
Unsupervised learning  

• General introduction to unsupervised learning  

 



PCA  



Special directions  

These are special directions we will try to find.  
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Finding the best projection:  



The data matrix: 

[V]  =  

[V]  =  Σ(xi xi
T)    = XXT  

 

X 

XT  



uBest direction  

• Will minimize the distances from it  

• Will maximize the variance along it  

Max(u):  uT [V] u  subject to: |u| = 1  

  

 

 
With Lagrange multipliers:  

  

Maximize  uT [V] u  -  λ(uT u – 1)  

Derivative with respect to the vector u:  

[V]u – λu = 0  

[V]u =  λu 

The best direction will be the first eigenvector of [V]  

d/dx (xT U x) = 2Ux 

   

d/dx (xT x) = 2x 



Best direction u: 
Xi 

u 
di 

The best direction will be the first eigenvector of [V];  u1 with variance λ1 

  

The next direction will be the second eigenvector of [V];  u2 with variance λ2 

  

The Principle Components will be the eigenvectors of the data matrix  

   



PCs, Variance and Least-Squares 

• The first PC retains the greatest amount of variation in the 

sample 

• The kth PC retains the kth greatest fraction of the variation in 

the sample 

• The kth largest eigenvalue of the correlation matrix C is the 

variance in the sample along the kth PC 

 

 

• The least-squares view: PCs are a series of linear least 

squares fits to a sample, each orthogonal to all previous ones  
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Dimensionality Reduction 

Can ignore the components of lesser significance.  

 

  

 

 

 

 

 
You do lose some information, but if the eigenvalues are small, you 

don’t lose much 

– n dimensions in original data  

– calculate n eigenvectors and eigenvalues 

– choose only the first k eigenvectors, based on their eigenvalues 

– final data set has only k dimensions 

Scree plot  



PC dimensionality reduction  

In the linear case only  



PCA and correlations 

• We can think of our data points as k points 

from a distribution p(x)  

 

• We have k samples (x1 y1) (x2 y2)… …(xk yk) 

 



PCA and correlations 

• We have k samples (x1 y1) (x2 y2)… …(xk yk)   

• The correlation between(x,y) is:  E [ (x-x0) (y – y0) / σx σy  ] 

 

• For centered variables, x,y are uncorrelated if E(xy) = 0   

 

 

 



v1 

v2 

Correlation depends on the coordinates:  

 

(x,y) are correlated, (v1 v2) are not     



In the PC coordinates, the variables are uncorrelated 

• The projection of a point xi on v1 is:    xi
Tv1    (or v1

Txi ).  

• The projection of a point xi on v2 is:    xi
Tv2    

 

• For the correlation, we take the sum: Σi (v1
Txi)  (xi

Tv2 ) 

 

• =  Σi  v1
Txi  xi

Tv2  =  v1
T C v2   

 

• Where C = XTX.   (the data matrix)  

 

• Since the vi are eigenvectors of C,   C v2  = λ2 v2 

•   

• v1
T C v2 = λ2  v1

T v2 = 0  

 

• The variables are uncorrelated. 

 

• This is a result of using as coordinates the eigenvectors of the correlation 
matrix C = XTX.  

 

 



In the PC coordinates the variables are uncorrelated 

• The correlation depends on the coordinate system. We can start with 

variables (x,y) which are correlated, transform them to (x', y') that will be 

un-correlated 

 

• If we use the coordinates defined by the eigenvectors of XXT the 

variables (or the vectors xi of n projections on the i'th axis) will be 

uncorrelated.  

 



Properties of the PCA  

• The subspace spanned by the first k PC retains the maximal variance 

 

• This subspace minimized the distance of the points from the subspace  

 

• The transformed variables, which are linear combinations of the original 

ones, are uncorrelated.   



Best plane, minimizing perpendicular distance over all planes  



Eigenfaces: PC of face images  

• Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive 

Neuroscience 3 (1991) 71–86. 

 



Image Representation 

• Training set of m images of size N*N are 
represented by vectors of size N2 

   x1,x2,x3,…,xM  
 

 

  Example 
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Need to be well aligned  



Average Image and Difference Images 

• The average training set is defined by   

 

   m= (1/m) ∑m
i=1 xi 

 

 

 

 

  

 

• Each face differs from the average by vector  

 

  ri = xi – m 
  



Covariance Matrix 

• The covariance matrix is constructed as 

 

          C = AAT where A=[r1,…,rm] 

 

 

 

 

 

• Finding eigenvectors of N2 x N2  matrix  is  intractable. Hence, use the matrix 
ATA of size m x m and find eigenvectors of this small matrix. 

 

 

 

      

                                                                            

Size of this matrix is N2 x N2 



Face data matrix: 

 XXT is N2 * N2 

X 

XT  m 

m 

N2 

N2 

XTX is m * m 



Eigenvectors of Covariance Matrix 

•    Consider the eigenvectors vi of ATA such that 

    ATAvi = mivi 

 

•    Pre-multiplying both sides by A, we have     

    AAT(Avi) = mi(Avi) 

 

•   Avi  is an eigenvector of our original AAT  

 

•    Find the eigenvectors vi of the small ATA 

 

•  Get the ‘eigen-faces’ by Avi
 

 



Face Space 

• ui resemble facial images which look ghostly, hence called Eigenfaces 



Projection into Face Space 

• A face image can be projected into this face space by 

 

          pk = UT(xk – m)   

 

Rows of UT are the eigenfaces  

 pk are the m coefficients of face xk  

 

This is the representation of a face using eigen-faces 

 

This representation can then be used for recognition 

using different recognition algorithms  

 

 

  

 



Recognition in ‘face space’  

• Turk and Pentland used 16 faces, and 7 pc 

• In this case the face representation p:  

•  pk = UT(xk – m)  is 7-long vector  

 

• Face classification:  

• Several images per face-class.  

• For a new test image I: obtain the representation pI  

• Turk-Pentland used simple nearest neighbor  

• Find NN in each class, take the nearest,  

• s.t. distance < ε, otherwise result is ‘unknown’  

 

• Other algorithms are possible, e.g. SVM  

  

 



Face detection by ‘face space’  

• Turk-Pentland used ‘faceness’ measure:  

 

• Within a window, compare the original image with its reconstruction 

from face-space  

 

• Find the distance Є between the original image x and its reconstructed 
image from the eigenface space, xf,  

  Є2 = || x – xf ||
2  , where    xf = Up + μ   (reconstructed face) 

 

• If ε < θ for a threshold θ  

• A face is detected in the window  

 

• Not ‘state-of-the-art and not fast enough  

• Eigenfaces in the brain?     

 

 



Next: PCA by Neurons  

 


