
Unsupervised learning

• General introduction to unsupervised learning

PCA

Special directions

These are special directions we will try to find.

:uBest direction

Xi

u xi
T u is the projection length

di

1. Minimize: Σdi
2

2. Maximize: Σ (xi
Tu)2

is the direction that maximizes the variance u

|u|2 = 1

Xi

u
di

Find u that maximize: Σ (xi
Tu)2

) u Tx) (xTu= (2)uT
ix(

max Σ (uTxi) (xi
T u) [V] u Tu= max

where: [V] = Σ(xi xi
T)

Finding the best projection:

The data matrix:

[V] =

[V] = Σ(xi xi
T) = XXT

X

XT

uBest direction

• Will minimize the distances from it

• Will maximize the variance along it

Max(u): uT [V] u subject to: |u| = 1

With Lagrange multipliers:

Maximize uT [V] u - λ(uT u – 1)

Derivative with respect to the vector u:

[V]u – λu = 0

[V]u = λu

The best direction will be the first eigenvector of [V]

d/dx (xT U x) = 2Ux

d/dx (xT x) = 2x

Best direction u:
Xi

u
di

The best direction will be the first eigenvector of [V]; u1 with variance λ1

The next direction will be the second eigenvector of [V]; u2 with variance λ2

The Principle Components will be the eigenvectors of the data matrix

PCs, Variance and Least-Squares

• The first PC retains the greatest amount of variation in the

sample

• The kth PC retains the kth greatest fraction of the variation in

the sample

• The kth largest eigenvalue of the correlation matrix C is the

variance in the sample along the kth PC

• The least-squares view: PCs are a series of linear least

squares fits to a sample, each orthogonal to all previous ones

0

5

10

15

20

25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

V
ar

ia
n

ce
 (

%
)

Dimensionality Reduction

Can ignore the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you

don’t lose much

– n dimensions in original data

– calculate n eigenvectors and eigenvalues

– choose only the first k eigenvectors, based on their eigenvalues

– final data set has only k dimensions

Scree plot

PC dimensionality reduction

In the linear case only

PCA and correlations

• We can think of our data points as k points

from a distribution p(x)

• We have k samples (x1 y1) (x2 y2)… …(xk yk)

PCA and correlations

• We have k samples (x1 y1) (x2 y2)… …(xk yk)

• The correlation between(x,y) is: E [(x-x0) (y – y0) / σx σy]

• For centered variables, x,y are uncorrelated if E(xy) = 0

v1

v2

Correlation depends on the coordinates:

(x,y) are correlated, (v1 v2) are not

In the PC coordinates, the variables are uncorrelated

• The projection of a point xi on v1 is: xi
Tv1 (or v1

Txi).

• The projection of a point xi on v2 is: xi
Tv2

• For the correlation, we take the sum: Σi (v1
Txi) (xi

Tv2)

• = Σi v1
Txi xi

Tv2 = v1
T C v2

• Where C = XTX. (the data matrix)

• Since the vi are eigenvectors of C, C v2 = λ2 v2

•

• v1
T C v2 = λ2 v1

T v2 = 0

• The variables are uncorrelated.

• This is a result of using as coordinates the eigenvectors of the correlation
matrix C = XTX.

In the PC coordinates the variables are uncorrelated

• The correlation depends on the coordinate system. We can start with

variables (x,y) which are correlated, transform them to (x', y') that will be

un-correlated

• If we use the coordinates defined by the eigenvectors of XXT the

variables (or the vectors xi of n projections on the i'th axis) will be

uncorrelated.

Properties of the PCA

• The subspace spanned by the first k PC retains the maximal variance

• This subspace minimized the distance of the points from the subspace

• The transformed variables, which are linear combinations of the original

ones, are uncorrelated.

Best plane, minimizing perpendicular distance over all planes

Eigenfaces: PC of face images

• Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive

Neuroscience 3 (1991) 71–86.

Image Representation

• Training set of m images of size N*N are
represented by vectors of size N2

 x1,x2,x3,…,xM

 Example

33
154

213

321




















19
1

5

4

2

1

3

3

2

1







































Need to be well aligned

Average Image and Difference Images

• The average training set is defined by

 m= (1/m) ∑m
i=1 xi

• Each face differs from the average by vector

 ri = xi – m

Covariance Matrix

• The covariance matrix is constructed as

 C = AAT where A=[r1,…,rm]

• Finding eigenvectors of N2 x N2 matrix is intractable. Hence, use the matrix
ATA of size m x m and find eigenvectors of this small matrix.

Size of this matrix is N2 x N2

Face data matrix:

 XXT is N2 * N2

X

XT m

m

N2

N2

XTX is m * m

Eigenvectors of Covariance Matrix

• Consider the eigenvectors vi of ATA such that

 ATAvi = mivi

• Pre-multiplying both sides by A, we have

 AAT(Avi) = mi(Avi)

• Avi is an eigenvector of our original AAT

• Find the eigenvectors vi of the small ATA

• Get the ‘eigen-faces’ by Avi

Face Space

• ui resemble facial images which look ghostly, hence called Eigenfaces

Projection into Face Space

• A face image can be projected into this face space by

 pk = UT(xk – m)

Rows of UT are the eigenfaces

 pk are the m coefficients of face xk

This is the representation of a face using eigen-faces

This representation can then be used for recognition

using different recognition algorithms

Recognition in ‘face space’

• Turk and Pentland used 16 faces, and 7 pc

• In this case the face representation p:

• pk = UT(xk – m) is 7-long vector

• Face classification:

• Several images per face-class.

• For a new test image I: obtain the representation pI

• Turk-Pentland used simple nearest neighbor

• Find NN in each class, take the nearest,

• s.t. distance < ε, otherwise result is ‘unknown’

• Other algorithms are possible, e.g. SVM

Face detection by ‘face space’

• Turk-Pentland used ‘faceness’ measure:

• Within a window, compare the original image with its reconstruction

from face-space

• Find the distance Є between the original image x and its reconstructed
image from the eigenface space, xf,

 Є2 = || x – xf ||
2 , where xf = Up + μ (reconstructed face)

• If ε < θ for a threshold θ

• A face is detected in the window

• Not ‘state-of-the-art and not fast enough

• Eigenfaces in the brain?

Next: PCA by Neurons

