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Abstract

Over the last few years a number of schemes for encoding compositional structure
in distributed representations have been proposed, e.g., Smolensky's tensor products,
Pollack's RAAMs, Plate's HRRs, Halford et al's STAR model, and Kanerva's binary
spatter codes. All of these schemes can placed in a general framework involving su-
perposition and binding of patterns. Viewed in this way, it is often simple to decide
whether what can be achieved within one scheme will be able to be achieved in another.
Furthermore, placing these schemes in a general framework reveals unexplored regions
in which other related representation schemes with interesting properties.

1 Introduction

Distributed representations are one of the most compelling ideas in connectionism. The use

of distributed representations has endowed many connectionist models with their intriguing

properties: ability to learn, parallel processing, soft capacity limits, and fault tolerance.

However the di�culty of representing compositional structure in a distributed fashion has

been a severe obstacle to constructing distributed connectionist models of higher-level rea-

soning. The basic problem is how to bind entities together. For example, in order to reason

about a sentence (or concept) such as \John ate the �sh", the various entities involved

(\John", \the �sh", and the \ate" relation) must be bound together in such a way as

to preserve the role-�ller relations. Merely superimposing the representations of the enti-

ties fails to distinguish between \John ate the �sh" and \The �sh ate John". Although

performing single-level binding is straightforward, the problem of representing nested com-

positional structure is much more di�cult. To represent nested compositional structure

requires the ability to perform recursive bindings. For example, in \Peter knew that John

ate the �sh", \John ate the �sh" must now be treated as an individual entity involved in a

\know" relation. Hinton [1990] discusses this problem and proposes the idea of a \reduced"

representation for a structure: a reduced representation is a pattern which (a) acts as a

pointer to a structure, and which (b) expresses some information about the content of the

structure, and which (c) is the same size as the pattern for a simple object and can be

manipulated in the same way.

Appeared in Connectionist Systems for Knowledge Representation and Deduction, Frederic Maire,
Ross Hayward and Joachim Diederich, eds, pp15{34, Queensland University of Technology, 1997.
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In the last few years people have proposed a number of schemes for distributed representa-

tion of nested compositional structure. Among these are Smolensky's [1990] Tensor product

representations, Pollack's [1990] Recursive Auto-associative Memories (RAAMs), Touret-

zky's [1990] BoltzCONS, Murdock's [1987, 1993] TODAMmodel, Plate's [1991, 1994a] Holo-

graphic Reduced Representations (HRRs), Sperduti's [1994a] Labeling RAAMs (LRAMMs),

and Kanerva's [1996] binary spatter-codes. Although all of these schemes appear quite dif-

ferent on the surface, they can all be viewed in terms of a general framework involving

two fundamental operations on patterns. The �rst is superposition: collections of entities

are represented by superpositions of patterns. The second is binding: bindings between

entities are represented by some sort of vector-space multiplication of patterns. In con-

trast to conventional neural-network associative memories, associations between patterns

(i.e., bindings) have the same status to patterns; they are represented by activation val-

ues over units rather than connection weights between units. This is necessary in order

to allow representations involving associations and to allow reasoning about associations.

Various schemes also add further operations to these two basic ones, such as non-linearities

in RAAMs, and error-correcting auto-associative memory in HRRs, to achieve various abil-

ities. Viewed within this framework, it is often simple to decide whether what can be

achieved within one scheme will be able to be achieved in another. Furthermore, placing

these schemes in a general framework reveals unexplored regions which might contain other

related representation schemes with interesting and useful properties.

There are other methods for storing information about conceptual structure in networks,

e.g., the schemes described by Hummel and Biederman [1992] and Shastri and Ajjanagadde

[1993] for representing bindings through temporal synchrony, However, storing structures

as distributed representations seems particularly promising because it allows one to exploit

the ability of neural networks to manipulate and learn 
at vector representations, and to

exploit the rich similarity structures which are possible with distributed representations

[Plate 1994a].

Section 2 discusses the properties of distributed representations in more detail. Section 3

lays out the general framework for viewing schemes for distributed representation of nested

compositional structure. Section 4 explains how the various schemes �t into this framework.

Section 5 discusses speci�c and general properties of the schemes and whether or not these

properties transfer. Section 6 concludes this paper with a brief discussion of what other

schemes one might �nd in this general framework.

2 Distributed representations

Connectionist representations come in two 
avours { local and distributed. Each involves

di�erent trade-o�s of the properties of the representation space. For models involving only a

small number of features and simple items, local representations can be more parsimonious.

Distributed representations come into their own for models in which items have features

from a very large pool or have complex structure.

In local representations each unit indicates the strength, or merely presence or absence, of
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a particular entity. In distributed representations entities are represented by patterns over

the units rather than by single units [Hinton, McClelland, and Rumelhart 1986]. Each unit

participates in the representation of many entities, and each entity is represented collectively

by many units.

In some local representations, individual units correspond to particular features of items.

Although these types of local representations can appear very similar to distributed repre-

sentations when features are numerous and �ne-grained, and although local representations

can be mapped to distributed ones by a simple linear map, and back by a thresholded linear

map, there is still one di�erence very pertinent to scaling and to the representation of struc-

ture. It is that in local representations the total number of possible features is limited to the

number of units. This is of vital importance when it comes to representing compositional

structure. As Wharton, Holyoak, Downing, Lange, Wickens, and Melz [1994] acknowledge,

local representations could be augmented with combinatorial features to represent all pos-

sible bindings but note that this would result in a combinatorial explosion in the number of

units required when applied recursively to represent things such as the sour-grapes feature:

\thing that is desired but can't be obtained and hence is denigrated".

Distributed representations can escape this limitation on the number of features by tak-

ing advantage of the property of high-dimensional vector spaces that there are exponen-

tially many more nearly-independent directions than dimensions. Each of these nearly-

independent directions can represent a feature, and thus hundreds of thousands of \virtual"

features can be represented in a vector with far fewer elements. This involves two-tradeo�s.

The �rst is that only relatively few features can be present at once. However, this is usu-

ally the case when there are large numbers of potential features. The second is that there

is a chance of interference (ghosting or cross-talk) when too many features are present at

once. The probability of interference can be made arbitrarily low by limiting the number

of features present at once and choosing a large enough dimension of the vectors.

In summary, the useful and interesting properties of distributed representations include the

following:

� Distributed representations o�er an e�cient use of representational resources (pro-

vided that one only wants to represent a small number of entities at any one time,

and that some degree of overlap is permissible), because the number of possible pat-

terns over a collection of units is far greater than the number of units in the collection.

� Distributed representations are continuous, or at least �ne-grained. This allows nu-

ances of meaning to be expressed by small changes in patterns, and supports learning.

� Distributed representations can be processed in �ne-grained parallel networks of sim-

ple processing units (i.e., neural networks). Furthermore it is possible to learn or

modify patterns by making small changes to them with gradient-based techniques for

learning in neural networks.

� Distributed representations can be noise tolerant, as patterns are still recognizable

when slightly corrupted.
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� Patterns can be superimposed, but still individually recognizable. As more patterns

are superimposed, it becomes more di�cult to determine which patterns are present.

As a result, connectionist memories which use distributed representations tend to have

soft capacity limits.

� Using distributed representations it is possible to capture a rich similarity structure

over entities, in which surface similarity of patterns is sensitive to both structure and

non-structural features of entities (see Gentner and Markman [1993] and Plate [1994a]

for further discussion).

3 A common framework

All the abovementioned schemes for representing compositional structure in a distributed

fashion can be viewed within a common framework involving two fundamental operations:

superposition of patterns and binding of patterns. Di�erent schemes augment these with

various other operations in order to achieve particular abilities.

In talking about representations, it is convenient to regard the activation values on a col-

lection of units as a vector, and particular instantiations of those vector values as patterns.

Activation values can be either binary, real, or complex. In the following A, B and C will

be used as examples of patterns1, where Ai etc. are the individual values, and n is the

number of elements in the pattern. Similarity of patterns refers to either their overlap (in

the case of binary patterns) or their inner (dot) product, i.e.,
Pn�1

i=0 AiBi.

The superposition operation is used to represent unstructured collections of entities. For

binary patterns, the elementwise or is generally used. For patterns of non-binary elements,

the elementwise sum is generally used, possibly followed by some transformation that keeps

individual values or overall strength of the pattern within some range. Obviously, the

superposition of two patterns is the same type of object as each individual pattern | it is

still a vector of n values | although the it may have di�erent statistics (e.g., higher density).

The essential property of the superposition operation is that it preserves similarity in an

unstructured fashion: A+B is similar to A and B, and A+B is similar to A+C.

The binding operation is used to represent bindings or associations between entities. The

symbol \�" is used to denote a binding operation in this paper, so A � B is the binding

of the patterns A and B, and A � B is itself a pattern. Quite a variety of operations

are used for binding, although all can be regarded as some type of vector multiplication

operation. Furthermore, all can be described as a sum of certain elements of the outer

product of the patterns (i.e., the n2 scalar products AiBj). Smolensky [1990] generalizes

this idea with tensor products to bindings involving more than two patterns, e.g., A�B�C.

In this binding, there are n3 elements in the corresponding tensor product, i.e., AiBjCk.

The binding operation is generally more complex than the superposition operation and has

several essential properties:

1Bold-face names, e.g., x are used for vectors (patterns).
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� it randomizes unstructured similarity: A �B is not similar to A or B;

� it preserves structured similarity: A �B is similar to A0

�B0 to the extent that A0 is

similar to A and B0 is similar to B; and

� an inverse (decoding) operation exists, so that the pattern B can be reconstructed

given A �B and A (or vice-versa).

Binding operation di�er more than superposition operations. The two the most important

dimensions on which binding operations di�er are the number of units required to represent

A �B pattern and the degree of noise in reconstructed patterns. When the A �B pattern

is the same size as the A and B patterns, representations for nested structure is simple to

implement. To a large extent, there is an inverse relation between these two dimensions

(as would be expected from considerations of information): more accurate reconstructions

of components are possible with binding operations for which the pattern is larger. The

algebraic properties of binding operations can also vary: some are commutative (i.e., A�B =

B �A) and some are not, and some are associative (i.e., (A �B) �C = A � (B �C)) and

some are not.

Binding can be used to represent predicate structure in di�erent ways. One of the most

common is role-�ller binding, in which predicate structure is represented by the superpo-

sition of bindings between role and �ller patterns. For instance, the predicate structure of

\John ate the �sh", can be represented as: eat agent� john+eat object�the �sh. A al-

ternative to this is used in Halford, Wilson, Guo, Gayler, Wiles, and Stewart's [1994] STAR

model: predicate arguments are bound together, e.g., eat � john � the �sh (this requires a

non-commutative binding operation to avoid confusion with \The �sh ate John").

Some the operations used for binding originated in associative memory models (Willshaw,

Buneman, and Longuet-Higgins [1969] discuss associative memories based both on the con-

volution operation and on the outer-product operation), although in that associations are

usually represented in connection weights and cannot be manipulated as entities in their

own right.

Within this general framework, the various ways in which schemes for representing compo-

sitional structure can di�er include the following:

1. the nature of the distributed representation: the domain of activation values (binary,

real, or complex), and the statistical distribution of pattern values; whether represen-

tations are fully or partially distributed;

2. the choice of superposition operation;

3. the choice of binding operation (which determines whether or not bindings are the

same type of representational objects as patterns);

4. how the binding operation is used to represent predicate structure (role-�ller binding

is a common method, but there are others); and
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5. the use of other operations and techniques, such as non-linearities, clean-up memory,

normalization, and learning.

Why combinatorial features are practical with distributed representations

In distributed representation schemes, the set of features of an entity is often represented

by the superposition of those features (in the same way that a collection of entities can

be represented by their superposition). The way in which the various schemes represent

compositional structure can be understood in the same terms, but with the use of combina-

torial features. Recall that the use of combinatorial features such as \thing that is desired

but can't be obtained and hence is denigrated" is problematic with local representations

because it seems to call for an exponential number of compositional-feature units. However,

with distributed representations, an exponential number of virtual features (i.e., patterns)

is available. The binding operation provides a systematic way of constructing and decoding

the patterns corresponding to compositional features. For example, in the example of the

role-�ller binding for \John ate the �sh", if person is a feature of john (and thus john is

similar to person by the non-structured similarity-preserving property of superposition),

then eat agent � person will be a feature of eat agent � john + eat object � the �sh

(by the structured similarity-preserving property of binding). Thus, the pattern for this

proposition will be similar to that for \Peter ate the �sh", since they both share the

eat agent � person feature.

4 How various schemes �t in the framework

This section explains how various schemes �t into the framework. It can be skipped by the

reader not interested in detail. The choices involved in di�erent schemes are summarized in

Table 1. One notable commonality of all of these schemes is that the binding operation is

the sum of a set of products, i.e., an element of the pattern A �B is the sum of some AiBj .

4.1 Holographic Reduced Representations

HRRs are a distributed representation for recursive propositional (or frame-like) structures.

All entities | objects, predicate labels, and roles | are represented by n-dimensional

patterns of real numbers, whose elements have a Gaussian distribution with mean 0 and

variance 1=n. Propositions are encoded as the superposition (sum) of role-�ller bindings.

A binding is the circular convolution (denoted by ~) of a role and a �ller. The circular

convolution of two n-dimensional patterns x and y (z = x ~ y) is n-dimensional and has

elements

zi =

n�1X

k=0

xkyj�k

where subscripts are modulo-n. Circular convolution can be considered as a multiplication

operation for vectors, and has algebraic properties in common with scalar and with matrix
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Scheme Patterns Superposition Binding Structure Other operations

HRRs real

(Gaus-

sian)

addition circular

convolution�
role-�ller normalization to unit-length vectors,

clean-up memory,

chunking

Frequency-

Domain

HRRs

complex

(unit-

circle)

normalized

addition

elementwise

multiplication�
role-�ller normalization to values on unit-circle,

clean-up memory,

chunking

Binary

spatter

codes

dense bi-

nary

majority (ties

broken

randomly)

elementwise

XOR�

role-�ller clean-up memory,

chunking

TODAM2 real addition convolution paired items,

chaining

closest match on output

CHARM real addition truncated

convolution�
paired items closest match on output

Tensor

products

real or

binary

addition or

binary-OR

tensor prod-

uct

role-�ller

STAR real or

binary

see text tensor prod-

uct

argument-

product

chunking | see text

RAAMs real and

binary

addition matrix-vector

multiplica-

tion

role-�ller sigmoid non-linearities,

learning

LRAAMs real and

binary

addition matrix-vector

multiplica-

tion

role-�ller,

labels

sigmoid non-linearities,

learning

Table 1: Choices involved in the various schemes. An asterisk indicates binding operations

which create patterns of same size as �ller patterns, allowing simple construction of nested

(recursive) structures.

multiplication: it is associative, commutative, distributive over addition, an identity vector

exists, and most vectors have inverses. Circular convolution can also be computed e�ciently

via the Fast Fourier Transform in O(n logn) time (see Press, Flannery, Teukolsky, and

Vetterling [1992] for algorithms).

A simple propositional representation of \Spot bit Jane" is

Pbite = hbite+ biteagt ~ spot+ biteobj ~ janei;

where bite is a predicate label, biteagt and biteobj are roles, and jane and spot are �llers.

The angle brackets h�i indicate that the pattern is normalized to have a Euclidean length

of one (thus individual elements of the pattern still have variance 1=n). Bindings do not

get confused when added together: biteagt ~ spot + biteobj ~ jane is quite distinct from

biteagt ~ jane + biteobj ~ spot. Even though some components are associations (the

bindings) and some are objects (the predicate label), they are all n-dimensional patterns

and can be superimposed. Thus, Pbite, the representation for the entire proposition, is also

an n-dimensional pattern. This makes it simple to use propositions as �llers for roles in

other propositions. For example, in the proposition for \Spot bit Jane, which caused Jane

to run away from Spot." (Pcause, below), Pbite �lls the antecedent role of the top-level

cause proposition:

Pbite = hbite+ biteagt ~ spot+ biteobj ~ janei

Pflee = h
ee+ 
eeagt ~ jane+ 
eefrom ~ spoti
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Pobjects = hjane+ spoti

Pcause = hcause+Pobjects +Pbite +Pflee

+ causeantc ~Pbite + causecnsq ~Pfleei

The unbound representations for the objects (Pobjects) and lower-level HRRs (Pbite+Pflee)

are included in Pcause in order to make the representation for a proposition have some simi-

larity to those objects and other propositions composed of those objects; these components

are not necessary for the representation of the structure.

The distributed representations for the base-level components, i.e., objects, roles, and labels,

are based on random patterns of independently distributed elements with mean zero and

variance 1=n. Representations of similar entities (e.g., jane and fred) are composed of a

base type (person) and unique random identifying patterns (idjane and idfred):

jane = hperson+ idjanei

fred = hperson+ idfredi:

The mixing proportions of the various components can be changed to make objects of the

same type more or less similar. Binding and superposition preserve the Gaussian distri-

bution of elements (modulo scaling or normalization). Thus, all patterns have the same

characteristics.

Like the binding operations used in other schemes, convolution is randomizing and similarity

preserving. Convolving a role and a �ller e�ectively randomizes with respect to the role and

the �ller: the binding will not be similar to either the role or the �ller (except in special

cases). On the other hand, convolution preserves similarity between bindings with similar

components: if jane is similar to fred to some degree then jane ~ role will be similar to

fred~ role to approximately the same degree.

Decoding and clean-up memory

Bindings can be decoded by convolving with the approximate inverse2 of the role (or �ller)

pattern. For example, the �ller in biteagt ~ spot can be found by convolving it with

bite�agt (x
� denotes the approximate inverse of x). The approximate inverse of a vector

under convolution is simple to compute: it is a permutation of elements: x�i = xn�i, where

subscripts are modulo-n (this is equivalent to reversal of the elements followed by rotation

by one position). Thus, like binding, decoding (without cleanup) can be computed in

O(n log n) time.

The result bite�agtbiteagt ~ spot is a noisy version of spot, which must be cleaned up

using some sort of auto-associative memory in which the possible �llers have been stored.

This clean-up memory must perform closest-match retrieval and must store all patterns,

both objects and structures, which can result from decoding a HRR in the system. When

2The exact inverse of a pattern under convolution usually exists, but is numerically unstable except under

certain conditions. Thus it is usually preferable to use the approximate inverse.

8



A framework for distributed representation schemes

multiple bindings are superimposed, as in Pbite, the other bindings do not interfere with

the decoding other than by making it more noisy. This is because the randomizing e�ects

of convolution result in convolution products like bite�agt ~ biteobj ~ jane being unrelated

to any other pattern3.

The clean-up memory can also be used to improve performance in decoding nested structure

by cleaning up intermediate results. For example, the agent of the antecedent of Pcause can

be decoded directly by bite�agt ~ cause
�

antc ~Pcause (presuming one knows that the appro-

priate agent role of the antecedent is biteagt). It can also be decoded using intermediate

clean up, �rst as cause�antc~Pcause, which is cleaned up to give Pbite (presuming Pbite was

stored in the clean-up memory), and next as bite�agt ~Pbite.

Associative memory is used at two levels in HRRs: a noisy but compact associative operation

(convolution) is used to represent structure in items, and a error-correcting associative

memory is used to store those individual items. The individual items can be regarded as

\chunks", and breaking very large structures in structured items of manageable size can be

regarded as \chunking". Using intermediate clean-up and chunking, structures of any size

can be represented with HRRs.

Scaling properties of HRRs

HRRs require high-dimensional patterns to work well { even small toy problems require

patterns with 512 or 1; 024 elements.4 However, this is not as much of a drawback as

it might seem, for two reasons. One reason is that the scaling is very good, thus larger

problems do not require much higher dimensionality { tens or hundreds or thousands of

objects can be represented using patterns with 2; 048 or 4; 192 elements. The other reason

is that the HRR construction and decoding operations are very fast: binding and decoding

can be computed in O(n log n) time. Clean-up (i.e., �nding the closest matching pattern in

memory) is the only slow operation, but is highly amenable to parallel implementation.

There are two constraints which determine the scaling behaviour of HRRs with respect to

capacity (see Plate [1994a] for details):

� The number of components which can be included in one chunk scales linearly with

the vector dimension n.

� The number of chunks which can be stored in clean-up memory scales exponentially

with n.

The �rst constraint tends to be the limiting one, so chunks must be kept to a reasonable size.

Note that the \number of components" in a HRR depends on the chunking and decoding

3Random patterns can be similar by chance, but the probability can be made arbitrarily low with large

enough n

4Patterns here have dimensions which are powers of 2 only because this makes FFT implementation of

convolution simple and e�cient.
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strategies used. The only components which count towards the size of a chunk are those

which must be directly decoded without intermediate cleanup: components inside chunks

do not count. Thus, chunking allows structures of unlimited depth to be represented in

HRRs.

For toy problems, HRRs seem to require very large patterns. For example, in the structural-

similarity experiments involving twelve episodes like \Fido bit Jane, causing Jane to 
ee

from Fido" [Plate 1994a], the patterns had 2; 048 elements. However, in these experiments

the limiting factor on capacity was the number of components in an item { with this

dimensionality many thousand item can be stored in clean-up memory. A toy problem with

a large number of objects in memory in given in Plate [1994a]. The task involves memorizing

times and addition tables for numbers from 1 to 50 and retrieving them based on partial

cues. Just over 5; 000 items were stored in memory (2; 500 numbers, and just over 2; 500

relations). The pattern dimension was 512, and no errors were made in over 10; 000 trials

of retrieving and decoding a relation based on partial information. The pattern dimension

was low compared with the structural similarity task because items only had a maximum

of 3 components.

4.2 Frequency-domain (complex-valued) HRRs

In frequency-domain HRRs [Plate 1994b] the values in the distributed representations are

complex numbers on the unit circle (with a uniformly distribution of angles). The binding

operation is elementwise multiplication, which is the equivalent of circular convolution in the

frequency domain of the Fourier transform (see Press, Flannery, Teukolsky, and Vetterling

[1992] for algorithms). Superposition is implemented by addition followed by magnitude

normalization to make all the values fall on the unit circle. Both superposition and bind-

ing clearly result in pattern of the same size, and also preserve the uniform distribution of

angles. Thus, representing nested structure composition is straightforward. All the remain-

ing techniques and properties of ordinary HRRs transfer with ease | clean-up memory,

role-�ller binding, construction of recursive structure, structure matching, etc.

4.3 Binary spatter codes

Kanerva's [1996] binary spatter codes work over binary distributed representations (i.e., bit

vectors). The bit vectors are high-density, i.e., the bits are 0 or 1 with equal probability.

The binding operation is bitwise exclusive-OR. The superposition operation is the bitwise

majority function, with ties broken randomly (ties are only possible when an even number

of patterns are superimposed). Both these operations preserve the approximately equal

density of 0's and 1's. Thus, representing nested structure is straightforward. This scheme

is equivalent to frequency-domain HRRs in which all values are restricted to +1 or �1. All

the other techniques and properties of ordinary HRRs can be expected to transfer to binary

spatter codes. Although much noise can be introduced by the superposition operation (in

the superposition of two patterns half the bits will be random), the scheme has su�cient

capacity to be interesting and potentially very useful.
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4.4 CADAM, TODAM, TODAM2 and CHARM

Liepa's [1977] CADAM5 Murdock's TODAM6 [Murdock 1982] and TODAM2 [Murdock

1993], and Metcalf-Eich's CHARM7 [1982, 1985] use other forms of convolution to bind

items in models of human memory. These models use real-valued patterns to represent

items, and use addition for superposition. CADAM, TODAM and TODAM2 use ordinary

convolution for binding, which when used to bind two n-element patterns produces a pattern

with 2n � 1 elements. CHARM uses the same form of convolution, but only retains the

central n elements of the binding pattern.

The emphasis in these models is on retrieval of paired-items and sequences rather than

on nested compositional structure. In TODAM, lists of paired items are stored as the

superposition of bindings and items, e.g, the pairs AB and CD are stored in the form

A � B + A + B + C �D + C +D. In CHARM, item information is auto-convolved; the

same pairs would be stored as A � B +A �A +B � B +C �D +C � C +D �D. These

di�erences result in di�erent access and retrieval properties and consequently in di�erent

psychological predictions. The representations in TODAM2 involve the superposition of

many more higher-order bindings. The details of these schemes are not important here,

save to note that the choice of what to bind and what to store in the trace has important

consequences for the properties of the model.

4.5 Smolensky: Tensor products

In tensor product representations [Smolensky 1990], the tensor product is used as the bind-

ing operation. The tensor product can be seen as a generalized outer product. Given two

n-dimensional column-vectors x and y, the second-order tensor product T = x
y is equiv-

alent to the outer product xyt. T has n2 elements, and Tij = xiyj. Both lower-order and

higher-order tensors exist: a �rst-order tensor is just a vector, and a zeroth-order tensor is

a scalar. A third-order tensor is the tensor product of three vectors: T = x
 y
 z, where

Tijk = xiyjzk and T has n3 elements. Higher-order tensor products are constructed in a

similar fashion { a k'th-order tensor is the product of k n-dimensional vectors and has nk

elements. Tensor products can be built up iteratively { multiplying a third-order tensor

and a second-order tensor gives a �fth-order tensor. Tensor products can be decoded by

taking inner products, e.g., if T = x 
 y 
 z, then T � (x 
 y) = z (under appropriate

normalization conditions on the vectors). The inner product can be taken along any com-

bination of dimensions. For example, given a third-order tensor x 
 y 
 z, we can take

the inner product with a second-order tensor in three di�erent ways: along the �rst and

second dimensions to extract z, along the �rst and third dimensions to extract y, or along

the second and third dimensions to extract x. Care must be taken to use the appropriate

inner product.

Tensor products can be used in various ways to represent structured objects. Smolensky

5CADAM�Content addressable distributed associative memory.
6TODAM�Theory of distributed associative memory.
7CHARM�Composite holographic associative recall model.
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[1990], Dolan and Smolensky [1989], and Dolan [1989] use role-�ller schemes. Nested struc-

tures can be represented, but the size of patterns increases exponentially with the depth of

nesting. Tensor products bindings are one extreme of using the pairwise products of pat-

tern elements: every possible product is used, and each forms one element of the binding

pattern.

It is possible to analyse other binding schemes in terms of tensor products. For example,

Dolan and Smolensky [1989] show how Touretzky's [1990] BoltzCONS can be seen as a

using subsets of elements of the tensor product. The framework proposed in this paper is

to view binding operations as being the sum of elements of the tensor product.

4.6 STAR

Halford, Wilson, Guo, Gayler, Wiles, and Stewart [1994] propose a di�erent way of using

tensor products to represent predicates. They want a memory system which can store mul-

tiple predicates and retrieve one component of a predicate (the name or a �ller) given its

remaining components, in order to do analogical reasoning (hence the name \Structured

Tensor Analogical Reasoning"). They represent a predicate by the tensor product of all the

components of the predicate. The role of a �ller determines its position in the product. For

example, the representation of mother-of(woman, baby) is mother 
 woman 
 baby.

They represent a collection of predicates by the sum of tensors for individual predicates.

This representation allows them to solve analogy problems of the form \Mother is to

baby as mare is to what?" For example, suppose T is a sum of predicates, including

mother-of(woman, baby) and mother-of(mare, foal). The analogy can be solved by

�rst taking the appropriate inner product between the tensors T and woman 
 baby,8

yieldingmother (provided T does not contain other predicates relating mother and baby).

Having discovered that the relevant predicate is mother-of we next take the inner product

between mother
mare and T , yielding the answer foal.

Halford, Wilson, Guo, Gayler, Wiles, and Stewart do not focus on how recursive structure

might be represented. They do mention chunking as a way of coping with more than four

dimensions and with nested predicates, but do not say how vectors representing chunks,

which would be akin to reduced representations, might be constructed.

Unlike in HRRs and other schemes, the STAR model uses only one level of associative

memory, and does not use superposition in the representation of compositional structure.

Superposition is used only to represent a collection of predicates.

STAR is the only scheme discussed here which does not use role-�ller binding (Murdock

[1983] makes some suggestions for other possibilities, but does not develop them). STAR-

like representations could be expected to have quite di�erent properties to role-�ller based

methods like HRRs and RAAMs with respect to structure matching, structure classi�cation,

and structure transformation. For examples, proposition will be di�erent to another if only

one of the predicate label or arguments is di�erent, whereas role-�ller representations are

8Care must be exercised to take the appropriate inner product, which depends upon the position of the

unknown component in the third-order tensor.
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Figure 1: A Recursive Auto-Associative Memory (RAAM) for binary trees. The \WHOLE"

is the code for an internal node in a tree, and \LEFT" and \RIGHT" can be codes for either

internal or external nodes. (Adapted from Pollack [1990].)
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Figure 2: A simple tree and the auto-associations that encode it in a RAAM.

similar if any of the role-�ller pairs (or predicate label in the case of HRRs) are similar.

4.7 RAAMs and LRAAMs

Pollack [1990] uses back-propagation to learn reduced representations for trees. He sets up

an auto-encoder net to learn to compress the �elds of a node to a label, and uncompress the

label to the �elds. Pollack calls this type of network a Recursive Auto Associative Memory

(RAAM).

Figure 1 shows the architecture of the network for binary trees, and Figure 2 shows the

three auto-associations the network must learn to encode a simple tree. One network can

learn to encode a collection of related trees, e.g., parse trees for the same language, but for

simplicity this example shows only a single tree. The codes for terminal nodes (A, B, C, and

D) are supplied to the network, but the network must learn suitable codes for the internal

nodes (p, q, and r). The training is a moving target problem, because when the weights are

adjusted for one example (e.g., for (B C) ! r ! (B C)), this changes the representation

for r, which changes the target for another example.

A RAAM can be viewed as being composed of two networks { an encoding net (the bottom

half), and a decoding net (the top half). The encoding net converts a full representation to

a reduced representation, and the decoding net performs the inverse function. The reduced
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representation for the tree (B C) is r, the reduced representation for ((B C) D) is q, and so

on. The network learns the decoding and encoding functions simultaneously during training.

Both encoding and decoding are recursive operations. The encoding procedure knows, from

the structure of the tree, how many times it must recursively compress representations.

However, the decoding procedure must decide during decoding whether or not a decoded

�eld represents a terminal node or an internal node which should be further decoded. Pollack

solves this problem by using \binary" codes for terminals (i.e., each value in the code is 0

or 1). The reduced representations (i.e., codes for internal nodes) developed by the network

tend to have values between 0 and 1, but not close to 0 or 1. If a decoded �eld has all its

values su�ciently close to 0 or 1, then it is judged to be a terminal node and is not decoded

further.

RAAMs are not limited to binary trees { a RAAM with M input �elds (each of K units)

can encode trees in which each node has up toM children. Nodes with less thanM children

can be encoded with special \nil" labels. Each child must appear in a particular place {

the left subtree is distinct from the right subtree. The locations of subtrees correspond to

roles in predicate structures, so RAAMs can be seen as having a �xed set of roles.

Pollack trained a RAAM with three roles to encode compositional propositions such as

(thought pat (knew john (loved mary john))) (\Pat thought that John knew that Mary

loved John"). The network has 48 input units, 16 hidden units, and 48 output units. The

network learned to store the training set of 13 complex propositions. It is also able to

encode and decode some, but not all, of the novel propositions presented to it. Pollack

performed a cluster analysis on the codes for trees, which shows that similar trees tended to

have similar codes. For examples, the codes for the trees (LOVED JOHN PAT), (LOVED

MARY JOHN), (LOVED JOHN MARY), and (LOVED PAT MARY) are all more similar

to each other than any of the codes for other trees.

The similarity structure in the codes (reduced representations) indicates that they do pro-

vide some explicit information about subtrees (full representations). Pollack probed the

nature of this representation by testing whether it is possible to manipulate representations

without decoding them. He trained another network to transform reduced descriptions of

propositions like (LOVED X Y) to (LOVED Y X), where X and Y can take on four di�er-

ent values. This network has 16 input units, 8 hidden units and 16 output units. Pollack

trained the network on 12 of the 16 propositions, and the network correctly generalizes to

the other four. Chalmers [1990] explores this further with a network with a RAAM which

stores syntactic structures and another network which transforms reduced representations

for passive structures to reduced representations for active structures, without decoding.

Sperduti [1994b] proposed a modi�cation of the RAAM network which included a label �eld

(Labeling, or \LRAAMs"). This enables arbitrary graph structure to be stored, rather than

just trees. Sperduti and Starita [1995] show how structures can be classi�ed by applying a

neural network classi�er to LRAAM patterns.

Smolensky [personal communication] observed that RAAMs can be viewed as implementing

role-�ller binding by matrix-by-vector multiplication. The �llers (input unit activations) are

vectors, and the roles (the weights from input to hidden units) are matrices. In fact, this
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binding operation is the sum of certain elements of the tensor product of the role matrix

and the �ller vector. The total input to the hidden units is the superposition of matrix-

vector products of roles and �llers. The weights from the hidden to output units must

implement the inverse of the role-binding operation, and clean up output vectors as well.

The non-linearities on the hidden and output units may help with the clean-up, but the

also complicate this interpretation.

5 Properties of the schemes

Given the similarities between the di�erent schemes, we can expect that there will be some

properties which are shared by all. The fundamental shared property is that the binding

operation generates combinatorial-feature patterns which are used to represent structure,

and that distributed representations provide a large enough pattern space with a moderate

number of units. Two very important abilities that all the schemes can be expected to have

are structure-sensitive matching and classi�cation, and structure transformation. These are

discussed in detail in the next subsections.

There are also some techniques which are generally applicable, even if they have not yet

been applied to all schemes in the literature. The two most important are chunking using

error-correcting auto-associative item memories, and using non-linearities to more closely

pack the representational space.

The various di�erences between the schemes result in some properties that are particular

to individual schemes. The most important of these are as follows:

� Bindings are \�rst class" objects? If A � B is the same type of pattern as A and

B (or at least the same as one of them), then it is straightforward to store nested

compositional structure using role-�ller bindings. This is the case for HRRs, binary

spatter codes, and RAAMs. Chunking is simple to apply when bindings are the

same size as the original patterns. However, with tensor products, bindings grow

exponentially in size with the depth of structure.

� Is structure represented by role/�ller bindings (HRRs, binary spatter codes, tensor

products, RAAMs) or by argument-product bindings (STAR)? This has important

consequences for the properties of the model.

� Status of role patterns. In RAAMs, role patterns cannot vary (once the RAAM

net has been trained), whereas in the other role-�ller schemes, role patterns can be

di�erent for di�erent predicates. Furthermore, in these other schemes, role patterns

can be made similar or di�erent. For example, we might want the role patterns for

the agent roles of \bite" and \chew" to be quite similar, and the agent roles of \eat"

and \sell" to be quite di�erent. This will have consequences for the structure-sensitive

operations.

� Algebraic properties of superposition and binding operations. Ordinary and wrapped

convolution are commutative (A�B � B�A) and associative ((A�B)�C � A� (B�
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C)), whereas the tensor product is only associative. This has consequences for how

structures are decoded: convolution structures can be decoded in any order, but tensor

product structures must be decoded in a particular order. The non-commutativity

of the tensor product is essential to the STAR model: if STAR were implemented

with a commutative binding operation the order of arguments would be lost. Non-

commutative and non-associative versions of convolution do exists, see Plate [1994a].

5.1 Estimating structural similarity by surface comparisons of distributed

representations

Gentner and Markman, [Gentner and Markman 1993] expressed skepticism regarding the

possibility of development of a connectionist representation in which the super�cial features

of representations re
ect structural composition. It would be very useful if representations

were similar to the degree that the structures they represented were similar. Such a repre-

sentation would allow calculation of structural match by the dot product of vectors. This is

a very fast operation and could applications in domains from database indexing to cognitive

models of analogical reminding.

It turns out that the super�cial features of HRRs can re
ect their structural composition.

If the entities in structures are similar, then the HRRs are similar to the degree that their

structures are similar. This allows the estimation of degree of structural match by the

dot product of vectors (HRRs). For example \Spot bit Jane, causing Jane to 
ee from

Spot" is structurally isomorphic to \Fido bit John, causing John to 
ee from Fido", and

the HRRs representing these situations have a higher dot-product than ones representing

non-isomorphic situations (see Plate [1994a, 1997] for details). The sensitivity to structure

is due to structural features being expressed in the surface form of the pattern in the form

of combinatorial feature patterns. While ordinary HRRs are only sensitive to structural

similarity when the entities involved are similar, it is a simple to augment HRRs with

further combinatorial features which cause them to be sensitive to structural similarity in

other situations (this is called \contextualization" in Plate [1994a, 1997]).

In fact, we can expect that in all role-�ller binding schemes the super�cial features of the

patterns will re
ect their structural composition. The extent to which they do will depend

on whether combinatorial features are transformed in non-linear context-dependent ways.

RAAMs and LRAAMs are the only role-�ller binding scheme which use non-linear trans-

forms (sigmoid non-linearities on the hidden units). These non-linear transforms are not

particularly strong, and it is unclear how much they would change combinatorial features.

In shallow structures it would not be surprising if they had little e�ect and RAAMs had

similar structure-matching properties to HRRs. Indeed, the work of Sperduti and Starita

[1995] shows that LRAAMs can be used for structure classi�cation, which can be seen as a

type of structure matching.

The ability to perform analogical, or structural, matching is not an esoteric, seldom used

ability. Rather, it is essential to any reasoning system based on rules or cases. Rule

following requires the ability to perform structural matches between a description of some

speci�c situation and an abstract description of a general situation, and case-based reasoning
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requires the matching of descriptions at the same level of abstraction. These types of

reasoning also require the ability to identify correspondences between descriptions, which

can be done with HRRs [Plate 1994a]. The structural classi�cations described by Sperduti,

Starita, and Goller [1997] can be viewed as an example of structural matching between

abstract templates and speci�c instances.

5.2 Transformations without decomposition

One of properties of reduced representations which makes them interesting is the possibility

of operating on them without unpacking them. This is a type of fast computation with

no obvious parallel in conventional symbol manipulation. Comparison and classi�cation of

structures is a simple type of computation without unpacking, and structure transformation

is a more complex one. Various authors have demonstrated that structural transformations

without decoding can be performed on Pollack's RAAMs and on Smolensky's tensor-product

representations. Pollack [1990] trained a feedforward network to transform reduced descrip-

tions for propositions like (LOVED X Y) to ones for (LOVED Y X), where the reduced

descriptions were found by a RAAM. Chalmers [1990] trained a feedforward network to

transform reduced descriptions for simple passive sentences to ones for active sentences,

where again the reduced descriptions were found by a RAAM. Niklasson and van Gelder

[1994] trained a feedforward network to do material conditional inference (and its reverse)

on reduced descriptions found by a RAAM. This involves transforming reduced descrip-

tions for formulae of the form (A ! B) to ones of the form (:A _ B) (and vice-versa).

Legendre, Miyata, and Smolensky [1991] showed how tensor product representations for

active sentences could be transformed to ones for passive sentences (and vice-versa) by a

pre-calculated linear transformation. Dolan [1989] showed how multiple variables could be

instantiated in parallel, again using a pre-computed linear transformation.

Plate [1994a, 1997] describes how the same kinds of transforms can be performed with

HRRs. It is reasonable to expect that at least some transforms can be performed with any

of the schemes described, using such operations as transforming the binding A�B to A�C

by binding (multiplying) A �B with B�1
�C.

5.3 Chunking

Chunking, i.e., breaking large structures in pieces of manageable size, is readily imple-

mentable with any of the schemes for which binding patterns are the same size as the orig-

inal patterns. Chunking requires the use of an error-correcting auto-associative memory in

which all chunks are stored. Chunking makes it possible to store structures of unlimited

size. When large structures are decoded or traversed, intermediate results can be cleaned

up.

In general, any system that uses chunks must have also have a way of referring, or pointing to

the chunks. Schemes like HRRs provide a very attractive way of constructing chunks because

a HRR can provide pointer information, but can also provide information about its contents
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without dereferencing any pointers. This is what the \reduced" in \Holographic Reduced

Representation" refers to { a HRR is a compressed, or reduced, version of the structure it

represents. The advantage of having a pointer which encodes some information about what

it refers to is that some operations can be performed without following the pointer. This

can save much time. For example, nested �llers can be decoded quickly without clean up of

intermediate results if very noisy results are acceptable, or the similarity of two structures

can be estimated without decoding the structures.

5.4 Non-linearities for packing space

RAAMs appear to use representational space e�ciently; published models have worked

with quite low dimensional patterns. In contrast, HRRs require relatively high dimensional

patterns. This di�erence can be attributed to the use the learning in RAAMs: they learn

how to pack the given structures e�ciently into the space. Although this seems like a good

thing, there are two costs. The �rst is that RAAMs do not have good generalization: they

have di�culty representing structures other than the ones in the training set. The second

is that RAAMs require very high precision values in the patterns, whereas other methods

can get by with quite noisy patterns.

Similar learning techniques can also be used with other methods. For example, Plate [1994a]

constructed recurrent networks which used a convolution operation for storing sequences.

The networks learned to work e�ectively with much lower dimensional patterns than are

needed in a system without learning.

6 Discussion

The general framework for distributed representation schemes for compositional structure

provides a common way of analysing and understanding how these schemes represent struc-

ture, and what is happening when structures are matched, classi�ed, or transformed. This

allows us to recognize commonalities, see which di�erences are important, and which prop-

erties can be transferred.

The framework also reveals unexplored regions where useful schemes might be found. For

example, none of the schemes described which nested structure will work very well with

sparse binary patterns, because the binding and superposition operations both change the

density of sparse patterns. The same goes for sparse real valued patterns (ones in which

large values are rare), and non-negative real valued patterns. Finding a scheme that worked

with sparse patterns would be interesting because it seems that the human brain probably

uses sparse distributed representations [Feldman 1986]. There may be simple modi�cations

of current binding and superposition operations which will work, or there may be other

operations which could be used instead. Di�erent binding operations are another unexplored

region. In all of the schemes described, the binding operation uses very ordered selections of

the elements of the tensor product of the bound patterns. Plate [1994a] shows that random

sums of these elements can also be an e�ective binding operation. The properties of such a
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scheme, and how the degree of randomness a�ects it, have not been investigated.
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