


ICA: 2-D examples
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Independent Components Analysis

X, =a,,5,+a,,5, +...+a1pSIO

X, =855, +8,,5,+...+8,,5, X

AS

Xp=ay,S +a,5,+...+a,,5,

If we knew A we could solve for the sources S
But we have to solve for both

We will look for a solution that will make S independent



PCA and ICA




X
I

AS

Getting a simpler form

We can always express A by SVD as UXVT
U and V are orthonormal and X 1s diagonal

(we don’t know any of them)
Sonow X =UZVT S

Taking the covariance matrix of the data:
XXT = UXZVTS STviu?

We can assume that SST = |

They are independent, therefore uncorrelated.
We can assume all of length =1

This is just scaling; we can scale S and A



« X=AS
e A=UXVT (the SVD of A)
« X=UXVTS

o XXT = UXVTS STVZUT with SST=1
XXT=Ux2U

With the same U, X we used for A above
« XXT is known, so we can find the U, ¥ of A from the data
* (by diagonalizing XXT=UA UT)



ICA procedure

Looking for X = AS with S independent

Start by whitening X:
Do PCA, then: X' «— ZWUTX

In the new data solve for X’ =VS
Both V,S unknown, but V is rotation, and S are independent.

Search over rotations and test for independence

For a givenV, S is easy to obtain, we need some measure of independence



Whitening the data

Perform PCA
Re-scale the coordinates by their variance

ICA: Final step — look for rotation that will make S as
Independent as possible



Testing for Independence

Suppose that a source produces variables (X; y;) (X, VY,)..

It is straightforward to test if they are correlated or not by Xx;y; = 0
In practice, Xx;y; > ¢

How to test independence?

Several methods, describe briefly one.



1-D projection




Testing independence
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p(X,y) = p(x) p(y)



In principle for each pair x; y; verify that p(x; ;) = p(x;) p(y;)

We have many pairs, how to use them together in an efficient test
We look at the two distributions p(x,y) and q(x,y) = p(x)p(y)

We want to test if they the same (or very close)

How to compare two distributions?



Two distributions — how different are they?

1 2 3 45 6 7 8 910



Testing for Independence

Use the KL divergence: Kullback-Leibler

KL(plla) =X [ p log (p/a)]
Non-negative, it is 0 only iff they are the same.

In our case
KL [p(Xy) [| p(x) p(y)] =Z [p(x y) log (p(X,y)/p(x) p(¥))] =

Xp(x,y) log p(x,y) - (Zp(x,y) log p(x) + Zp(x,y) log p(y))
= -H(p(x,y)) +[H(p(x)) + H(p(y))]
SH, - H

H is constant, minimize XH; (marginal distribution after rotation)



Final step: optimize iteratively over rotation. For each rotation project the data
on the axes and measure Hi of the projections.



Technical difficulties:

Minimizing XH; on all the axes
Non-convex, complex, minimization

Estimating entropy H, requires enough samples, sensitive to outliers
Various algorithms to optimize the numeric process

FastlCA (Hyvérinen), Proceeds one component at a time, then combines
them



Equivalent Criterion

Rotation that maximizes H — XH; also maximizes the “non-Gaussianity” of
the transformed data.

Non-Gaussianity (‘negentropy’): as the Kullback-Leibler divergence of a
distribution from a Gaussian distribution with equal variance.

Non-gaussianity is also measured by Kurtosis

Family of algorithms that maximize Kurtosis rather than marginal entropies



Kurtosis

Higher order moments (4%-kurtosis)
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Non-Gaussianity: Kurtois should be far from 3

A family of algorithms that use Kurtosis rather than marginal entropies



On Whitening the Data

An important step in general, additional comments:
The data matrix XXT can be expressed as: UAUT

Whitening X is:
XW :A-1/2 UTX

We can check:
Xy X! = AT2UTX XTU A2

Substituting XXT

A-1/2 UT UAUT UA-1/2 = |



On Whitening the Data

Whitening: X,y = A2 UTX

Regularization:

A2 is a diagonal matrix with 1/(sqrt Ai) on the diagonal
This is regularized to 1/(sqrt A; + €)

ZCA (zero-phase whitening)

Whitening is non-unique.
Any rotation will leave it whitened (next slide)

Taking in particular U from the data matrix:
Xoea= UA2UTX

From all whitened X,,, this is the closest to the original X.
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After whitening, added rotation leaves the data whitened



Next: Performing the ICA on image patches:

* The “independent components” of natural scenes are edge filters
« Bell and Sejnowski Vision Research 1997



