(ω̂q+1)}

≤ max
1≤i≤k

c(ω̂i) = γ(A),

where the inequality follows from (13).
On the other hand, it follows from (13) that∑k
i=0(c(ω̃i) + 1) ≤ ∑k

i=0(c(ω̂i) + 1) and from (14)
that

∑k
i=0 |ωi| <

∑k
i=0 |ω̃i|. Therefore, P (ω̃) < P (ω̂),

which contradicts the minimality of ω̂.
Therefore we established that |ω̂i+1 ∩ ω̂i| ≥ |ω̂i+1| for
all i ∈ {i, . . . , k−1}. The latter implies that for all i ∈
{1, . . . , k−1}, ω̂i+1 ⊆ ω̂i. Using part (i) of the lemma,
it follows that that for i ∈ {1, . . . , k − 1}, ω̂i+1 ⊂ ω̂i.

(iii) We prove the result by induction. First, observe
that γ(ω̂0) = γ(A). Assume that γ(A) ≥ γ(ω̂i).
Moreover, by (6), for all i ∈ {1, . . . , k − 1},
γ(ω̂i) = max{γ(ω̂i+1), c(ω̂i+1)} ≥ γ(ω̂i+1). There-
fore, γ(ω̂i+1) ≤ γ(A).

(iv) We consider two cases. Assume that ω̂1 ⊃ A. Then
γ(ω̂1) ≥ γ(A)≥ γ(A)−∆. Otherwise, by the defini-
tion of a crusade we get |A \ ω̂1| ≤ 1. Therefore, we
can write ω̂1 = A ∪ D − v, for some set D (disjoint
from A) and some v ∈ A. Using Lemma 1(ii), and then
Lemma 1(i), we obtain

γ(ω̂1) ≥ γ(A ∪D)−∆≥ γ(A)−∆.

(v) From (iii) we obtain γ(ω̂1) ≤ γ(A). Therefore, using
Lemma 3(iii), we conclude that

|ω̂1| ≤
γ(A)

∆
+ E. (15)

Moreover, by Lemma 3(i), we get

|A| ≥ γ(A)

∆
. (16)

We consider two cases. Assume that ω1 ⊃ A. Then,

|ω̂1NA| = |ω̂1| − |A|.
Otherwise, by the definition of a crusade we get |A \
ω̂1| ≤ 1. Therefore, we can write ω̂1 = A ∪ D − v,
where D is disjoint from A and v ∈ A. Thus,

|ω̂1NA| = |D|+ 1 = |ω̂1| − |A|+ 2.

Therefore, in both cases,

|ω̂1NA| ≤ |ω̂1| − |A|+ 2.

We then use Eqs. (15) and (16) to obtain

|ω̂1NA| ≤ E + 2.

The result follows by applying Proposition 1(iv).
(vi) Note that γ(ω̂k) = γ(∅) = 0. Note also that any

single-element set B satisfies γ(B) = 0. Suppose that
γ(ω̂1) > 0. Then, there exists some i ∈ {1, . . . , k− 1}
such that γ(ω̂i+1) < γ(ω̂i), and ω̂i is an improvement
bag.
Suppose now that γ(ω̂1) = 0. If ω̂1 = ∅, then γ(A) =
0, which contradicts the assumption γ(A) > 0. If ω̂1

is nonempty, then we must have c(ω̂2) = 0, so that
ω̂2 is empty and ω̂1 is a singleton. Since γ(A) > 0,
the set A is not a singleton. Since at most one element
can be removed in going from A to ω̂1, it follows that
A consists of two elements and that a single element
was removed from A. In that case, A = ω̂0 is an
improvement bag.
In both cases, we see that there exists some i for which
ω̂i is an improvement bag and therefore l is well-
defined and finite.
Proof: (of Lemma 4) Consider a crusade ω̂A with the

properties in Lemma 5, and let l ≥ 0 be such that B = ω̂Al
is the fist improvement bag encountered.



From Lemma 5(vi), l is well-defined and finite. We
consider three cases:

(i) l = 0: If A is itself an improvement bag, then from
Lemma 2, c(A) ≥ γ(A)−∆.

(ii) l = 1: In this case, ω̂1 is an improvement bag. From
Lemma 2, c(ω̂1) ≥ γ(ω̂1) − ∆. Then, from Lemma
5(iv), we obtain

c(ω̂1) ≥ γ(A)− 2∆.

Moreover, from Lemma 5(v), we get

c(A) ≥ c(ω̂1)− (E + 2)∆ ≥ γ(A)− (E + 4)∆.

(iii) l > 2: In this case, by property (ii) in Lemma 5(ii), it
folows that B ⊂ ω̂1 and

|BNω̂1| = |ω̂1| − |B|.
Moreover, since B is the first improvement bag that is
encountered, γ(B) = γ(ω̂1). We use Lemma 3(i) to
obtain

|B| ≥ γ(B)/∆ = γ(ω̂1)/∆,

and Lemma 3(iii) to obtain

|ω̂1| ≤ γ(ω̂1)/∆ + E.

Combining the above,

|BNω̂1| = |ω̂1| − |B| ≤ E,
from which we conclude that

c(ω̂1) ≥ c(B)− E∆ ≥ γ(ω̂1)− (E + 1)∆.

where the first inequality follows from Proposition 1(iv)
and the second from the fact that B is an improvement
bag and γ(B) = γ(ω1). Therefore, from Lemma 5(v),
we obtain

c(A) ≥ γ(ω1)− (2E + 3)∆.

Finally, using Lemma 5(iv), we conclude that

c(A) ≥ γ(A)− 2(E + 2)∆,

which completes the proof of Lemma 4.
The combinatorial properties of the resilience derived in

this section will be used next to obtain a lower bound on the
expected extinction time, in the regime where γ(I0)� r.

IV. EXPONENTIAL LOWER BOUND

In this section we state and prove our main result. Specifi-
cally, we use Lemma 4 to argue that the process must traverse
a region in which the number |It| of infected nodes has an
upward drift, which in turn leads to the desired lower bound.

Theorem 2: Suppose that γ(I0) ≥ ∆(9E+12)+3r. Then,

EI0 [τ ] ≥ 1

2r



(
γ(I0)− (9E + 12)∆

3r

) γ(I0)
3∆ −1

− 1


 .

Proof: We define a process Vt which is coupled with
the process It as follows.

Vt =




|It|, if |It| ≤

⌊
2γ(I0)

3∆

⌋
,⌊

2γ(I0)
3∆

⌋
, if |It| >

⌊
2γ(I0)

3∆

⌋
.

(17)

The dynamics of Vt are as follows. If i < b2γ(I0)/3∆)c,
then

Vt : i→ i+ 1, with rate c(It),
Vt : i→ i− 1, with rate r.

Furthermore, if i = b2γ(I0)/(3∆))c, then

Vt : i→ i− 1, with rate r(It),

where r(It) ≤ r.

Consider the stopping time

τ∗ = inf

{
t ≥ 0 : |It| ≤

⌊
γ(I0)

3∆

⌋}

= inf

{
t ≥ 0 : Vt ≤

⌊
γ(I0)

3∆

⌋}
.

For every sample path, τ∗ ≤ τ . Therefore,

EI0 [τ ] ≥ EI0 [τ∗].

Suppose now that |It| satisfies

γ(I0)

3∆
≤ |It| ≤

2γ(I0)

3∆
.

Then, by parts (i) and (iii) of Lemma 3, we obtain that

γ(I0)

3
− E∆≤ γ(It) ≤

2γ(I0)

3
.

Furthermore, Lemma 4 implies that

c(It) ≥ γ(It)− 2(E + 2)∆ ≥ γ(I0)

3
− (3E + 4)∆.

It follows that the process Vt stochastically dominates a
process Yt, described in the Appendix, with parameters
λ = r, µ = γ(I0)/3 − (3E + 4)∆, and L = γ(I0)/3∆.
Therefore, using Eq. (21) in the Appendix,

EI0 [τ ] ≥ 1

2r



(
γ(I0)− (9E + 12)∆

3r

) γ(I0)
3∆ −1

− 1


 .

Note that when 3r < γ(I0) − 9E∆−12∆, the optimal
expected extinction time scales exponentially in the resilience
of the set of the initially infected nodes. In [5] and [6],
we focused on the case where I0 = V (the worst case)
and proved that if the CutWidth of the graph is a sublinear
function of the number of nodes, and if r = o(n), then, the
expected extinction time is o(n). In contrast, the following
result considers the case where W scales linearly in the
number of nodes and provides an exponential lower bound
on the expected extinction time. Specifically, using Theorem
1 to replace γ(V ) by W , and using also the definition of E,



we can write our lower bound as

EV [τ ] ≥ 1

2r

((
19W − 9n∆30∆

3r

)W/3∆−1

− 1

)
,

and we obtain the corollary that follows.
Corollary 1: Fix a constant C > 1 and consider those

graphs for which

W ≥ 9C

19
n∆.

Moreover, assume that r = o(n). Then,

EV [τ ] = Ω(2n).
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APPENDIX

We first recall a basic result on the standard continuous
random walk on the integers. Specifically, let Zt denote the
state of a Markov process with the following dynamics:

Zt : i→ i+ 1, with rate µ,
Zt : i→ i− 1, with rate λ. (18)

Fix some integers M and L with 0 < M < L, and let PM
be the probabilty measure that describes the process when
initialized at Z0 = M . Let

τL = inf{t : Zt = 0 or Zt = L}
denote the first time that the process Zt visits state 0 or L,
which is a stopping time. Moreover, let

τ̂ = inf{t : Zt = 0}

denote the first time that Zt hits 0.
The following result is standard; see, e.g., Section 2.1 of

[10] or Section 2.3 of [13].
Lemma 6: Consider the process Zt and the stopping times

τL and τ̂ . Then,

PM (ZτL = L) =
1− (λ/µ)M

1− (λ/µ)L
, (19)

Consider now a related Markov process Yt, whose transi-
tion rates are as follows:

Yt : i→ i+ 1, with rate µ,
Yt : i→ i− 1, with rate λ, (20)

for i ∈ {1, . . . , L− 1} while

Yt : i→ i− 1, with rate λ,

for i = L and

Yt : i→ i+ 1, with rate µ,

for i = 0.
We are looking for a lower bound on the expected time

that it takes for the process Yt to hit 0 for the first time,
assuming that it starts at L− 1. Let p be the probability that
Yt hits level L before hitting 0 starting from state L − 1,
which is given by Lemma 6, with M = L− 1. We consider
the case where λ < µ, so that p > 1/2. Each time that
the process is at state L−1, the process regenerates, and we
have a new trial, which succeeds in hitting state 0 before state
L, with the same probability 1 − p. Let N be the number
of trials and note that its expected value is 1/(1 − p). In
between trials, there needs to be a transition from state L
to state L − 1, whose expected time is 1/λ. Thus, the total
expected time elapsed until state 0 is hit for the first time
is E[N − 1]/λ = p/(1 − p)λ. Using Lemma 6 and some
straightforward algebra, we obtain that this expected time is
at least as large as

1

2

((µ
λ

)L−1

− 1

)
1

λ
. (21)


