Unsupervised learning

* General introduction to unsupervised learning






Special directions

These are special directions we will try to find.



Best direction u: -1

1. Minimize: 2d.?
;" u is the projection length

2. Maximize: X (x,"u)?

u is the direction that maximizes the variance



Finding the best projection:

Find u that maximize: X (x;'u)?

(xi'u)? = (U™) (xTu)

max X (U'x;) (X,"u) = max u'[V]u

where: [V] = Z(X; x;")



The data matrix:



Best direction u

*  Will minimize the distances from it
«  Will maximize the variance along it

Max(u): u"[V]u subjectto: |u| =1

With Lagrange multipliers:

Maximize uT[V]u - AuTu—1) d/dx (x" U x) = 2Ux
Derivative with respect to the vector u: d/dx (xT x) = 2x
[Vlu-2u=0

[V]u=

The best direction will be the first eigenvector of [V]



Best direction u:

The best direction will be the first eigenvector of [V]; u, with variance A,
The next direction will be the second eigenvector of [V]; U, with variance A,

The Principle Components will be the eigenvectors of the data matrix



PCs, Variance and Least-Squares

The first PC retains the greatest amount of variation in the
sample

The kt PC retains the k™ greatest fraction of the variation in
the sample

The k™ largest eigenvalue of the correlation matrix C is the
variance in the sample along the k" PC

The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones



Dimensionality Reduction

Can ignore the components of lesser significance.
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You do lose some information, but if the eigenvalues are small, you
don'’t lose much

— n dimensions in original data

— calculate n eigenvectors and eigenvalues

— choose only the first k eigenvectors, based on their eigenvalues
— final data set has only k dimensions



PC dimensionality reduction

In the linear case only




PCA and correlations

« We can think of our data points as k points
from a distribution p(x)

* We have k samples (X; y,) (X, ¥,)... ... (X Vi)



PCA and correlations

» We have k samples (X; y;) (X, ¥,)... ... (X Vi)
* The correlation between(x,y) is: E [ (X-Xo) (Y —Yo) / o, 0 ]

» For centered variables, x,y are uncorrelated if E(xy) =0
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Correlation depends on the coordinates:

(x,y) are correlated, (v, v,) are not



In the PC coordinates, the variables are uncorrelated

The projection of a point x; on v, is:  X;Tv, (or v,Tx; ).
The projection of a point x; on v, is: X"V,

For the correlation, we take the sum: X; (v,"x;) (X;"V, )

= TV ™ X'V, = v;TCv,

Where C = XTX. (the data matrix)

Since the v; are eigenvectors of C, Cv, =V,
viTCvVv,=2%, v;TVv,=0

The variables are uncorrelated.

This is a result of using as coordinates the eigenvectors of the correlation
matrix C = XTX.



In the PC coordinates the variables are uncorrelated

The correlation depends on the coordinate system. \WWe can start with

variables (x,y) which are correlated, transform them to (X', y') that will be
un-correlated

If we use the coordinates defined by the eigenvectors of XXT the

variables (or the vectors x; of n projections on the i'th axis) will be
uncorrelated.



Properties of the PCA

The subspace spanned by the first k PC retains the maximal variance
This subspace minimized the distance of the points from the subspace

The transformed variables, which are linear combinations of the original
ones, are uncorrelated.



Best plane, minimizing perpendicular distance over all planes



Eigenfaces: PC of face images

« Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive
Neuroscience 3 (1991) 71-86.



Image Representation

e Training set of m images of size N*N are
represented by vectors of size N?

X1,X2,X3,..,Xpm

Example
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Average Image and Difference Images

* The average training set is defined by

u=(1/m) 3™ X,

* Each face differs from the average by vector



Covariance Matrix

 The covariance matrix is constructed as

C = AA" where A=[r,,...,I]

Size of this matrix is N2 x N2

« Finding eigenvectors of N2x N2 matrix is intractable. Hence, use the matrix
ATA of size m x m and find eigenvectors of this small matrix.



Face data matrix:

YVYY

m XT
m
N2
X N2
vV VvV
XXTis N2* N2 XTXism*m



Eigenvectors of Covariance Matrix

Consider the eigenvectors v; of ATA such that
ATAVY; = v,

Pre-multiplying both sides by A, we have
AAT(AV) = pi(Av)

Av; is an eigenvector of our original AAT

Find the eigenvectors v; of the small ATA

Get the ‘eigen-faces’ by Ay,



Face Space

« u,resemble facial images which look ghostly, hence called Eigenfaces



Projection into Face Space

« A face image can be projected into this face space by

P = UT(X — 1)

Rows of UT are the eigenfaces
p, are the m coefficients of face x,

This is the representation of a face using eigen-faces

This representation can then be used for recognition
using different recognition algorithms



Recognition in ‘face space’

Turk and Pentland used 16 faces, and 7 pc
In this case the face representation p:
P, = UT(x,— ) is 7-long vector

Face classification:

Several images per face-class.

For a new test image |: obtain the representation p,
Turk-Pentland used simple nearest neighbor

Find NN in each class, take the nearest,

s.t. distance < g, otherwise result is ‘'unknown’

Other algorithms are possible, e.g. SVM



Face detection by ‘face space’

Turk-Pentland used ‘faceness’ measure:

Within a window, compare the original image with its reconstruction
from face-space

Find the distance € between the original image x and its reconstructed
Image from the eigenface space, Xx;,

€2 = || X —X¢||> , where x,=Up+ u (reconstructed face)

If € <0 for a threshold 0
A face is detected in the window

Not ‘state-of-the-art and not fast enough
Eigenfaces in the brain?



Next: PCA by Neurons



