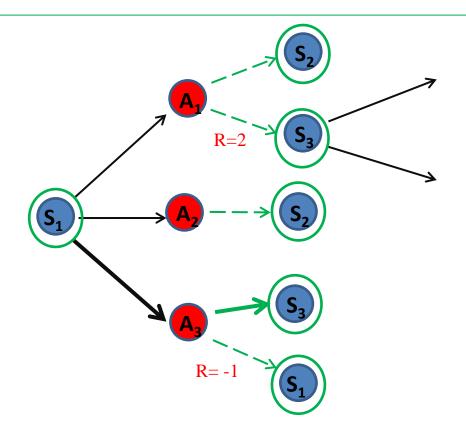
Model-Free Methods

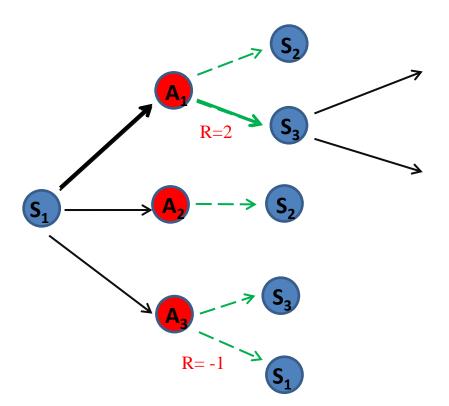
Model-Free Methods

Model-based: use all branches



In model-based we update $V_{\pi}(S)$ using all the possible S' In model-free we take a step, and update based on this sample

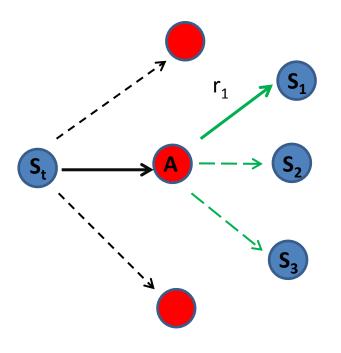
Model-based: use all branches



In model-free we take a step, and update based on this sample

$$\langle \mathsf{V} \rangle \leftarrow \langle \mathsf{V} \rangle + \alpha (\mathsf{V} - \langle \mathsf{V} \rangle)$$
$$\mathsf{V}(\mathsf{S}_1) \leftarrow \mathsf{V}(\mathsf{S}_1) + \alpha [\mathsf{r} + \gamma \mathsf{V}(\mathsf{S}_3) - \mathsf{V}(\mathsf{S}_1)]$$

On-line: take an action A, ending at S_1



$$V(s_t) \leftarrow V(s_t) + \alpha \Big[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \Big].$$

$$\langle V \rangle \leftarrow \langle V \rangle + \alpha (V - \langle V \rangle)$$

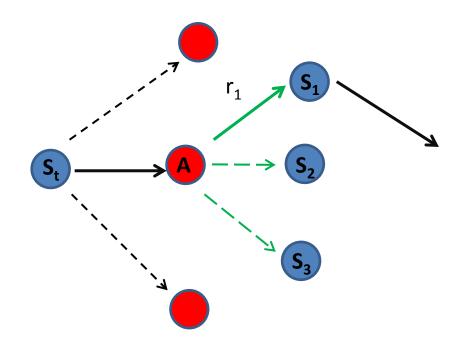
TD Prediction Algorithm

Terminology: Prediction -- computing $V_{\pi}(S)$ for a given π

Initialize V(s) arbitrarily, π to the policy to be evaluated Repeat (for each episode): Initialize sRepeat (for each step of episode): $a \leftarrow \text{action given by } \pi$ for sTake action a; observe reward, r, and next state, s' $V(s) \leftarrow V(s) + \alpha [r + \gamma V(s') - V(s)]$ $s \leftarrow s'$ until s is terminal

> Prediction error: $[r + \gamma V(S') - V(S)]$ Expected : V(S), observed: $r + \gamma V(S')$

Learning a Policy: Exploration problem: take an action A, ending at S₁



$$V(s_t) \leftarrow V(s_t) + \alpha \Big[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \Big].$$

Update S_t then update S_1 May never explore the alternative actions to A

From Value to Action

- Based on V(S), action can be selected
- 'Greedy' selection is not good enough (Select action A with current max expected future reward)
- Need for 'exploration'
- For example: 'ε-greedy'
- Max return with $p = 1-\varepsilon$, and with $p = \varepsilon$ one of the other actions
- Can be a more complex decision
- Done here in episodes

TD Policy Learning

Initialize V(s) arbitrarily, π to the policy to be evaluated Repeat (for each episode): Initialize sRepeat (for each step of episode): $a \leftarrow action given by \quad \varepsilon$ -greedy Take action a; observe reward, r, and next state, s' $V(s) \leftarrow V(s) + \alpha [r + \gamma V(s') - V(s)]$ $s \leftarrow s'$ until s is terminal

 ϵ -greedy performs exploration

Can be more complex, e.g. changing ϵ with time or with conditions

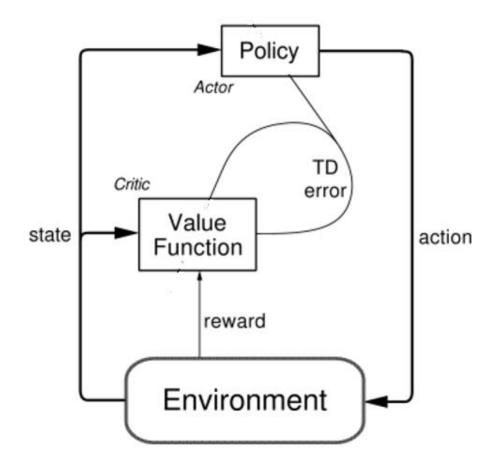
TD 'Actor-Critic'

Terminology: Prediction is the same as policy evaluation. Computing $V_{\pi}(S)$

Initialize V(s) arbitrarily, π to the policy to be evaluated Repeat (for each episode): Initialize sRepeat (for each step of episode): $a \leftarrow action$ given by 'actor' Take action a; observe reward, r, and next state, s' $V(s) \leftarrow V(s) + \alpha [r + \gamma V(s') - V(s)]$ $s \leftarrow s'$ until s is terminal

Motivated by brain modeling

'Actor-critic' scheme -- standard drawing



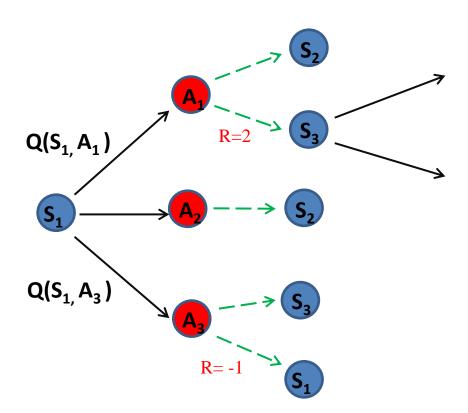
Motivated by brain modeling

(E.g. Ventral striatum is the critic, dorsal striatum is the actor)

Q-learning

• The main algorithm used for model-free RL

Q-values (state-action)



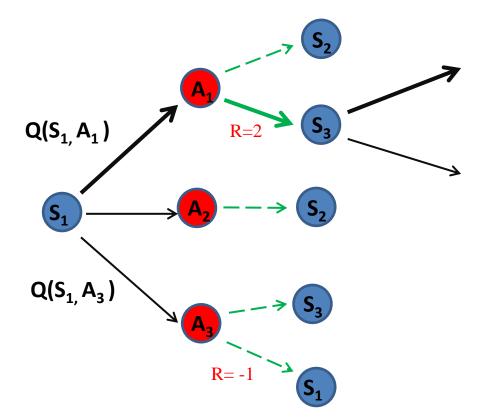
 Q_{π} (S,a) is the expected return starting from S, taking the action a, and thereafter following policy π

Q-value (state-action)

- The same update is done on Q-values rather than on V
- Used in most practical algorithms and some brain models
- Q_{π} (S,a) is the expected return starting from S, taking the action a, and thereafter following policy π :

$$Q^{\pi}(s,a) = E_{\pi}\{R_t | s_t = s, a_t = a\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}.$$

Q-values (state-action)



$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \Big[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \Big]$$

SARSA

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \Big[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \Big].$$

It is called SARSA because it uses s(t) a(t) r(t+1) s(t+1) a(t+1) A step like this uses the current π , so that each S has its a = $\pi(S)$

SARSA RL Algorithm

Epsilon greedy: with probability epsilon do not select the greedy action, but with equal probability among all actions

On Convergence

- Using episodes:
- Some of the states are '*terminals*'
- When the computation reaches a terminal s, it stops.
- Re-starts at a new state s according to some probability
- At the starting state, each action has a non-zero probability (exploration)
- As the number of episodes goes to infinity, Q(S,A) will converge to Q^{*}(S,A).