
ICA  



ICA:  2-D examples  

Sources 

s1 

s2 

Observations 

x1 

x2 

x = As 

= X 

X2*n  A2*2  S2*n 



Independent Components Analysis 
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If we knew A we could solve for the sources S  

But we have to solve for both  

 

We will look for a solution that will make S independent  



PCA and ICA  



X = AS 

• Getting a simpler form  

 

• We can always express A by SVD as UΣVT  

• U and V are orthonormal and Σ is diagonal  

• (we don’t know any of them) 

• So now X = UΣVT S  

 

• Taking the covariance matrix of the data:  

• XXT  =  UΣVTS  STVΣUT    

• We can assume that SST = I  

• They are independent, therefore uncorrelated.  

• We can assume all of length = 1  

• This is just scaling;  we can scale S and A    

 

 

 

 

 



• X = AS  

• A = UΣVT    (the SVD of A) 

• X = UΣVT S 

 

• XXT  =  UΣVTS  STVΣUT      with SST = I      

• XXT = UΣ2U  

 

With the same U, Σ  we used for A above     

•  XXT  is known, so we can find the U, Σ  of A from the data  

• (by diagonalizing  XXT = U Λ UT ) 

 

 



ICA procedure  

• Looking for X = AS with S independent  

 

• Start by whitening X:  

• Do PCA, then:    X'  ←  Σ-1UT X  

 

• In the new data solve for X’ = VS   

• Both V,S unknown, but V is rotation, and S are independent.   

 

• Search over rotations and test for independence  

 

• For a given V, S is easy to obtain, we need some measure of independence 

 

 

 

 



Whitening the data  

v1 

v2 

Perform PCA  

Re-scale the coordinates by their variance  

 

ICA:  Final step – look for rotation that will make S as 

independent as possible  



Testing for Independence  

• Suppose that a source produces variables (x1 y1)  (x2 y2)..   

• It is straightforward to test if they are correlated or not by Σxiyi = 0  

• In practice, Σxiyi > ε  

• How to test independence? 

 

• Several methods, describe briefly one.   

 

 

 



1-D projection  



Testing independence  

p(y) 

p(x) 

p(x,y) = p(x) p(y)  



• In principle for each pair xi yj verify that p(xi yj) = p(xi) p(yi)  

• We have many pairs, how to use them together in an efficient test   

• We look at the two distributions p(x,y) and q(x,y) = p(x)p(y)  

• We want to test if they the same (or very close)  

 

• How to compare two distributions?  

 



Two distributions – how different are they?  



Testing for Independence  

• Use the KL divergence:     Kullback-Leibler 

• KL(p||q) = Σ [ p log (p/q)] 

• Non-negative, it is 0 only iff they are the same.  

 

• In our case  

• KL [p(x y) || p(x) p(y)]  = Σ [p(x y) log (p(x,y)/p(x) p(y))] =  

• Σp(x,y) log p(x,y)  -  (Σp(x,y) log p(x) + Σp(x,y) log p(y))  

• = -H(p(x,y)) +[H(p(x)) + H(p(y))]   

•   

• ΣHi   -  H 

 

• H is constant, minimize ΣHi  (marginal distribution after rotation)  

        

 



Final step: optimize iteratively over rotation. For each rotation project the data 

on the axes and measure Hi of the projections.  
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Technical difficulties:  

 

• Minimizing ΣHi on all the axes        

• Non-convex, complex, minimization   

 

• Estimating entropy H, requires enough samples, sensitive to outliers  

 

• Various algorithms to optimize the numeric process  

 

• FastICA (Hyvärinen), Proceeds one component at a time, then combines 

them  

 



Equivalent Criterion  

 

• Rotation that maximizes H – ΣHi  also maximizes the “non-Gaussianity” of 

the transformed data.  

•   

• Non-Gaussianity (‘negentropy’): as the Kullback-Leibler divergence of a 

distribution from a Gaussian distribution with equal variance.  

•   

• Non-gaussianity is also measured by Kurtosis  

•   

• Family of algorithms that maximize Kurtosis rather than marginal entropies  

 



Kurtosis  

Non-Gaussianity: Kurtois should be far from 3  

 

A family of algorithms that use Kurtosis rather than marginal entropies 

 

  

 



On Whitening the Data   

• An important step in general, additional comments:  

 

• The data matrix XXT  can be expressed as:   UΛUT 

•   

• Whitening X is:   

• XW = Λ-1/2 UTX 

•   

• We can check:  

• XW XW
T   =   Λ-1/2 UTX  XTU Λ-1/2  

•   

• Substituting XXT  

•   

• Λ-1/2 UT   UΛUT  U Λ-1/2  = I  

 



On Whitening the Data  

• Whitening:       XW = Λ-1/2 UTX 

 

• Regularization:   

• Λ-1/2 is a diagonal matrix with 1/(sqrt λi) on the diagonal  

• This is regularized to 1/(sqrt λi + ε) 

 

• ZCA (zero-phase whitening)  

•   

• Whitening is non-unique.  

• Any rotation will leave it whitened (next slide)  

•   

• Taking in particular U from the data matrix:  

•   

• XZCA =   U Λ-1/2 UTX 

•   

• From all whitened XW, this is the closest to the original X.    
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After whitening, added rotation leaves the data whitened  



Next: Performing the ICA on image patches: 

• The “independent components” of natural scenes are edge filters 

• Bell and Sejnowski Vision Research 1997  


