Unsupervised learning

General introduction to unsupervised learning

PCA

Special directions

These are special directions we will try to find.

Best direction <u>u</u>:

$$|\underline{\mathbf{u}}|^2 = 1$$

1. Minimize: Σd_i²

 $\underline{x}_{i}^{T} \underline{u}$ is the projection length

2. Maximize: $\Sigma (\underline{x}_i^T \underline{u})^2$

<u>u</u> is the direction that maximizes the variance

Finding the best projection:

Find u that maximize: $\sum (\underline{x}_i^T \underline{u})^2$

$$(\underline{\mathbf{x}}_{\mathbf{i}}^{\mathsf{T}}\underline{\mathbf{u}})^2 = (\underline{\mathbf{u}}^{\mathsf{T}}\underline{\mathbf{x}}) (\underline{\mathbf{x}}^{\mathsf{T}}\,\underline{\mathbf{u}})$$

$$\max \Sigma (\underline{u}^{T}\underline{x}_{i})(\underline{x}_{i}^{T}\underline{u}) = \max \underline{u}^{T}[V]\underline{u}$$

where: $[V] = \Sigma (\underline{x_i} \underline{x_i}^T)$

The data matrix:

Best direction <u>u</u>

- Will minimize the distances from it
- Will maximize the variance along it

$$Max(\underline{u})$$
: $\underline{u}^T[V]\underline{u}$ subject to: $|u| = 1$

With Lagrange multipliers:

Maximize
$$\underline{\mathbf{u}}^{\mathrm{T}}[V]\underline{\mathbf{u}} - \lambda(\underline{\mathbf{u}}^{\mathrm{T}}\underline{\mathbf{u}} - 1)$$

$$\mathrm{d}/\mathrm{d}\underline{\mathbf{x}} \ (\underline{\mathbf{x}}^{\mathrm{T}}U \ \underline{\mathbf{x}}) = 2U\underline{\mathbf{x}}$$

Derivative with respect to the vector $\underline{\mathbf{u}}$: $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} \ (\underline{\mathbf{x}}^{\mathrm{T}} \ \underline{\mathbf{x}}) = 2\underline{\mathbf{x}}$

$$[V]\underline{u} - \lambda \underline{u} = 0$$
$$[V]\underline{u} = \lambda \underline{u}$$

The best direction will be the first eigenvector of [V]

Best direction u:

The best direction will be the first eigenvector of [V]; $\underline{\mathbf{u}}_1$ with variance λ_1 The next direction will be the second eigenvector of [V]; $\underline{\mathbf{u}}_2$ with variance λ_2 The Principle Components will be the eigenvectors of the data matrix

PCs, Variance and Least-Squares

- The first PC retains the greatest amount of variation in the sample
- The k^{th} PC retains the k^{th} greatest fraction of the variation in the sample
- The k^{th} largest eigenvalue of the correlation matrix C is the variance in the sample along the k^{th} PC

• The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones

Dimensionality Reduction

Can *ignore* the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you don't lose much

- n dimensions in original data
- calculate n eigenvectors and eigenvalues
- choose only the first k eigenvectors, based on their eigenvalues
- final data set has only k dimensions

PC dimensionality reduction

In the linear case only

PCA and correlations

- We can think of our data points as k points from a distribution $p(\underline{x})$
- We have k samples $(x_1 y_1) (x_2 y_2) \dots (x_k y_k)$

PCA and correlations

- We have k samples $(x_1 y_1) (x_2 y_2) \dots (x_k y_k)$
- The correlation between(x,y) is: E [$(x-x_0)(y-y_0) / \sigma_x \sigma_y$]
- For centered variables, x,y are uncorrelated if E(xy) = 0

Correlation depends on the coordinates:

(x,y) are correlated, $(v_1 \ v_2)$ are not

In the PC coordinates, the variables are uncorrelated

- The projection of a point x_i on v_1 is: $x_i^T v_1$ (or $v_1^T x_i$).
- The projection of a point x_i on v_2 is: $x_i^T v_2$
- For the correlation, we take the sum: $\Sigma_i (\mathbf{v_1}^T \mathbf{x_i}) (\mathbf{x_i}^T \mathbf{v_2})$

$$\bullet \quad = \quad \Sigma_i \ \mathbf{v_1}^T \mathbf{x_i} \ \mathbf{x_i}^T \mathbf{v_2} \ = \ \mathbf{v_1}^T \ \mathbf{C} \ \mathbf{v_2}$$

- Where $C = X^TX$. (the data matrix)
- Since the v_i are eigenvectors of C,

$$\mathbf{C} \ \mathbf{v_2} = \lambda_2 \ \mathbf{v_2}$$

- $\mathbf{v_1}^{\mathbf{T}} \mathbf{C} \mathbf{v_2} = \lambda_2 \mathbf{v_1}^{\mathbf{T}} \mathbf{v_2} = 0$
- The variables are uncorrelated.
- This is a result of using as coordinates the eigenvectors of the correlation matrix $C = X^TX$.

In the PC coordinates the variables are uncorrelated

- The correlation depends on the coordinate system. We can start with variables (x,y) which are correlated, transform them to (x', y') that will be un-correlated
- If we use the coordinates defined by the eigenvectors of XX^T the variables (or the vectors \mathbf{x}_i of n projections on the i'th axis) will be uncorrelated.

Properties of the PCA

- The subspace spanned by the first k PC retains the maximal variance
- This subspace minimized the distance of the points from the subspace
- The transformed variables, which are linear combinations of the original ones, are uncorrelated.

Best plane, minimizing perpendicular distance over all planes

Eigenfaces: PC of face images

• Turk, M., Pentland, A.: *Eigenfaces for recognition*. J. Cognitive Neuroscience **3** (1991) 71–86.

Image Representation

 Training set of m images of size N*N are represented by vectors of size N²

$$X_1, X_2, X_3, ..., X_M$$

 $\begin{array}{c|c}
2 \\
3 \\
3 \\
-1 \\
2 \\
4 \\
5 \\
1
\end{array}
\right]_{9\times 1}$

Need to be well aligned

Average Image and Difference Images

The average training set is defined by

$$\mu$$
= (1/m) $\sum_{i=1}^{m} x_i$

Each face differs from the average by vector

$$r_i = x_i - \mu$$

Covariance Matrix

• The covariance matrix is constructed as

$$C = AA^{T}$$
 where $A=[r_{1},...,r_{m}]$
Size of this matrix is $N^{2} \times N^{2}$

• Finding eigenvectors of $N^2 \times N^2$ matrix is intractable. Hence, use the matrix A^TA of size $m \times m$ and find eigenvectors of this small matrix.

Face data matrix:

 XX^T is $N^2 * N^2$

X^TX is m * m

Eigenvectors of Covariance Matrix

- Consider the eigenvectors v_i of A^TA such that $A^TAv_i = \mu_i v_i$
- Pre-multiplying both sides by A, we have $AA^{T}(Av_{i}) = \mu_{i}(Av_{i})$
- Av_i is an eigenvector of our original AA^T
- Find the eigenvectors v_i of the small A^TA
- Get the 'eigen-faces' by Av_i

Face Space

u_i resemble facial images which look ghostly, hence called Eigenfaces

Projection into Face Space

A face image can be projected into this face space by

$$p_k = U^T(x_k - \mu)$$

Rows of U^T are the eigenfaces p_k are the m coefficients of face x_k

This is the representation of a face using eigen-faces

This representation can then be used for recognition using different recognition algorithms

Recognition in 'face space'

- Turk and Pentland used 16 faces, and 7 pc
- In this case the face representation p:
- $p_k = U^T(x_k \mu)$ is 7-long vector
- Face classification:
- Several images per face-class.
- For a new test image I: obtain the representation p_I
- Turk-Pentland used simple nearest neighbor
- Find NN in each class, take the nearest,
- s.t. distance < ε, otherwise result is 'unknown'
- Other algorithms are possible, e.g. SVM

Face detection by 'face space'

- Turk-Pentland used 'faceness' measure:
- Within a window, compare the original image with its reconstruction from face-space
- Find the distance \in between the original image x and its reconstructed image from the eigenface space, x_f ,

$$\mathbb{C}^2 = ||\mathbf{x} - \mathbf{x}_f||^2$$
, where $\mathbf{x}_f = \mathbf{U}\mathbf{p} + \mathbf{\mu}$ (reconstructed face)

- If $\varepsilon < \theta$ for a threshold θ
- A face is detected in the window
- Not 'state-of-the-art and not fast enough
- Eigenfaces in the brain?

Next: PCA by Neurons