Model-Free Methods

Model-based: use all branches

In model-based we update V_(S) using all the possible S’
In model-free we take a step, and update based on this sample

Model-based: use all branches

- ®
.// /
> @

e

@ -8 ©
\‘//7‘
~
~

6

In model-free we take a step, and update based on this sample

R=-1

V> & <\V>+a(V-<V>)
V(S;) € V(S +a [r+yV(S;)-V(S,)]

On-line: take an action A, ending at S,

'
®—® ©
> N
N
N

s

//
'
/ rl/
' d
'
7
'
N
N
N

pEY

Vise) «— V(se) + [T'r+1 + 7V (st41) — 1(1‘%)]

V> & <>+ a (V-<V>)

TD Prediction Algorithm

Terminology: Prediction -- computing V_(S) for a given it

Initialize V'(s) arbitrarily, = to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by w for s
Take action a; observe reward, r. and next state, s
Vi(s) — V(s) + «a [r +~V(s") — I{a)]
§— &

until s is terminal

Prediction error: [r +yV(S') = V(S)]

Expected : V(S), observed: r+yV(S')

Learning a Policy: Exploration problem:
take an action A, ending at S,

/
'
7’
' d
'
/
/

0—>0——»0
W@
N

N

N

Visy) « Vis) + [7"r+1 + YV (8t41) — 1“‘)]

Update S, then update S;
May never explore the alternative actions to A

From Value to Action

Based on V(S), action can be selected

‘Greedy’ selection is not good enough
(Select action A with current max expected future reward)

Need for ‘exploration’

For example: ‘e-greedy’
Max return with p = 1-g, and with p=€ one of the other actions

Can be a more complex decision

Done here in episodes

TD Policy Learning

Initialize V'(s) arbitrarily, = to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by e-greedy
Take action a; observe reward, r. and next state, s
Vi(s) — V(s) + «a [r +~V(s") — I{a)]
§— &

until s is terminal

e-greedy performs exploration
Can be more complex, e.g. changing € with time or with conditions

TD ‘Actor-Critic’

Terminology: Prediction is the same as policy evaluation. Computing V_(S)

Initialize V'(s) arbitrarily, = to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by ‘actor’
Take action a; observe reward, r. and next state, s
Vi(s) — V(s) + «a [r +~V(s") — I{a)]
§— &

until s is terminal

Motivated by brain modeling

‘Actor-critic’ scheme -- standard drawing

»| Policy
Actor
N TD
Critic error
Value
state p—# : '
Function action
reward

—(Environment j«

Motivated by brain modeling
(E.g. Ventral striatum is the critic, dorsal striatum is the actor)

Q-learning

* The main algorithm used for model-free RL

Q-values (state-action)

Q,, (S,a) is the expected return starting from S, taking the action a, and
thereafter following policy 1

Q-value (state-action)

The same update is done on Q-values rather thanon V
Used in most practical algorithms and some brain models

Q,, (S,a) is the expected return starting from S, taking the action a, and
thereafter following policy m:
8y =28, (y :(r}.

OC

Q"(s,a) = E.{R/|s;=s,a;, = a} = E. {zf,-*';--,_m,

k=0

Q-values (state-action)

//7‘
‘/ /
=@

Q(s, V
\

o @ @

Qs a1) — Qs a) + [THI +7Q(8141, ap11) — Q(s4, a.t_)].

SARSA

Q(81,ar) — Q(s1,a4) + [J'r.+1 +YQ(Ser15 A1) — Qi a4) |-

It is called SARSA because it uses s(t) a(t) r(t+1) s(t+1) a(t+1)
A step like this uses the current i, so that each S has its a =
(S)

SARSA RL Algorithm

Initialize (Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s’ using policy derived from @ (e.g.., e-greedy)
Q(s,a) — Q(s,a) + a[r +vQ(s',a') — Q(s,a)]
s—8:a+—a
until s is terminal

Epsilon greedy: with probability epsilon do not select the greedy action, but
with equal probability among all actions

On Convergence

Using episodes:

Some of the states are ‘terminals’

When the computation reaches a terminal s, it stops.

Re-starts at a new state s according to some probability

At the starting state, each action has a non-zero probability (exploration)

As the number of episodes goes to infinity, Q(S,A) will converge to

Q'(S,A).

