Stanford Energy Seminar

Stanford University, April 18, 2016

Physics of Next Generation Batteries

Martin Z. Bazant

Chemical Engineering & Mathematics, MIT Materials Science and Engineering & SUNCAT Center, Stanford (2015-16)

1. Phase Separation in Li-ion Batteries

Lithium Iron Phosphate

"This material is very good for low power applications; at higher current densities there is a reversible decrease in capacity... associated with the movement of a two-phase interface." - Padhi, Nanjundaswamy & Goodenough (1997)

An Incredible Reversal of Fortune

- 1997: "Low power" Li_xFePO₄ ٠
- 2009: "Ultrafast" 10 sec. discharge ۲ Kang & Ceder, Nature (2009)

Why is nano so different?

Badi et al, JMC (2011)

Ramana et al, JPS (2009)

Ideal crystal: Fast 1D diffusion

Morgan, van der Ven, Ceder (2004)

What shrinking core?

Chen & Richardson EESL (2006)

Ramana et al, JPS (2009)

Phosphorus

Lithium

Suppression of Phase Separation at High Discharge Rates

P. Bai, D. A. Cogswell & MZB, Nano Letters (2011)

Coherent Phase Separation

Cogswell & Bazant, ACS Nano (2012)

Coherent phase separation

Ramana et al, ESSL (2009) L ~ 80nm

Chen, Song, Richardson, JPS (2006) L ~ 2 um

200 nm a nicrocracks

Suppression of phase separation at high discharge rates

Slow discharge I/I₀=.001~C/50

Fast discharge I/I₀=.3~7C

First Direct Evidence from In Operando X-ray Imaging

Jongwoo Lim, Yiyang Li,... MZB, William Chueh (Stanford) submitted (2016)

- Reactions suppress phase separation
- Rate-limiting kinetics → Must engineer interfaces

Porous Electrode Phase Transformations

TR Ferguson & MZ Bazant J. Electrochem Soc (2012). Electrochimica Acta (2014)

Recharging voltage step, Li extraction from porous cathode

Rate-Dependent Active Population

Yiyang Li, Ray Smith, MZB, William Chueh, Nature Materials (2014)

Three+ Phases: Li_xC₆ (Graphite Anode)

EXPERIMENT: SJ Harris et al, JPCL (2010) THEORY: Ferguson & Bazant, Elec. Acta (2014)

Recharging Rate Limit for Li-ion Batteries

2. Pattern Formation in Metal Batteries

Metal anodes for Transportation

Bruce et al., Nature Materials (2012)

Dendrites can also cause shorts in Li-ion batteries if Li plating occurs...

"Li metal is itself one of the most challenging components of the Li/air cell, as it tends to roughen and develop dendrites with cycling."

J. Christensen et al., JES (2012)

Transport Limited Growth

Diffusion Limited Aggregation (DLA)

Witten & Sander, PRL (1981). (image: S. Havlin)

Copper Dendrites

Brady & Ball, PRL (1984). (image: K. Johnnson, wikipedia)

Lithium "Dendrites"(?)

Bai, Brushett, Li, Bazant, submitted (2016)

Theorem: All transport-limited growth is unstable to dendrites (2d, quasi-steady)

Proof: conformal map dynamics → DLA universality class
M. Z. Bazant, J. Choi, B. Davidovitch, PRL (2003).
M. Z. Bazant, Proc. Roy. Soc. A (2004).

DLA in a Fluid Flow

DLA on Curved Surfaces

Relevant for lithium metal anodes?

Capillary Cell Experiments

Dendrite-Free Recharging

Bai, Brushett, Li, Bazant, submitted (2016)

Mossy Lithium: *Two*-Reaction-Limited Growth (SEI + Li)

Akihiro Kushima,... MZB, Ju Li (MIT) submitted (2016)

3. Beyond Diffusion Limitation: Shock Electrochemistry

Deionization Shock Waves in Porous Media

Bulk

diffusion

"Shock Electrochemistry"

1. Shock Electrodialysis

Schlumberger et al, Env. Sci. Tech. Letters (2015)

Scientists Turn Salt Water Into Drinking Water By Shocking The Salt Out With Electricity

PROCESSING E-NEWS WATER & WASTEWATER

SCIENTISTS DEVELOP DESALINATION METHOD THAT ALSO PURIFIES WATER

2. Shock Electrodeposition

Han et al, *Sci. Reports* (2014); submitted (2016) http://arxiv.org/abs/1505.05604

- Suppression of copper dendrites

- Could this work for Li metal?

4. "Extreme" Flow Batteries

Li-Br₂(-O₂) Flow Battery

Bai & Bazant, J. Mat Chem. A (2015); Electrochimica Acta (2016)

LiBr solubility 11M, 19m; 4.13V Theoretical capacity 791 Wh/kg

- Demonstrated ~10M LiBr, 5M Br2 ~ 360 Wh/kg (need flow)
- "Recharge" Br₂ externally
- Low power (9 mW/cm²) & short lifetime due to LATP membrane decay
- Can also run on dissolved oxygen (tap, seawater) at 3 mW/cm²
 ~ state-of-art Li-air batteries!
- Maybe go membraneless?

Membraneless H₂-Br₂ Flow Batteries

Conclusions

- Li-ion batteries
 - Nanoparticles: suppressed phase separation
 - Mosaic instability: flat voltage, Li plating risk
 - Paradigm shift: bulk properties \rightarrow interfaces
- Li-metal batteries
 - Short-causing "dendrites" can be avoided
 - "Mossy" Li from SEI+Li: can block, but \rightarrow capacity fade
- Flow batteries
 - Low cost energy storage
 - Maybe also for transportation?

Theory of Chemical Kinetics and Charge Transfer Based on Nonequilibrium Thermodynamics

M. Z. Bazant, Accounts of Chemical Research (2013)

Free energy functional

$$G = \int \left(\overline{g}(c) + \frac{1}{2} \nabla c \cdot K \nabla c + \frac{1}{2} \sigma : \varepsilon + \dots \right) dV + \oint \gamma(c, \hat{n}) dA$$

Diffusional chemical potential and activity

$$\mu_i = \frac{\delta G}{\delta c_i} = k_B T \ln a_i = \mu^{\Theta}_i + \overline{g}'(c) - \nabla \cdot K \nabla c + U : \sigma + \dots$$

Cahn-Hilliard Equation
$$\frac{\partial c}{\partial t} + \nabla \cdot F = 0, \quad F = -Mc\nabla\mu \qquad \hat{n} \cdot \kappa \nabla c = \frac{\partial \gamma}{\partial c}$$

Nernst Equation

$$\Delta \phi_{eq} = \Delta \phi^{\Theta} + \frac{k_B T}{ne} \ln \frac{a_O a_e^n}{a_R} \qquad \hat{n} \cdot eF = I$$

 $\eta = \Delta \phi - \Delta \phi_{eq}$

Butler-Volmer Equation

$$I = \gamma_{\dagger}^{-1} a_{R}^{\alpha} \left(a_{O}^{\alpha} a_{e}^{n} \right)^{1-\alpha} \left(e^{-\alpha_{c} \tilde{\eta}} - e^{\alpha_{a} \tilde{\eta}} \right)$$

Solid Solution is Stabilized by Reactions

