
Reinforcement Learning 1  



Agent learning to act in an unknown 
environment  



Reinforcement Learning Setup  

St 



Background and setup  

• The environment is initially unknown or partially known  

• It is also stochastic, the agent cannot fully predict what will 
happen next  

 

• What is a ‘good’ action to select under these conditions?  

• Animals learning seeks to maximize their reward 

 



Background and setup  

 
• The reward, or some of it, can come at the end of a long 

sequence  

•   

• Finding good actions that will lead to high overall expected 
reward 

 



Formal Setup  

 
• The agent is in one of a set of states, {S1, S2,…Sn } 

 

• At each state, it can take an action from a set of available actions {A1, 
A2,…Ak} 

 

• From state Si taking action Aj –  

• A new state Sj and a possible reward 
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Stochastic transitions  



The consequence of an action: 

• (S,A) → (S', R)  

  

• Governed by:  

  

• P(S' | S, A) 

• P(R | (S, A, S')  

 

• These probabilities are properties of the world.  (‘Contingencies’)  

 

• An assumption that the transitions are Markovian   



Policy  

• The goal is to learn a policy π: S → A  

 

• The policy determines the future of the agent:   

S1 S2 S3 A2 A1 
A3 

π π π 



In this graph, for each state we draw all the actions of this states, so 
actions can appear multiple times. This is necessary, since transitions 
depend on the pair (s,a). The yellow arrows point here to Rewards.   

MDP with 3 states and 2 actions  



Model-based RL  

 
• Model-based methods: 
• We assume that:  

 
• P(S' | S, A) 
• P(R | (S, A, S')  

 
• Are known and can be used in the planning  

 
• Model-free methods  
• The ‘contingencies’ are not known  
• Need to be learned by exploration as a part of policy learning    
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Step 1 defining Vπ(S)  

• Start from S and just follow the policy π 

• We find ourselves in state S(1) and reward rr  etc. 

 

• Vπ(S)  = < r1 + γ r2  +  γ2 r3  +  …  >       

 

• The expected (discounted) reward from S on.  

 

 



Step 2: equations for V(S)  

• Vπ(S)  = < r1 + γ r2  +  γ2 r3  +  …  >  

 

• = Vπ(S)  = < r1 + γ  (r2  +  γ r3  +  … )  >   

 

• =  < r1 + γ V(S')   >  

 

• These are equations relating V(S) for different states.  

 

• Next write the explicitly in terms of the known parameters 
(contingencies):  

 



A 

S1 

 S 

S3 

S2 

r1 

r3 

r2 

Equations for V(S)   

• Vπ(S)  = < r1 + γ Vπ (S')   >  
 

• Vπ(S)  =  Σ(S') p(S'|S,a)  [r(S, a, S') +  γ Vπ (S')  ]  
•   
• E.g.:  
• Vπ(S) =  [ 0.2 (r1 + γVπ (S1)  + 0.5 (r2 + γVπ (S2)  + 0.3 (r3 + γVπ (S3)  ] 

 
• Linear equations, the unknowns are V(Si)  



Improving the Policy  

 
• Given the policy π, we can find the values Vπ(S) 

• Solving the linear equations, can do this iteratively 

• Guaranteed convergence, the system is strongly diagonally dominant.    

 

 

• Given V(S), we can improve the policy:  

 

 

 

• We can combine these steps to find the optimal policy  
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Improving the policy 



Value Iteration  

learning V and π when the ‘contingencies’ are 

known:  



Value Iteration Algorithm  

Value iteration is used in the problem set 
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At the optimal policy:   

The action A selected by π will be the best action to choose  



Bellman Equation 
(Dynamic Programming)   

The unknowns are V*(S), but the equations are non 

linear  

 

The value iteration algorithm solves the equations  

Vπ(S)  =  Σ(S') p(S'|S,a)  [r(S, a, S') +  γ Vπ (S')  ]  


