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Songbirds learn to sing by imitating their parents
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Overview

• The songbird as a model system for understanding how the brain 

generates and learns complex sequential behaviors

• Review some current understanding of the mechanisms of song 

production

• Describe progress in elucidating the role of cortical and basal ganglia 

circuits in song learning.

• Some speculations on how insights from the songbird may inform our 

understanding of mammalian BG function



A circuit for vocal production
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HVC neurons burst throughout the song

Lynch, Okubo and Fee, in 

preparation

 Leonardo and Fee  (J Neurosci, 2004)  
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Introduction 

HVC is a premotor area necessary for stereotyped adult song. 

[4] Vu et al. (J. Neurosci. 1998) 

[5] Long & Fee (Nature, 2008)    

Songbirds learn and produce a complex sequence of vocal 

gestures. 
•Zebra finches learn to sing by imitation 

•Adults birds sing a precise, highly stereotyped song 

•This learned requires precise motor control with10ms temporal resolution 

 

• Projection neurons in HVC burst 

sparsely during  singing in adults [1]. 

• Different neurons are active at different 

times 

• Lesions of HVC eliminate stereotyped 

elements of song [2,3]. 

• Disrupting HVC activity disrupts song 

production [4]. 

• Cooling of HVC stretches stereotyped 

components of the song [5]. 
Hahnloser et al.  (Nature, 2002)  

[1] Hahnloser et al.  (Nature, 2002)  
[2] Nottebohm et al. (J Comp. Neurol., 1976)   
[3] Aronov et al.  (Science, 2008)  

Two different models of HVC coding have been proposed. 

•It has been previously hypothesized that HVC neurons form a continuous 

chain  of  activity,  or   ‘c

l

ock’ ,  that  drives  motor  activity  [6 ] .  

•This model states HVC is active throughout the song, and that HVC activity 

controls the timing of song. 
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The clock model of HVC coding 

The GTE model of HVC coding  

Discriminating between models 

Here we test the GTE hypotheses with a large 

dataset of HVC neurons. 

[6] Leonardo and Fee (J Neurosci., 2004)    
[7] Amador et al (Nature, 2013) 

The GTE model makes testable predictions about the 

statistics of HVC bursts. 
•The GTE model states that HVC bursts are clustered around GTE times, and 

absent elsewhere [8]. 

•We compare the predictions of this model to a uniform null hypothesis in which 

bursts are randomly placed with uniform probability. 

•Clustering of bursts at GTEs makes specific predictions for 

•The clustering of bursts around GTEs would be reflected in burst 

statistics by an excess of short interburst intervals (IBIs). Long inter-

GTE intervals would produce gaps between bursts, and thus very long 

IBIs. Combined, this would increase the variance and skew of the IBI 

distriubtions compared to the variance and skew expected in the 

uniform null hypothesis. 

•The alignment of burst times to GTE times would be reflected by 

significant cross correlation between burst times and GTE times. 

 

HVC burst activity covers the song 

motif, supporting the clock model. 

Variability in burst density is 

inconsistent with the GTE model 
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Interburst intervals (IBIs) are 

inconsistent with the GTE model 

Bird A: 66 bursts, 40 neurons 

Bird B: 56 bursts, 44 neurons 

Bird C: 91 bursts, 64 neurons 

Bursts are not cross correlated with 

GTEs in the song 

Conclusions 

Bursts are not cross correlated with 

interneuron minima, inconsistent with 

the GTE model 
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• Amador et al. modeled the biophysics of song production as a low              

dimensional system with two control parameters. 

• With a relatively small dataset of projection neurons, Amador et al. observed 

that burst times appeared to be aligned to extrema and discontinuities of 

these control parameters, called gesture trajectory extrema (GTE). 

Weak GTE hypothesis: HVC projection neurons preferentially 

burst around GTEs 

• Amador et al. further concluded that HVC projection neurons burst only at 

GTEs, and nowhere else [7]. 

Strong GTE hypothesis: HVC projection neurons burst around 

GTEs, and nowhere else. 

• The weak GTE hypothesis is not inconsistent with the clock model. 

• The strong GTE hypothesis is incompatible with the clock model, because it 

predicts gaps in HVC activity. 

•The GTE model predicts that HVC burst density 

(#bursts per ms) has large variations 

•  We simulated burst density variance under the 

GTE model and uniform null hypotheses 

•The observed burst densities are highly 

inconsistent with the GTE model and are 

consistent with the null hypothesis 
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Distribution of longest IBIs 
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GTEs for bird C: 

• The GTE model states that interneuron minima should preferentially occur at 

GTEs. 

• Thus interneuron minima should be correlated with projection neuron bursts. 

• We tested this prediction by analyzing 237 minima times from 17 interneurons 

and 66 bursts from 40 projection neurons recorded in a single bird 

• We observe no significant correlation between minima times and burst times. 

 

 Amador et al. (Nature, 2013)  

•We test the GTE hypothesis by looking for these signatures in a large dataset 

of HVC projection neurons 

•We determine the probability of the data under each hypothesis by generating 

surrogate datasets under the uniform null hypothesis and under the GTE 

hypothesis. 
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Cross correlation between HVC bursts and song features 
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Interburst interval distributions 

•We examined various measures of the IBI distribution under the GTE and 

uniform null hypotheses 

•The observed IBI distributions are highly inconsistent with the GTE hypothesis 

and are consistent with the null hypothesis 

•The GTE model states that projection neurons should burst near GTEs. 

•This predicts that GTE times would be cross correlated with bursts times. 

•We are testing this by deriving GTEs from the with published techniques[7,8]. In 

one bird so far, we found no correlation between burst and GTE times. 

• In another bird, we found that acoustic transitions in song are not correlated with 

burst times. 

• We have tested the GTE model with a dataset of 213 bursts from 148 

identified projection neurons in HVC, recorded from three birds. 

• We find that interburst intervals are highly inconsistent with the GTE model, 

and are consistent with a uniform null model. 

• We additionally find that HVC burst times are not correlated with GTE times or 

acoustic transitions in the song. 

• We find that interneuron minima are not significantly correlated with these 

projection neuron bursts. 

• Our findings are highly inconsistent with the strong form of the GTE 

hypothesis. In addition, our data do not reject the uniform null hypothesis, and 

therefore do not support even the weak GTE hypothesis. 

[8] Perl et al (Phys. Rev. E, 2011)    
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Introduction 

HVC is a premotor area necessary for stereotyped adult song. 

[4] Vu et al. (J. Neurosci. 1998) 

[5] Long & Fee (Nature, 2008)    

Songbirds learn and produce a complex sequence of vocal 

gestures. 
•Zebra finches learn to sing by imitation 

•Adults birds sing a precise, highly stereotyped song 

•This learned requires precise motor control with10ms temporal resolution 

 

• Projection neurons in HVC burst 

sparsely during  singing in adults [1]. 

• Different neurons are active at different 

times 

• Lesions of HVC eliminate stereotyped 

elements of song [2,3]. 

• Disrupting HVC activity disrupts song 

production [4]. 

• Cooling of HVC stretches stereotyped 

components of the song [5]. 
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•It has been previously hypothesized that HVC neurons form a continuous 

chain  of  activity,  or   ‘c
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•This model states HVC is active throughout the song, and that HVC activity 

controls the timing of song. 
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The clock model of HVC coding 

The GTE model of HVC coding  

Discriminating between models 

Here we test the GTE hypotheses with a large 

dataset of HVC neurons. 

[6] Leonardo and Fee (J Neurosci., 2004)    
[7] Amador et al (Nature, 2013) 

The GTE model makes testable predictions about the 

statistics of HVC bursts. 
•The GTE model states that HVC bursts are clustered around GTE times, and 

absent elsewhere [8]. 

•We compare the predictions of this model to a uniform null hypothesis in which 

bursts are randomly placed with uniform probability. 

•Clustering of bursts at GTEs makes specific predictions for 

•The clustering of bursts around GTEs would be reflected in burst 

statistics by an excess of short interburst intervals (IBIs). Long inter-

GTE intervals would produce gaps between bursts, and thus very long 

IBIs. Combined, this would increase the variance and skew of the IBI 

distriubtions compared to the variance and skew expected in the 

uniform null hypothesis. 

•The alignment of burst times to GTE times would be reflected by 

significant cross correlation between burst times and GTE times. 

 

HVC burst activity covers the song 

motif, supporting the clock model. 

Variability in burst density is 
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• Amador et al. modeled the biophysics of song production as a low              

dimensional system with two control parameters. 

• With a relatively small dataset of projection neurons, Amador et al. observed 

that burst times appeared to be aligned to extrema and discontinuities of 

these control parameters, called gesture trajectory extrema (GTE). 

Weak GTE hypothesis: HVC projection neurons preferentially 

burst around GTEs 

• Amador et al. further concluded that HVC projection neurons burst only at 

GTEs, and nowhere else [7]. 

Strong GTE hypothesis: HVC projection neurons burst around 

GTEs, and nowhere else. 

• The weak GTE hypothesis is not inconsistent with the clock model. 

• The strong GTE hypothesis is incompatible with the clock model, because it 

predicts gaps in HVC activity. 

•The GTE model predicts that HVC burst density 

(#bursts per ms) has large variations 

•  We simulated burst density variance under the 

GTE model and uniform null hypotheses 

•The observed burst densities are highly 

inconsistent with the GTE model and are 

consistent with the null hypothesis 
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GTEs for bird C: 

• The GTE model states that interneuron minima should preferentially occur at 

GTEs. 

• Thus interneuron minima should be correlated with projection neuron bursts. 

• We tested this prediction by analyzing 237 minima times from 17 interneurons 

and 66 bursts from 40 projection neurons recorded in a single bird 

• We observe no significant correlation between minima times and burst times. 

 

 Amador et al. (Nature, 2013)  

•We test the GTE hypothesis by looking for these signatures in a large dataset 

of HVC projection neurons 

•We determine the probability of the data under each hypothesis by generating 

surrogate datasets under the uniform null hypothesis and under the GTE 

hypothesis. 
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Interburst interval distributions 

•We examined various measures of the IBI distribution under the GTE and 

uniform null hypotheses 

•The observed IBI distributions are highly inconsistent with the GTE hypothesis 

and are consistent with the null hypothesis 

•The GTE model states that projection neurons should burst near GTEs. 

•This predicts that GTE times would be cross correlated with bursts times. 

•We are testing this by deriving GTEs from the with published techniques[7,8]. In 

one bird so far, we found no correlation between burst and GTE times. 

• In another bird, we found that acoustic transitions in song are not correlated with 

burst times. 

• We have tested the GTE model with a dataset of 213 bursts from 148 

identified projection neurons in HVC, recorded from three birds. 

• We find that interburst intervals are highly inconsistent with the GTE model, 

and are consistent with a uniform null model. 

• We additionally find that HVC burst times are not correlated with GTE times or 

acoustic transitions in the song. 

• We find that interneuron minima are not significantly correlated with these 

projection neuron bursts. 

• Our findings are highly inconsistent with the strong form of the GTE 

hypothesis. In addition, our data do not reject the uniform null hypothesis, and 

therefore do not support even the weak GTE hypothesis. 

[8] Perl et al (Phys. Rev. E, 2011)    

10 20 30 40 
0 

20 

40 

60 

80 

Interburst interval (IBI) [ms] 

C
o

u
n

t 

Average IBI distribution for each model 

GTE 

Null 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 
0 

50 

100 

150 

200 

250 

P = .73 

P =.009 

Density variance [bursts2/ms2] 

P
(D

en
si

ty
 

va
ri

an
ce

) 

Bird B 

 Leonardo and Fee  (J Neurosci, 2004)  

Experimental evidence in favor of a clock model and 

  against a gesture trajectory extrema (GTE) model of HVC encoding 
Galen F. Lynch1, Tatsuo Okubo1*, Michael B. Lynn1, Alexander Hanuschkin2, Richard H.R. Hahnloser2, and Michale S. Fee1 

1: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA 

2: Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland  

LLL6 

675.18 

Introduction 

HVC is a premotor area necessary for stereotyped adult song. 

[4] Vu et al. (J. Neurosci. 1998) 

[5] Long & Fee (Nature, 2008)    

Songbirds learn and produce a complex sequence of vocal 

gestures. 
•Zebra finches learn to sing by imitation 

•Adults birds sing a precise, highly stereotyped song 

•This learned requires precise motor control with10ms temporal resolution 

 

• Projection neurons in HVC burst 

sparsely during  singing in adults [1]. 

• Different neurons are active at different 

times 

• Lesions of HVC eliminate stereotyped 

elements of song [2,3]. 

• Disrupting HVC activity disrupts song 

production [4]. 

• Cooling of HVC stretches stereotyped 

components of the song [5]. 
Hahnloser et al.  (Nature, 2002)  

[1] Hahnloser et al.  (Nature, 2002)  
[2] Nottebohm et al. (J Comp. Neurol., 1976)   
[3] Aronov et al.  (Science, 2008)  

Two different models of HVC coding have been proposed. 

•It has been previously hypothesized that HVC neurons form a continuous 

chain  of  activity,  or   ‘c

l

ock’ ,  that  drives  motor  activity  [6 ] .  

•This model states HVC is active throughout the song, and that HVC activity 

controls the timing of song. 

 

*The Nakajima Foundation 

 and NIH Grant #DC009183 

The clock model of HVC coding 

The GTE model of HVC coding  

Discriminating between models 

Here we test the GTE hypotheses with a large 

dataset of HVC neurons. 

[6] Leonardo and Fee (J Neurosci., 2004)    
[7] Amador et al (Nature, 2013) 

The GTE model makes testable predictions about the 

statistics of HVC bursts. 
•The GTE model states that HVC bursts are clustered around GTE times, and 

absent elsewhere [8]. 

•We compare the predictions of this model to a uniform null hypothesis in which 

bursts are randomly placed with uniform probability. 

•Clustering of bursts at GTEs makes specific predictions for 

•The clustering of bursts around GTEs would be reflected in burst 

statistics by an excess of short interburst intervals (IBIs). Long inter-

GTE intervals would produce gaps between bursts, and thus very long 

IBIs. Combined, this would increase the variance and skew of the IBI 

distriubtions compared to the variance and skew expected in the 

uniform null hypothesis. 

•The alignment of burst times to GTE times would be reflected by 

significant cross correlation between burst times and GTE times. 

 

HVC burst activity covers the song 

motif, supporting the clock model. 

Variability in burst density is 

inconsistent with the GTE model 
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Interburst intervals (IBIs) are 

inconsistent with the GTE model 

Bird A: 66 bursts, 40 neurons 

Bird B: 56 bursts, 44 neurons 

Bird C: 91 bursts, 64 neurons 

Bursts are not cross correlated with 

GTEs in the song 

Conclusions 

Bursts are not cross correlated with 

interneuron minima, inconsistent with 

the GTE model 
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• Amador et al. modeled the biophysics of song production as a low              

dimensional system with two control parameters. 

• With a relatively small dataset of projection neurons, Amador et al. observed 

that burst times appeared to be aligned to extrema and discontinuities of 

these control parameters, called gesture trajectory extrema (GTE). 

Weak GTE hypothesis: HVC projection neurons preferentially 

burst around GTEs 

• Amador et al. further concluded that HVC projection neurons burst only at 

GTEs, and nowhere else [7]. 

Strong GTE hypothesis: HVC projection neurons burst around 

GTEs, and nowhere else. 

• The weak GTE hypothesis is not inconsistent with the clock model. 

• The strong GTE hypothesis is incompatible with the clock model, because it 

predicts gaps in HVC activity. 

•The GTE model predicts that HVC burst density 

(#bursts per ms) has large variations 

•  We simulated burst density variance under the 

GTE model and uniform null hypotheses 

•The observed burst densities are highly 

inconsistent with the GTE model and are 

consistent with the null hypothesis 
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Distribution of longest IBIs 
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GTEs for bird C: 

• The GTE model states that interneuron minima should preferentially occur at 

GTEs. 

• Thus interneuron minima should be correlated with projection neuron bursts. 

• We tested this prediction by analyzing 237 minima times from 17 interneurons 

and 66 bursts from 40 projection neurons recorded in a single bird 

• We observe no significant correlation between minima times and burst times. 

 

 Amador et al. (Nature, 2013)  

•We test the GTE hypothesis by looking for these signatures in a large dataset 

of HVC projection neurons 

•We determine the probability of the data under each hypothesis by generating 

surrogate datasets under the uniform null hypothesis and under the GTE 

hypothesis. 
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Interburst interval distributions 

•We examined various measures of the IBI distribution under the GTE and 

uniform null hypotheses 

•The observed IBI distributions are highly inconsistent with the GTE hypothesis 

and are consistent with the null hypothesis 

•The GTE model states that projection neurons should burst near GTEs. 

•This predicts that GTE times would be cross correlated with bursts times. 

•We are testing this by deriving GTEs from the with published techniques[7,8]. In 

one bird so far, we found no correlation between burst and GTE times. 

• In another bird, we found that acoustic transitions in song are not correlated with 

burst times. 

• We have tested the GTE model with a dataset of 213 bursts from 148 

identified projection neurons in HVC, recorded from three birds. 

• We find that interburst intervals are highly inconsistent with the GTE model, 

and are consistent with a uniform null model. 

• We additionally find that HVC burst times are not correlated with GTE times or 

acoustic transitions in the song. 

• We find that interneuron minima are not significantly correlated with these 

projection neuron bursts. 

• Our findings are highly inconsistent with the strong form of the GTE 

hypothesis. In addition, our data do not reject the uniform null hypothesis, and 

therefore do not support even the weak GTE hypothesis. 

[8] Perl et al (Phys. Rev. E, 2011)    

10 20 30 40 
0 

20 

40 

60 

80 

Interburst interval (IBI) [ms] 

C
o
u

n
t 

Average IBI distribution for each model 

GTE 

Null 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 
0 

50 

100 

150 

200 

250 

P = .73 

P =.009 

Density variance [bursts2/ms2] 

P
(D

en
si

ty
 

va
ri

an
ce

) 

Bird B 



Activity of RA neurons during 

singing

Yu and Margoliash, 1996

Motif

Leonardo and Fee, 2005

HVC

RA

Extracellular

recording

electrode



Simple sequence generation circuit

Sparse representation of time

Output

Leonardo and Fee, 2005



Sparse representation of time

Output

Simple sequence generation circuit

Leonardo and Fee, 2005



HVC is the ‘clock’ of the song motor 

pathway

Brain cooling to localize dynamics

np

RA

nXII

HVC
0.0A

0.25A

-0.25A

-0.5A

-0.75A

...

Bilateral cooling of HVC causes 

uniform slowing of the song

5 mm

Long and Fee, Nature 2008



A simple reinforcement model of song 

learning

Song motor 

system
Song Exploratory 

variability

Song evaluation

Auditory 

feedback

Auditory Memory

Doya and Sejnowski, 1989

--

Error/Reinforcement signal



RA

nXII

Motor Pathway

HVC

A separate circuit for song learning

Cortex

LMAN

DLM

Thalamus

Anterior Forebrain Pathway 

(AFP)

•The learning pathway is not necessary for adult song production , but is required 

for learning  (Bottjer, 1984, Scharff and Nottebohm, 1991)

Instructive signal

•Bottjer proposed that the AFP transmits an instructive signal that guides plasticity 

in the motor pathway

Basal Ganglia

Area X
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HVC

Separate premotor pathways for 

stereotyped song and variability

Sequence generator

Variability generator

Kao et al, 2005

Ölveczky et al, 2005

Aronov et al, 2008

Stepanek and Doupe, 2010



RA

nXII

LMAN

HVC

TTX or Muscimol

Separate premotor pathways for 

stereotyped song and variability

Sequence generator

Variability generator

Kao et al, 2005

Ölveczky et al, 2005

Aronov et al, 2008

Stepanek and Doupe, 2010



Transient inactivation of the learning pathway

55 day old bird
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nXII
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HVC

Olveczky, Andalman, and Fee,  2005



LMAN drives exploratory variability in song

LMAN intact

LMAN inactivated
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LMAN intact

250 ms

LMAN inactivated

30 dB

LMAN also drives early song ‘babbling’

Goldberg and Fee, 2011



RA

nXII

LMAN

Motor Pathway

Learning Pathway (AFP)

HVC

HVC lesions abolish all stereotyped song structure



HVC lesions abolish all stereotyped song structure

Pre HVC lesion Post HVC lesion

 Transient pharmacological inactivation of HVC produces the same effect

Aronov, Andalman and Fee, Science 2008,

Subsong bird

Plastic song bird

Adult bird



The basal ganglia are not necessary for 

subsong or vocal variability in juvenile birds

30

dB

Subsong
Pre-lesion

250 ms

Post-lesion

HVC

RA

nXIIts

LMAN

X
DLM X

Goldberg and Fee, 2011

• Lesions of the BG have little or no acute 
effect on juvenile song variability.

• Local cooling in LMAN slow timescales of 
babbling exploratory vocal variability is 
generated by local circuit dynamics within 
LMAN. 
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Separate premotor pathways for 

stereotyped song and variability

HVC

Sequence generator

LMAN

Variability generator

Kao et al, 2005

Ölveczky et al, 2005

Aronov et al, 2008

Stepanek and Doupe, 2010
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LMAN

HVC

Separate premotor pathways for 

stereotyped song and variability

Sequence generator

Variability generator

Kao et al, 2005

Ölveczky et al, 2005

Aronov et al, 2008

Stepanek and Doupe, 2010

Instructive signal
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Separate premotor pathways for 

stereotyped song and variability

Sequence generator

Variability generator

Instructive signal

Area X
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Tchernichovski, Mitra, Lints, Nottebohm, 2001 
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Song learning is slow



Experimental control of song learning
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Conditional auditory feedback drives pitch 

learning

Tumer and Brainard 2007
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Motor parameter space

AFP-driven 

variability

Where does this learning occur in the song 

control circuit?

Motor pathway



Motor parameter space

AFP-driven 

variability

AFP-driven 

bias

Error gradient

(reduced error)

Motor pathway

Where does this learning occur in the song 

control circuit?



Motor parameter space

AFP-driven 

variability

AFP-driven 

bias

Error gradient

(reduced error)

Motor pathway

Plasticity 

in motor 

pathway

Where does this learning occur in the song 

control circuit?



AFP-driven 

bias

Plasticity 

in motor 

pathway
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Where does this learning occur in the song 

control circuit?



during LMAN inactivation
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Does AFP-driven variability become biased to 

reduce vocal errors?

Motor parameter space

AFP-driven 
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Is all song learning mediated by AFP bias?
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AFP bias is highly predictive of motor pathway plasticity 

within the next 24 hours
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Motor parameter space

AFP-driven 

variability

AFP-driven 

bias

motor 

pathway 
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X

How is AFP bias generated?

RA

nXII

HVC

LMAN

• Area X receives an efference copy of variability signals sent to RA.

• If Area X also receives an evaluation signal, then X could figure out which variations 

lead to better song performance.

• Dopaminergic midbrain (VTA) has been shown to signal reward prediction error

• Do X-projecting VTA neurons carry error-related signals?

VTA

Schultz, 2000



A descending pathway from higher-order auditory areas 

to VTA/SNc

AIV
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VTA
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Aud

Keller and Hahnloser, 2008

Gale, Perkel 2008

Mandelblat-Cerf et al, 2014

Retrograde label from VTA

AIV

Ventral Intermediate Arcopallium (AIV)



X

Is AIV necessary for song learning?

nXII

HVC

LMAN

VTA

NeuN

Las, Denisenko, Mandelblat-Cerf, eLife, 2014



Is AIV necessary for song learning?

Bird tutored in 

home cage

AIV lesion
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AIV lesioned pupil #2 – Adult song

Example 1

Example 2

Tutor

AIV lesion produces profound song 

learning deficits



AIV lesions produce profound song 

learning deficits

AIV lesioned –

adult song

Tutor

Lesioned control
Unlesioned control
AIV lesion

Similarity of 

unrelated birds



Do AIV neurons transmit an ‘error’ signal to 

VTA during singing?
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Do AIV neurons transmit an ‘error’ signal to 

VTA during singing?



AIV neurons show error-related signals

Mandelblat-Cerf, Las, Denisenko, under review



A descending pathway from higher-order auditory areas 

to VTA/SNc
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Keller and Hahnloser, 2008
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Mandelblat-Cerf et al, 2014

Retrograde label from VTA

AIV

Ventral Intermediate Arcopallium (AIV)
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How it all works: a hypothesis
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A model of basal ganglia function with 

functionally distinct inputs for context, motor 

efference copy, and reward

The AFP forms a classic 

cortical-BG-thalamo-cortical loop
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A model of basal ganglia function with 

functionally distinct inputs for context, motor 

efference copy, and reward
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Hypothesis for HVC-LMAN synaptic interaction 

on striatal MSNs

HVC on spines

LMAN on 

dendritic shafts
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Serial Block Face Scanning EM

Collaboration with Winfried Denk and Jörgen Kornfeld
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Distinct morphology of HVC and LMAN axons

Michael Stetner

Axonal arbor of LMAN neuron in Area X Axonal arbor of HVC neuron in Area X



MSN HVC-like  LMAN-like

~94% of synapses onto spines are 

from HVC-like axons

Inputs onto MSN spines originate primarily from HVC

Putative LMAN axons

Putative HVC axons



The role of the basal ganglia in songbird 

vocal learning

• LMAN directly drives ‘exploratory variability’ in the song motor pathway.

• LMAN-driven variability becomes biased during learning, in the direction of 

improved song performance.

• We have found evidence that a dopaminergic pathway to the songbird BG may 

carry ‘performance’ error-related information.

• We hypothesize that the basal ganglia determine which song variations lead to 

better performance and bias the variability in the direction of improved 

performance.

• We have proposed a testable model of basal ganglia function that explicitly 

incorporates an efference copy of cortically-generated motor actions.  
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Separate premotor pathways for 

stereotyped song and variability
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LMAN(RA) neurons exhibit premotor correlation 
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Summary

• The AFP can generate a direct premotor bias that reduces vocal errors.

• The learning accumulated across many days of training is encoded 
primarily in plasticity in the motor pathway.

• The contribution of the AFP is limited to the learning that occurred 
most recently (during the same day).

• AFP bias is predictive of subsequent plasticity in the motor pathway 
within the next 24 hours


