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Summary. Motivated by resource allocation problems in communication networks
as well as power systems, we consider the design of market mechanisms for such
settings which are robust to gaming behavior by market participants. Recent results
in this work are reviewed, including: (1) efficiency loss guarantees for a data rate
allocation mechanism first proposed by Kelly, both when link capacities are fixed
and when they are elastic; (2) characterization of mechanisms that minimize the
efficiency loss, within a certain class of “simple” mechanisms; (3) extensions to
general networks; and (4) mechanism design for supply function bidding in electric
power systems.

1 Introduction

This paper addresses a problem at the nexus of engineering, computer science,
and economics: in large scale, decentralized systems, how can we efficiently
allocate scarce resources among competing interests? On one hand, constraints
are imposed on the system designer by the inherent architecture of any large
scale system. These constraints are counterbalanced by the need to design
mechanisms that efficiently allocate resources, even when the system is being
used by participants who have only their own interests at stake.

We consider two main classes of resource allocation problems. First, we
consider a setting where a resource in scarce supply must be allocated among
multiple competing consumers. Second, we discuss a setting where multiple
producers compete to satisfy a fixed demand. The former model is motivated
by applications to communication networks, while the latter is motivated by
electric power market design.

What goals might we have for markets in such settings? We would of
course like the equilibria of mechanisms designed for such settings to be “de-
sirable;” a common requirement is that equilibria should be Pareto efficient.
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In other contexts, we want the equilibria to satisfy a predetermined notion of
fairness; or we may wish the resulting vector of monetary transfers to satisfy
certain properties, such as profit maximization for the market operator. Be-
yond such constraints on the properties at equilibrium, however, we are also
concerned with the complexity of such mechanisms. In particular, we may de-
sire mechanisms which have relatively low information overhead: the strategy
spaces of the players should be “simple,” and the feedback from the market
to the players should be “simple” as well. Often, such complexity issues arise
in a discussion of the dynamic behavior of market mechanisms, in trying to
determine whether equilibria are actually achieved over time by players.

In this paper, we will focus on efficiency of mechanisms which maintain low
complexity, appropriately defined. We focus on efficiency primarily as a first
test of feasibility. Traditionally, economics has focused on selection of efficient
mechanisms because mechanisms with inefficient equilibria are less likely to be
useful in practice. Indeed, the classical theory of mechanism design is largely
devoted to determining when fully efficient equilibria can be guaranteed (see,
e.g., Chapter 23 of [23] for an overview).

The landmark contribution of mechanism design is the Vickrey-Clarke-
Groves class of mechanisms, which guarantee efficient allocations at dominant
strategy equilibria [4, 11, 32]; unfortunately, implementing VCG mechanisms
is generally a very complex proposition with many possible pitfalls [2, 27]. The
task is further complicated by the fact that the VCG class of mechanisms are
essentially the only class which guarantee fully efficient outcomes as dominant
strategy equilibria [8]. Thus, to make progress, either the notion of equilibrium
must be weakened, or some efficiency must be lost. Previous results in the
economics literature have considered weakening the notion of equilibrium; for
example, Maskin has shown that if we only consider Nash equilibria, efficiency
can be guaranteed if certain conditions are satisfied by players’ characteristics
[24]. However, no guidance is available as to how to design such mechanisms
with low complexity.

We consider an alternate approach, by weakening of the requirement of
efficiency. The basic technique we consider is one of restricting the strategy
spaces of the players (either buyers or sellers). With the proper choice of re-
striction, we can achieve two goals simultaneously. First, by ensuring that
strategy spaces are relatively simple, we can restrict attention to mechanisms
with low complexity. Second, if strategies of players are restricted, we can re-
duce their opportunities to game the system; this will lead to provable bounds
on efficiency loss at Nash equilibria.

In the remainder of the paper, we provide an overview of the progress
made in our earlier work [17, 16, 15]. In Section 2, we consider a setting
of multiple consumers and inelastic supply, motivated by rate allocation in
communication networks. For a single link of fixed capacity, we investigate a
resource allocation mechanism proposed by Kelly [18]. Network users choose
bids, which denote the total amount they are willing to pay. A price is then
chosen to clear the market; for the case of a single link, this allocation mech-
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anism allocates fractions of the resource to the users in proportion to their
bids. Kelly has previously shown that if users are price taking—that is, if they
do not anticipate the effects of their actions on the market-clearing price—the
resulting competitive equilibrium allocation is fully efficient. Our key result in
this section is that when users are price anticipating, aggregate utility falls by
no more than 25% relative to the maximum possible.

In Section 3, we consider the same basic mechanism as in Section 2, but
now consider a setting where supply is elastic; this is the model considered
by Kelly et al. [19]. In this case the link is characterized by a cost depending
on the total allocated rate, rather than a fixed capacity. Again, Kelly et al.
have previously shown that if users are price taking, this mechanism maxi-
mizes aggregate surplus (i.e., aggregate utility minus cost). For this setting
we establish that when users are price anticipating, aggregate surplus falls by
no more than approximately 34% relative to the maximum possible.

Sections 2 and 3 establish efficiency loss results for a specific market mech-
anism. In Section 4, we characterize the mechanism studied in Section 2 as
the “best” choice of mechanism under reasonable assumptions. Formally, we
show that in a class of market-clearing mechanisms satisfying certain simple
mathematical assumptions and for which there exist fully efficient competitive
equilibria, the mechanism of Section 2 uniquely minimizes efficiency loss when
market participants are price anticipating. These results justify the attention
devoted to understanding the particular market mechanism studied in Sec-
tions 2 and 3; furthermore, they clearly delineate conditions which must be
violated if we hope to achieve higher efficiency guarantees than those provided
by the results of Sections 2 and 3.

In Section 5, we summarize two further directions of research. First, in
Section 5.1, we discuss the generalization of the models of Sections 2 and 3
to networks with arbitrary topology. We consider games where users submit
individual bids to each link in the network. Such games are then proven to
have the same efficiency loss guarantees as the single link games considered
in Sections 2 and 3.

Next, in Section 5.2, motivated by power systems, we discuss a setting
where multiple producers bid to satisfy an inelastic demand D. We consider
a market mechanism where producers submit supply functions restricted to
lie in a certain one-parameter family, and a market-clearing price is chosen to
ensure that aggregate supply is equal to the inelastic demand. We establish
that when producers are price anticipating, aggregate production cost rises
by no more than a factor 1 + 1/(N − 2) relative to the minimum possible
production cost, where N > 2 is the number of firms competing. Finally, we
conclude with some open issues in Section 6.
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2 Multiple Consumers, Inelastic Supply

Suppose R users share a communication link of capacity C > 0. Let dr denote
the rate allocated to user r. We assume that user r receives a utility equal
to Ur(dr) if the allocated rate is dr; we assume that utility is measured in
monetary units. We make the following assumptions on the utility function.

Assumption 1. For each r, over the domain dr ≥ 0 the utility function
Ur(dr) is concave, strictly increasing, and continuous; and over the domain
dr > 0, Ur(dr) is continuously differentiable. Furthermore, the right direc-
tional derivative at 0, denoted U ′

r(0), is finite.

Given complete knowledge and centralized control of the system, it would
be natural for the link manager to try to solve is the following optimization
problem [18]:

maximize
∑

r

Ur(dr) (1)

subject to
∑

r

dr ≤ C; (2)

dr ≥ 0, r = 1, . . . , R. (3)

Note that the objective function of this problem is the aggregate utility. Since
the objective function is continuous and the feasible region is compact, an op-
timal solution d = (d1, . . . , dR) exists. If the functions Ur are strictly concave,
then the optimal solution is unique, since the feasible region is convex.

In general, the utility functions are not available to the link manager. As a
result, we consider the following pricing scheme for rate allocation. Each user
r submits a payment (also called a bid) wr to the link manager; we assume
wr ≥ 0. Given the vector w = (w1, . . . , wr), the link manager chooses a rate
allocation d = (d1, . . . , dr). We assume the manager treats all users alike—
in other words, the link manager does not price discriminate. Each user is
charged the same price µ > 0, leading to dr = wr/µ. We further assume the
manager always seeks to allocate the entire link capacity C; in this case, we
expect the price µ to satisfy:

∑

r

wr

µ
= C.

The preceding equality can only be satisfied if
∑

r wr > 0, in which case we
have:

µ =

∑

r wr

C
. (4)

In other words, if the manager chooses to allocate the entire available rate at
the link, and does not price discriminate between users, then for every nonzero
w there is a unique possible price µ > 0, given by the previous equation.
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We can interpret this mechanism as a market-clearing process by which a
price is set so that demand equals supply. To see this interpretation, note that
when a user submits a total payment wr, it is as if the user has submitted a
demand function D(p, wr) = wr/p for p > 0. The demand function describes
the rate that the user demands at any given price p > 0. The link manager then
chooses a price µ so that

∑

r D(µ,wr) = C, i.e., so that the aggregate demand
equals the supply C. For the specific form of demand functions we consider
here, this leads to the expression for µ given in (4). User r then receives a rate
allocation given by D(µ,wr), and makes a payment µD(µ,wr) = wr. This
interpretation of the mechanism we consider here will be further explored in
Section 4, where we consider other market-clearing mechanisms with the users
submitting demand functions from a family parametrized by a single scalar.

In the remainder of the section, we consider two different models for how
users might interact with this price mechanism. In Section 2.1, we consider
a model where users do not anticipate the effect of their bids on the price,
and provide a result, due to Kelly [18], on the existence of a competitive
equilibrium. Furthermore, this competitive equilibrium leads to an allocation
which is an optimal solution to (1)-(3). In Section 2.2, we change the model
and assume users are price anticipating, and provide a result (due to Hajek and
Gopalakrishnan [12]) on the existence and uniqueness of a Nash equilibrium.
In Section 2.3, we then consider the loss of efficiency at this Nash equilibrium,
relative to the optimal solution to (1)-(3).

2.1 Price Taking Users and Competitive Equilibrium

In this section, we consider a competitive equilibrium between the users and
the link manager [23], following the development of Kelly [18]. A central as-
sumption in the definition of competitive equilibrium is that each user does
not anticipate the effect of their payment wr on the price µ, i.e., each user
acts as a price taker. In this case, given a price µ > 0, user r acts to maximize
the following payoff function over wr ≥ 0:

Pr(wr;µ) = Ur

(

wr

µ

)

− wr. (5)

The first term represents the utility to user r of receiving a rate allocation
equal to wr/µ; the second term is the payment wr made to the manager. Ob-
serve that since utility is measured in monetary units, the payoff is quasilinear
in money [23].

We say that a pair (w, µ), with w ≥ 0 and µ > 0, is a competitive equilib-
rium if users maximize their payoff as defined in (5), and the network “clears
the market” by setting the price µ according to (4):

Pr(wr;µ) ≥ Pr(wr;µ) for wr ≥ 0, r = 1, . . . , R; (6)

µ =

∑

r wr

C
. (7)
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Kelly shows in [18] that when users are price takers, there exists a competitive
equilibrium, and the resulting allocation is an optimal solution to (1)-(3). This
is formalized in the following theorem, adapted from [18].

Theorem 1 (Kelly, [18]). Suppose that Assumption 1 holds. Then there ex-
ists a competitive equilibrium, i.e., a vector w = (w1, . . . , wR) ≥ 0 and a
scalar µ > 0 satisfying (6)-(7).

In this case, the scalar µ is uniquely determined, and the vector d = w/µ
is an optimal solution to (1)-(3). If the functions Ur are strictly concave, then
w is uniquely determined as well.

Theorem 1 shows that under the assumption that the users of the link
behave as price takers, there exists a bid vector w where all users have op-
timally chosen their bids wr, with respect to the given price µ =

∑

r wr/C;
and at this “equilibrium,” aggregate utility is maximized. However, when the
price taking assumption is violated, the model changes into a game and the
guarantee of Theorem 1 is no longer valid.

2.2 Price Anticipating Users and Nash Equilibrium

We now consider an alternative model where the users of a single link are
price anticipating, rather than price takers. The key difference is that while
the payoff function Pr takes the price µ as a fixed parameter in (5), price
anticipating users will realize that µ is set according to (4), and adjust their
payoff accordingly; this makes the model a game between the R players.

We use the notation w−r to denote the vector of all bids by users other
than r; i.e., w−r = (w1, w2, . . . , wr−1, wr+1, . . . , wR). Given w−r, each user r
chooses wr to maximize:

Qr(wr;w−r) =















Ur

(

wr
∑

s ws

C

)

− wr, if wr > 0;

Ur(0), if wr = 0.

(8)

over all nonnegative wr. The second condition is required so that the rate
allocation to user r is zero when wr = 0, even if all other users choose w−r so
that

∑

s6=r ws = 0. The payoff function Qr is similar to the payoff function Pr,
except that the user anticipates that the network will set the price µ according
to (4). A Nash equilibrium of the game defined by (Q1, . . . , QR) is a vector
w ≥ 0 such that for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (9)

Hajek and Gopalakrishnan have shown that there exists a unique Nash
equilibrium when multiple users share the link, by showing that at a Nash
equilibrium it is as if the users are solving another optimization problem of
the same form as the problem (1)-(3), but with “modified” utility functions.
This is formalized in the following theorem, adapted from [12].
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Theorem 2 (Hajek and Gopalakrishnan, [12]). Suppose that R > 1, and
that Assumption 1 holds. Then there exists a unique Nash equilibrium w ≥ 0
of the game defined by (Q1, . . . , QR), and it satisfies

∑

r wr > 0.
In this case, the vector d defined by:

dr =
wr

∑

s ws

C, r = 1, . . . , R, (10)

is the unique optimal solution to the following optimization problem:

maximize
∑

r

Ûr(dr) (11)

subject to
∑

r

dr ≤ C; (12)

dr ≥ 0, r = 1, . . . , R, (13)

where

Ûr(dr) =

(

1 − dr

C

)

Ur(dr) +

(

dr

C

)

(

1

dr

∫ dr

0

Ur(z) dz

)

. (14)

Theorem 2 shows that the unique Nash equilibrium of the game is charac-
terized as the solution to the above optimization problem. Other games have
also profited from such relationships—notably traffic routing games, in which
Nash-Wardrop equilibria can be found as solutions to a related global opti-
mization problem. Roughgarden and Tardos use this fact to their advantage in
computing efficiency loss for such games [28]; Correa, Schulz, and Stier Moses
also use this relationship to consider routing games in capacitated networks
[5]. Finally, we note that for the game presented here, several authors have
derived results similar to Theorem 2 [7, 21, 22], though not as general.

2.3 Efficiency Loss

We let dS denote an optimal solution to (1)-(3), and let dG denote the unique
optimal solution to (11)-(13). We now investigate the efficiency loss of this
system; that is, the utility loss caused by the price anticipating behavior of
the users. More precisely, we will compare the utility

∑

r Ur(d
G
r ) obtained

when the users fully evaluate the effect of their actions on the price, and the
maximum possible aggregate utility

∑

r Ur(d
S
r ). (We know, of course, that

∑

r Ur(d
G
r ) ≤ ∑

r Ur(d
S
r ), by definition of dS .) According to the following

theorem, the worst case efficiency loss is exactly 25%; the proof may be found
in [17].

Theorem 3. Suppose that R > 1, and that Assumption 1 holds. Suppose also
that Ur(0) ≥ 0 for all r. If dS is any optimal solution to (1)-(3), and dG is
the unique optimal solution to (11)-(13), then:
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∑

r

Ur(d
G
r ) ≥ 3

4

∑

r

Ur(d
S
r ).

Furthermore, this bound is tight: for every ε > 0, there exists a choice of R,
and a choice of (linear) utility functions Ur, r = 1, . . . , R, such that:

∑

r

Ur(d
G
r ) ≤

(

3

4
+ ε

)

(

∑

r

Ur(d
S
r )

)

.

We provide some comments on the method for proving a result such as
Theorem 3. The first step is to show that the worst case efficiency loss occurs
when the utility functions belong to a certain finite-dimensional family; in
the current context, it is the family of linear utility functions. Identifying the
worst case utility functions amounts to minimizing an efficiency measure over
all possible choices of the coefficients of the linear utility functions. It turns
out that this minimization can be cast as a sequence of finite-dimensional
nonlinear optimization problems (each problem in the sequence correspond-
ing to a different number R of users), which can be studied analytically. In
the context of Theorem 3, the worst efficiency loss corresponds to a link of
capacity 1, where user 1 has utility U1(d1) = d1, and all other users have
utility Ur(dr) ≈ dr/2. As R → ∞, at the Nash equilibrium of the game, user
1 receives a rate dG

1 = 1/2, while the remaining users uniformly split the rate
1 − dG

1 = 1/2 among themselves, yielding an aggregate utility of 3/4.
We note that a similar bound was observed by Roughgarden and Tardos

for traffic routing games with affine link latency functions [28]. They found
that the ratio of worst case Nash equilibrium cost to optimal cost was 4/3.
However, it is questionable whether a relationship can be drawn between the
two games; in particular, we note that while Theorem 3 holds even if the
utility functions are nonlinear, Roughgarden and Tardos have shown that the
efficiency loss due to selfish users in traffic routing may be arbitrarily high if
link latency functions are nonlinear.

3 Multiple Consumers, Elastic Supply

In this section, we allow the supply of the scarce resource to be elastic, rather
than fixed as in the previous section. Rather than being characterized by
a capacity, we will characterize the resource through a cost function that
gives the cost incurred by the resource as a function of the flow through
it. We continue to assume that R users share a single communication link,
and that user r receives a utility Ur(dr) if the allocated rate is dr. We let
f =

∑

r dr denote the total rate allocated at the link, and let C(f) denote
the cost incurred at the link when the total allocated rate is f ≥ 0. We will
assume that both Ur and C are measured in the same monetary units. A
natural interpretation is that Ur(dr) is the monetary value to user r of a rate
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allocation dr, and C(f) is a monetary cost for congestion at the link when the
total allocated rate is f .

We continue to assume the utility functions Ur satisfy Assumption 1. In
addition, we make the following assumption on the cost function C.

Assumption 2. There exists a continuous, convex, strictly increasing func-
tion p(f) over f ≥ 0 with p(0) = 0, such that for f ≥ 0:

C(f) =

∫ f

0

p(z)dz.

Thus C(f) is strictly convex and strictly increasing.

Given complete knowledge and centralized control of the system, it would
be natural for the link manager to try to solve the following optimization
problem[18]:

maximize
∑

r

Ur(dr) − C

(

∑

r

dr

)

(15)

subject to dr ≥ 0, r = 1, . . . , R. (16)

We refer to the objective function (15) as the aggregate surplus. This is the net
monetary benefit to the economy consisting of the users and the single link.
Since the objective function is continuous, and Ur increases at most linearly,
while C increases superlinearly, an optimal solution dS = (dS

1 , . . . , dS
R) exists;

since the feasible region is convex and C is strictly convex, if the functions Ur

are strictly concave, then the optimal solution is unique.
We consider the following pricing scheme for rate allocation, a natural

analogue of the mechanism presented in Section 2. Each user r submits a
payment (or bid) of wr to the resource manager. Given the composite vector
w = (w1, . . . , wr), the resource manager chooses a rate allocation d(w) =
(d1(w), . . . , dR(w)). We assume the manager treats all users alike—in other
words, the network manager does not price differentiate. Thus the network
manager sets a single price µ(w); we assume that µ(w) = 0 if wr = 0 for all
r, and µ(w) > 0 otherwise. All users are then charged the same price µ(w),
leading to:

dr(w) =











0, if wr = 0;

wr

µ(w)
, if wr > 0.

Notice that, with this formulation, the rate allocated to user r is similar to
the rate allocated to user r in the model of Section 2. The key difference in
this setting is that the aggregate rate is not constrained to an inelastic supply;
rather, associated with the choice of price µ(w) is an aggregate rate function
f(w), defined by:
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f(w) =
∑

r

dr(w) =















0, if
∑

r wr = 0;

∑

r wr

µ(w)
, if

∑

r wr > 0.
. (17)

Let us assume for now that given a price µ > 0, user r wishes to maximize
the following payoff function over wr ≥ 0:

Pr(wr;µ) = Ur

(

wr

µ

)

− wr. (18)

The first term represents the utility to user r of receiving a rate allocation
equal to wr/µ; the second term is the payment wr made to the manager.

Notice that as formulated above, the payoff function Pr assumes that user
r acts as a price taker; that is, user r does not anticipate the effect of his
choice of wr on the price µ, and hence on his resulting rate allocation dr(w).
Informally, we expect that in such a situation the aggregate surplus will be
maximized if the network manager sets a price equal to marginal cost; that
is, if the price function satisfies:

µ(w) = p(f(w)). (19)

The well-posedness of such a pricing mechanism is the subject of the following
proposition.

Proposition 1. Suppose Assumption 2 holds. Given any vector of bids w ≥ 0,
there exists a unique pair (µ(w), f(w)) ≥ 0 satisfying (17) and (19), and in
this case f(w) is the unique solution f to:

∑

r

wr = fp(f). (20)

Furthermore, f(·) has the following properties: (1) f(0) = 0; (2) f(w) is
continuous for w ≥ 0; (3) f(w) is a strictly increasing and strictly concave
function of

∑

r wr; and (4) f(w) → ∞ as
∑

r wr → ∞.

Observe that we can view (20) as a market-clearing process. Given the
total revenue

∑

r wr from the users, the link manager chooses an aggre-
gate rate f(w) so that the revenue is exactly equal to the aggregate charge
f(w)p(f(w)). Due to Assumption 2, this market-clearing aggregate rate is
uniquely determined. Kelly et al. present two algorithms in [19] which amount
to dynamic processes of market-clearing; as a result, a key motivation for the
mechanism we study in this section is that it represents the equilibrium be-
havior of the algorithms in [19].

For the remainder of this section, we will assume that µ(w) is set according
to the choice prescribed in Proposition 1, as follows.
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Assumption 3. For all w ≥ 0, the aggregate rate f(w) is the unique solution
to (20):

∑

r wr = f(w)p(f(w)). Furthermore, for each r, dr(w) is given by:

dr(w) =











0, if wr = 0;

wr

p(f(w))
, if wr > 0.

(21)

Note that we have f(w) > 0 and p(f(w)) > 0 if
∑

r wr > 0, and hence dr is
always well defined.

In the remainder of this section, we consider two different models for how
users might interact with this price mechanism. In Section 3.1, we consider
a model where users do not anticipate the effect of their bids on the price,
in which case there exists a competitive equilibrium. Furthermore, this com-
petitive equilibrium leads to an allocation which is an optimal solution to
(15)-(16). In Section 3.2, we change the model and assume users are price
anticipating, in which case there exists a Nash equilibrium. Finally, Section
3.3 considers the loss of efficiency at Nash equilibria, relative to the optimal
solution to (15)-(16).

3.1 Price Taking Users and Competitive Equilibrium

Kelly et al. show in [19] that when users are price takers, and the network
sets the price µ(w) according to (17) and (19), the resulting allocation is an
optimal solution to (15)-(16). This is formalized in the following theorem,
adapted from [19].

Theorem 4 (Kelly et al., [19]). Suppose Assumptions 1, 2, and 3 hold.
Then there exists a vector w such that µ(w) > 0, and:

Pr(wr;µ(w)) = max
wr≥0

Pr(wr;µ(w)), r = 1, . . . , R. (22)

For any such vector w, the vector d(w) = w/µ(w) is an optimal solution to
(15)-(16). If the functions Ur are strictly concave, such a vector w is unique
as well.

Theorem 4 shows that with an appropriate choice of price function (as
determined by (17) and (19)), and under the assumption that the users of the
link behave as price takers, there exists a bid vector w where all users have
optimally chosen their bids wr, with respect to the given price µ(w); and at
this “equilibrium,” the aggregate surplus is maximized. However, when the
price taking assumption is violated, the model changes into a game and the
guarantee of Theorem 4 is no longer valid.
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3.2 Price Anticipating Users and Nash Equilibrium

We now consider an alternative model where the users of a single link are price
anticipating, rather than price taking, and play a game to acquire a share of
the link. Throughout the remainder of this section as well as in Section 3.3,
we will assume that the link manager sets the price µ(w) according to the
unique choice prescribed by Proposition 1, as follows.

We adopt the notation w−r to denote the vector of all bids by users other
than r; i.e., w−r = (w1, w2, . . . , wr−1, wr+1, . . . , wR). Then given w−r, each
user r chooses wr ≥ 0 to maximize:

Qr(wr;w−r) = Ur(dr(w)) − wr, (23)

over nonnegative wr. The payoff function Qr is similar to the payoff function
Pr, except that the user now anticipates that the network will set the price
according to Assumption 3, as captured by the allocated rate dr(w). A Nash
equilibrium of the game defined by (Q1, . . . , QR) is a vector w ≥ 0 such that
for all r:

Qr(wr;w−r) ≥ Qr(wr;w−r), for all wr ≥ 0. (24)

The proof of the following proposition can be found in [16].

Proposition 2. Suppose that Assumptions 1, 2, and 3 hold. Then there exists
a Nash equilibrium w for the game defined by (Q1, . . . , QR).

3.3 Efficiency Loss

We let dS denote an optimal solution to (15)-(16), and let w denote any
Nash equilibrium of the game defined by (Q1, . . . , QR). We now investigate
the associated efficiency loss. In particular, we compare the aggregate surplus
∑

r Ur(dr(w))−C(
∑

r dr(w)) obtained when the users fully evaluate the effect
of their actions on the price, and the aggregate surplus

∑

r Ur(d
S
r )−C(

∑

r dS
r )

obtained by choosing an allocation which maximizes aggregate surplus. Ac-
cording to the following theorem, the efficiency loss is no more than approx-
imately 34%, and this bound is essentially tight; the proof can be found in
[16].

Theorem 5. Suppose that Assumptions 1, 2, and 3 hold. Suppose also that
Ur(0) ≥ 0 for all r. If dS is any optimal solution to (15)-(16), and w is any
Nash equilibrium of the game defined by (Q1, . . . , QR), then:

∑

r

Ur(dr(w)) − C

(

∑

r

dr(w)

)

≥
(

4
√

2 − 5
)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

.

(25)
In other words, there is no more than approximately a 34% efficiency loss
when users are price anticipating.
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Furthermore, this bound is tight: for every δ > 0, there exists a choice of
R, a choice of (linear) utility functions Ur, r = 1, . . . , R, and a (piecewise
linear) price function p such that a Nash equilibrium w exists with:

∑

r

Ur(dr(w))−C

(

∑

r

dr(w)

)

≤
(

4
√

2 − 5 + δ
)

(

∑

r

Ur(d
S
r ) − C

(

∑

r

dS
r

))

.

(26)

Let us remark here that, according to the proof of Theorem 5, the worst
possible efficiency loss is achieved along a sequence of games where:

1. The price function p has the following form, with b → ∞:

p(f) =

{

(2 −
√

2)f, if 0 ≤ f ≤ 1;

2 −
√

2 + b(f − 1), if f ≥ 1;

2. The number of users becomes large (R → ∞); and
3. User 1 has linear utility with U1(d1) = d1, and all other users r have linear

utility with Ur(dr) = αrdr, where αr ≈ p(1) = 2 −
√

2.

(Note that formally, we must take care that the limits of R → ∞ and b → ∞
are taken in the correct order; in particular, in the proof we first have R → ∞,
and then b → ∞.) In this limit, we find that at the Nash equilibrium the
aggregate allocated rate is 1, and the Nash equilibrium aggregate surplus
converges to 4

√
2 − 5.

4 A Characterization Theorem

In this section we revisit the resource allocation problem of Section 2, and
address the following question: can we identify a mechanism that minimizes
the efficiency loss, in the presence of price anticipating users, within a class
of mechanisms with certain desirable properties?

Formally, we consider a collection of users bidding to receive a share of
a finite, infinitely divisible resource of capacity C. Each user has a utility
function U : R

+ → R
+ (where R

+ = [0,∞)) that satisfies Assumption 1.
More specifically, U belongs to the set U utility functions defined by

U =
{

U : R
+ → R

+ | U is continuous, strictly increasing, concave on [0,∞),

and continuously differentiable on [0,∞),with U ′(0) < ∞
}

.

We let R denote the number of users, and let U = (U1, . . . , UR) denote the
vector of utility functions, where Ur is the utility function of user r. We call
a pair (R,U), where R > 1 and U ∈ UR, a utility system; our goal will be to
design a resource allocation mechanism with attractive efficiency guarantees
for all utility systems.
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We assume once more that utility is measured in monetary units; thus, if
user r receives a rate allocation dr, but must pay wr, his net net payoff is:

Ur(dr) − wr.

Given a utility system U ∈ UR, the social objective is to maximize ag-
gregate utility, as defined in the problem (1)-(3); we repeat that problem
here, and refer to it as the problem SYSTEM(C,R,U), to emphasize that the
problem is specified by C, R, and the utility system (U).

maximize

R
∑

r=1

Ur(dr) (27)

subject to

R
∑

r=1

dr ≤ C; (28)

d ≥ 0. (29)

We will say that d solves SYSTEM(C,R,U) if d is an optimal solution to
(27)-(29), given the utility system (R,U).

In general, the utility system (R,U) is unknown to the mechanism de-
signer, so a mechanism must be designed to elicit information from the users.
We will focus on mechanisms in which each user i submits a demand function,
within a one-parameter family of admissible demand functions. In particular,
each user has a one-dimensional strategic variable, denoted by θi.

Definition 1. Given C > 0, a smooth market-clearing mechanism for C is a
differentiable function D : (0,∞) × [0,∞) → R

+ such that for all R, and for
all nonzero θ ∈ (R+)R, there exists a unique solution p > 0 to the following
equation:

R
∑

r=1

D(p, θr) = C.

We let pD(θ) denote this solution, and refer to it as the market-clearing price.

Note that the market-clearing price is undefined if θ = 0. As we will see
below, when we formulate a game between consumers for a given mechanism
D, we will assume that the payoff to all players is −∞ if the composite strategy
vector is θ = 0. Note that this is slightly different from the definition in Section
2, where the payoff to a player who submits θ = 0 is set to zero. We will discuss
this distinction further later; we simply note for the moment that it does not
affect the results of this section.

Our definition of smooth market-clearing mechanisms generalizes the
mechanism discussed in Section 2. We recall that in that development, each
user submits a demand function of the form D(p, θ) = θ/p, and the link man-

ager chooses a price pD(θ) to ensure that
∑R

r=1
D(p, θr) = C. Thus, for this

mechanism, we have pD(θ) =
∑R

r=1
θr/C if θ 6= 0. Another related example
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is provided by D(p, θ) = θ/
√

p; in this case it is straightforward to verify that

pD(θ) = (
∑R

r=1
θr/C)2, for θ 6= 0.

We will further restrict attention to a particular class of mechanisms de-
noted D, which we define as follows.

Definition 2. The class D consists of all functions D(p, θ) such that the fol-
lowing conditions are satisfied:

1. For all C > 0, D is a smooth market-clearing mechanism for C (cf. Def-
inition 1).

2. For all C > 0, and for all Ur ∈ U , the payoff of a price anticipating user
is concave; that is, for all R, and for all θ−r ∈ (R+)R, the function:

Ur(D(pD(θ), θr) − pD(θ)D(pD(θ), θr)

is concave in θr > 0 if θ−r = 0, and concave in θr ≥ 0 if θ−r 6= 0.
3. The demand functions are nonnegative; i.e., for all p > 0 and θ ≥ 0,

D(p, θ) ≥ 0.

The first condition requires a mechanism in D to be a smooth market-clearing
mechanism for any C > 0; in particular, the market-clearing price pD(θ) must
be uniquely defined for any C > 0. (Note that in the notation we suppress
the dependence of the market-clearing price pD(θ) on the capacity C.) The
second condition allows us to characterize Nash equilibria in terms of only
first order conditions; indeed, some such assumption needs to be in place in
order to guarantee existence of pure strategy Nash equilibria [26]. Finally, the
third condition is a normalization condition, which ensures that a user is never
required to supply some quantity of the resource (which would be the case if
we allowed D(p, θ) < 0).

In order to state the main result of this section, we must define competitive
equilibrium and Nash equilibrium. Given a utility system (R,U), a capacity
C > 0, and a smooth market-clearing mechanism D ∈ D, we say that a
nonzero vector θ ∈ (R+)R is a competitive equilibrium if µ = pD(θ) satisfies:

θr ∈ arg max
θr≥0

[

Ur(D(µ, θr)) − µD(µ, θr)
]

, ∀r. (30)

Similarly, we say that a nonzero vector θ ∈ (R+)R is a Nash equilibrium if:

θr ∈ arg max
θr≥0

Qr(θr;θ−r), ∀r, (31)

where

Qr(θr;θ−r) =

{

Ur(D(pD(θ), θr)) − pD(θ)D(pD(θ), θr), if θ 6= 0;
−∞, if θ = 0.

(32)

Notice that the payoff is −∞ if the composite strategy vector is θ = 0, since
in this case no market-clearing price exists.
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Our interest is in the worst-case ratio of aggregate utility at any Nash
equilibrium to the optimal value of SYSTEM(C,R,U) (termed the the “price
of anarchy” by Papadimitriou [25]). Formally, for D ∈ D and a capacity C > 0
we define a constant ρ(C,D) as follows:

ρ(C,D) = inf

{

∑R

r=1
Ur(D(pD(θ), θr))
∑R

r=1
Ur(dr)

∣

∣

∣

∣

R > 1,U ∈ UR,

d solves SYSTEM(C,R,U) and θ is a Nash equilibrium

}

Note that since all U ∈ U are strictly increasing and nonnegative, and C > 0,
the aggregate utility

∑R

r=1
Ur(dr) is strictly positive for any utility system

(R,U) and any optimal solution d to SYSTEM(C,R,U). However, Nash
equilibria may not exist for some utility systems (R,U); in this case we set
ρ(C,D) = −∞.

The following theorem shows that among smooth market-clearing mecha-
nisms for which there always exists a fully efficient competitive equilibrium,
the mechanism proposed in Section 2 minimizes efficiency loss when users are
price anticipating. The proof can be found in Chapter 5 of [15].

Theorem 6. Let D ∈ D be a smooth market-clearing mechanism such that for
all capacities C > 0 and utility systems (R,U), there exists a competitive equi-
librium θ such that (D(pD(θ), θr), r = 1, . . . , R) solves SYSTEM(C,R,U).
Then for any capacity C and utility system (R,U), there exists a unique Nash
equilibrium. Furthermore, ρ(C,D) ≤ 3/4 for all C > 0 and all D ∈ D, and
this bound is met with equality if and only if D(p, θ) = ∆θ/p for some ∆ > 0.

Theorem 6 suggests that the best efficiency guarantee we can hope to
achieve is 75%, if we are restricted to market-clearing mechanisms with scalar
strategy spaces. A key restriction in the mechanisms we consider is that a sin-
gle price is chosen to clear the market. If the market designer is granted the
latitude to price discriminate (i.e., to charge a different price to each user),
better efficiency guarantees are possible. The most famous mechanisms which
ensure such a guarantee are the Vickrey-Clarke-Groves class of mechanisms,
for which fully efficient dominant strategy equilibria exist [4, 11, 32]. More
recently, in a networking context, Sanghavi and Hajek [30] have shown that if
users choose their payments (as in the Kelly mechanism), but the link man-
ager is allowed to choose the allocation to users as an arbitrary function of
the payments, it is possible to ensure no worse than a 13% efficiency loss.
Furthermore, Yang and Hajek [34] have shown that if a mechanism allocates
resources in proportion to the users’ strategies (i.e., user r receives a frac-

tion θr/(
∑R

s=1
θs) of the resource), then by using differentiated pricing, it is

possible to guarantee arbitrarily small efficiency loss at the Nash equilibrium.
The mechanisms proposed by both Sanghavi and Hajek [30] as well as Yang
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and Hajek [34] require price discrimination, since the ratio of payment to al-
location is not necessarily identical for all users (as must be the case in the
market-clearing mechanisms studied here).

5 Further Directions

In addition to the results outlined above, several additional threads are in-
cluded in this body of research. In this section, we describe two extensions: (1)
resource allocation in general networks; and (2) a setting of multiple producers
competing to satisfy an inelastic demand.

5.1 General Networks

The models presented in Sections 2 and 3 only consider resource allocation for
a single link. We now consider extensions to the network case, following [16]
and [17]. We consider networks consisting of a set of links; each user has a set
of paths available through the network to send traffic, and each path uses a
subset of the links. In a setting of inelastic supply, each link j is characterized
by a fixed capacity Cj . In a setting of elastic supply, each link j is characterized
by a cost function Cj(·). We continue to assume that each user r receives a
utility Ur(dr) from a total rate allocation dr; however, note that in a network
context dr is the total rate delivered to user r across all paths available to
user r through the network.

We extend the single link market mechanisms to multiple links by treat-
ing each link as a separate market. Thus we consider a game where each user
requests service from multiple links by submitting an individual bid to each
link. Links then allocate rates using the same scheme as in the single link
model, and each user sends the maximum rate possible, given the vector of
rates allocated from links in the network. Although this definition of the game
is natural, we demonstrate that Nash equilibria may not exist in the setting
of inelastic supply, due to a discontinuity in the payoff functions of individual
players. (This problem also arises in the single link setting, but is irrelevant
there as long as at least two players share the link.) To address the disconti-
nuity, we extend the strategy space by allowing each user to request a nonzero
rate without submitting a positive bid to a link, if the total payment made
by other users at that link is zero; this extension is sufficient to guarantee ex-
istence of a Nash equilibrium. In the setting of elastic supply, Nash equilibria
are always guaranteed to exist, without having to extend the strategy space.
Finally, we show that in this network setting, if link capacities are inelastic
then the total utility achieved at any Nash equilibrium of the game is no less
than 3/4 of the maximum possible aggregate utility; and if link supplies are
elastic then the aggregate surplus achieved at any Nash equilibrium of the
game is no less than a factor 4

√
2−5 of the maximal aggregate surplus. These
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results extend the efficiency loss results from the single link setting to general
networks.

The mechanisms we have studied require each user to submit a separate
bid for each link that the user may use. An alternative mechanism had been
proposed earlier by Kelly [18] whereby a user submits a single total payment,
and the network determines both the rate allocations, as well as the divisions of
the users’ total payments among the links; in the single link case, this scheme
reduces to that studied in Section 2. But Hajek and Yang [13] have shown that
Kelly’s mechanism can result in Nash equilibria in which the aggregate utility
is an arbitrarily small fraction of the optimal aggregate utility. It remains an
open problem whether there exists a network resource allocation mechanism
in which each user submits a single number, representing total payment, and
which has some nontrivial efficiency guarantees.

5.2 Multiple Producers, Inelastic Demand

The models presented thus far consider consumers competing for resources
in scarce supply. Motivated by current problems in market design for electric
power systems, we consider a model where multiple producers compete to
satisfy an inelastic demand. Demand for electricity, particularly in the short
run, is characterized by low elasticity with respect to price, i.e., changes in
price do not lead to significant changes in the level of demand; see, e.g., [31],
Section 1-7.3. A basic model for electricity market operation involves supply
function bidding [20]: each generator submits a supply function expressing
their willingness to produce electricity as a function of the market clearing
price. A single price is then chosen to ensure that supply matches the inelastic
demand.

Most previous work on supply function bidding has focused almost entirely
on using the supply function equilibrium (SFE) framework of Klemperer and
Meyer [20] for its predictive power. In such models, generators can submit
nearly arbitrary supply functions; the Nash equilibria of the resulting game are
used to give insight into expected behavior in current markets. In other words,
by solving the SFE model for an appropriate set of assumptions, most previous
work hopes to lend insight into the operation of power markets which require
generators to submit complete supply schedules as bids [1, 6, 9, 10, 29, 33]. But
because there may be a multiplicity of equilibria, an explicit understanding
of efficiency losses in these games has not been developed. Papers such as
the work of Rudkevich et al. [29] do suggest, however, that in the presence of
inelastic demand, price anticipating behavior can lead to significant deviations
from perfectly efficient allocations.

For this reason we take a different approach (see Chapter 4 of [15]). We
consider restrictions on the supply functions which can be chosen by the gen-
erators, and aim to design these restrictions so that nearly efficient allocations
are achieved even if firms are price anticipating. Formally, we assume that each
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firm n has a convex cost function Cn, as a function of the electricity gener-
ated. An efficient production vector minimizes the aggregate cost

∑

n Cn(sn),
subject to the constraint that the total produced electricity

∑

n sn must equal
the demand D. We then consider the following market. Each firm submits a
supply function of the form S(p, w) = D − w/p, where D is the fixed (exoge-
nous) demand and w is a nonnegative scalar chosen by the firm. The market
then chooses a price so that aggregate supply is equal to demand.

If we assume that firms are price taking, it is possible to show that there
exists a competitive equilibrium; furthermore, at this competitive equilibrium
the resulting allocation minimizes aggregate production cost. If we assume
instead that firms are price anticipating, we can establish existence of a Nash
equilibrium and uniqueness of the resulting production vector, as long as more
than two firms compete. Next, we consider the aggregate production cost at a
Nash equilibrium relative to the minimal possible aggregate production cost.
As long as more than two firms are competing, we show that the ratio of Nash
equilibrium production cost to the minimal production cost is no worse than
1 + 1/(N − 2), where N is the number of firms in the market. Furthermore,,
we demonstrate that this efficiency loss result carries over even to a setting
where demand is inelastic but stochastically determined, by showing that in
such an instance it is as if firms play a game with deterministic demand but
different cost functions. Finally, a characterization theorem, similar to the
one in Section 4, is also available, indicating that the mechanism under study
has the best possible efficiency guarantees, within a class of mechanisms in
which the generators are restricted to submitting a supply function chosen
from within a restricted, one-parameter family.

These results, which have been established in [15], suggest that market
power can be controlled, and efficient allocations guaranteed, by restricting
the supply functions available to generators in electricity markets. Restricted
families of supply functions have also been considered elsewhere in the litera-
ture, e.g., in [3]. However, these models are typically used as approximations
to unconstrained supply function bidding, and thus the resulting efficiency
loss has not been studied. Still, this work leaves many open questions; in par-
ticular, the dynamics of power systems, together with their complex network
structure, has not been captured in the models developed (in contrast to the
telecommunications models previously discussed). Furthermore, the work de-
scribed here depends on convexity assumptions on the cost functions of the
producers, and such assumptions may generally not hold in electricity markets
[14]. Finally, away from a Nash equilibrium, e.g., if some generators do not act
rationally, the remaining generators may have to produce electricity at highly
undesirable or even impossible levels. Addressing these types of questions is
the subject of current research.
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6 Open Issues

We have discussed the efficiency properties of Nash equilibria associated with
certain resource allocation mechanisms. For the case where there is a single
available resource (respectively, a single demand to be satisfied), the mecha-
nisms involve the submission of a demand (respectively, a supply) function,
which can be specified in terms of a single parameter, followed by market-
clearing. In each case, we have provided a tight bound on the worst case
efficiency loss. It remains to understand the worst case efficiency loss when
mechanisms belonging to broader classes are considered. For example, in the
context of Section 2 what efficiency guarantees are possible if users can choose
a demand function from within a two-parameter family of demand curves?

Another research direction relates to the study of natural adjustment dy-
namics in the context of various mechanisms. Indeed, a desirable mechanism
should not only have efficiency guarantees for the resulting Nash equilibria.
It should also allow for simple adjustment algorithms whereby the different
players can converge, in a stable manner, to such a Nash equilibrium.
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