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1. Introduction

Associative memory has been an active topic of research for
more than 50 years and is still investigated both in neuroscience
and in artificial neural networks. The workings of associations in
human memory have probably first been addressed in psychology
and even philosophy (David Hume has already stated rules of
association).

The basic observation of association occurs when we try to
find a specific piece of information in our memory and we do not
retrieve it immediately. In such cases we notice that the present
state of our mind or brain which presumably contains aspects
of the present situation and contextual information pointing at
the missing piece (momentarily however not sufficient to find it),
starts a sequential process of associations fromone item to the next
(possibly governed by semantic similarity) that eventually ends
with the missing piece. Once this piece of information is there,
we immediately recognize it as what we have been searching for,
since it somehow fits perfectly into the context that triggered our
mental search. So there seems to be a kind of information system
in our brain (see Fig. 1) that associates a new output to a given
input depending on contextual information (and perhaps its own
previous state).

From a technical point of view there are two different
mechanisms that are needed in this process of association: hetero-
association, that leads from one pattern to the next, and auto-
association from one pattern to itself, that is useful for the
recognition of one pattern as best fitting, or also for slight
correction or completion of this pattern, and thereby ending the
chain of (hetero-) associations. There is another technical type
of associative memory that is often mentioned (and, in principle,
could be regarded as a special case of auto-association), namely
bidirectional association that goes back and forth between two
patterns A and B. Simple graphical representations of these three
types of associative memories are shown in Fig. 2.
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Neuroscientists are typically not content with a mere phe-
nomenological description of the process of association in themind
on a cognitive level, they want to relate it to concrete neuro-
physiological mechanisms in the brain. The first concrete hypoth-
esis in this direction goes back to the psychologist Donald Hebb
(1949) who formulated a rule for synaptic plasticity that postulates
an increase in synaptic connection strength induced by coincident
activity in the two neurons connected by the synapse. This idea has
led to a lot of very fruitful experimental investigations that eventu-
ally confirmed Hebb’s ideas (see Caporale & Dan, 2008 for a recent
review). On the technical side this has led to the development of
Neural AssociativeMemory (NAM)models based onmatrix calculus,
where a memory storage matrix C = (cij) is formed that contains
the weights cij of synaptic connections between neurons i and j. In
hetero-association these connections connect an input pool of neu-
rons (containing neuron i) to an output pool of neurons (contain-
ing neuron j). In auto-association they typically connect one pool
of neurons back to itself in a recurrent fashion. The roots for this
‘‘basic NAM formalism’’ can be found in engineering (Steinbuch,
1961), in particular in holographic memory implementations (Ga-
bor, 1969; Longuet-Higgins, Willshaw, & Buneman, 1970), and in
early neural network modeling (e.g. Amari, 1972; Anderson, 1968;
Anderson, Silverstein, Ritz, & Jones, 1977; Dunin-Barkowski & Lar-
ionova, 1985; Little, 1974; Marr, 1969; Wigström, 1975). The first
systematic overviews were given by Kohonen (1977) and Palm
(1980).

2. Basic NAM formalism

Given a set of (pairs of) patterns (xµ, yµ) to be stored in the
matrixC , the process of storage (matrix formation (1)) and retrieval
(activity propagation (2)) can usually be described by the following
equations

cij =
X

µ

xµ
i y

µ
j or cij = max

µ
xµ
i y

µ
j

(additive rule) (binary rule)
(1)

u = xC and yj =
⇢
1 if uj � ✓
0 otherwise. (2)
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Fig. 1. Module that can be used in the process of association.

Here ✓ is an appropriately chosen threshold.
Considering a sequential memory storage process it is natural

to describe the formation of the matrix C as a sequence of memory
or learning steps in which one more pair (xµ, yµ) is added to the
memory. In each learning step (at time t) the change 1cij of the
entry cij of the matrix C depends only on the product xµ

i y
µ
j of the

i-th coordinate of the input x and the j-th coordinate of the output y,
i.e. only on the presynaptic activity xi and the postsynaptic activity
yj at the synapsemodeled by cij at time t . Thus the synaptic changes
can be computed locally in space and time, and Eq. (1) is called
a local learning rule (Palm, 1982, 1992). Local learning rules are
biologically plausible and computationally simple; in particular
they are useful for parallel implementation.

In NAM systems the output of the neurons is usually considered
as binary. In the past either {�1, 1} or {0, 1} have been used as
the binary values of the stored and retrieved patterns. The use
of {�1, 1} goes back to John Hopfield (1982). His version of an
additive NAM, the Hopfield memory model, has turned out to be
quite inefficient as a memory. This is due to two factors:

1. The ‘‘Hopfield learning rule’’ 1cij = xiyj for xi, yj 2 {�1, 1}
changes every entry cij of the matrix C in every learning step.

2. The changes go in both directions (up and down), so they can
cancel each other.

This is actually quite different for the ‘‘Hebb learning rule’’ 1cij =
xiyj for xi, yj 2 {0, 1} which has been considered in earlier
investigations of NAM going back to Steinbuch (1961) with a first
asymptotic analysis given by Willshaw, Buneman, and Longuet-
Higgins (1969), see also Willshaw (1971).

Towards the end of the 1980s it became clear that {0, 1} and
the corresponding Hebb learning rule should be used in practical
applications and that sparseness of the stored patterns is most
important for an effective use of NAMs for information storage
and retrieval (Palm, 1988, 1990; Tsodyks & Feigelman, 1988). The
importance of sparseness was already implicit in the early analysis
of Willshaw (1971), but it was only made explicit a few years later
by myself (Palm, 1980, 1985, 1987). Sparseness is the basis for the
efficiency of technical applications and VLSI realizations of NAMs
(see Palm & Bonhoeffer, 1984, US Patent No. 4777622 (1988) and
Palm & Palm, 1991).

3. Information capacity and critical capacity

In order to demonstrate the importance of sparseness in
associative memory patterns and to prove the efficiency of sparse
NAMs it was necessary to develop a clean definition of the
information capacity of NAMs. Such a definition is best given in
terms of information theory, considering the total amount of
information that can effectively be stored in and retrieved from an
associative memorymatrix of a given size (Palm, 1980, 1992; Palm
& Sommer, 1992, 1995). Using proper definitions it was possible
to show that an asymptotical (large memory matrices) optimal
capacity of ln 2 ⇡ 0.69 bit per matrix entry can be achieved for
sparse memory patterns with the binary storage version (Palm,
1980), and 1/(2 ln 2) ⇡ 0.72 bit per matrix entry can be
achieved with the additive storage version (Palm, 1988, 1990).
The difference between these two values is quite small; in the
binary version, however, one clearly needs just one hardware bit
for onematrix entry,whereas oneneeds somewhatmorehardware

bits per entry in the additive version. These results were actually
calculated for hetero-association; they also hold for bidirectional
association (Sommer & Palm, 1999); for auto-association the
information capacity is just half as large, corresponding also to the
symmetry of the memory matrix C . Many more results concerning
information capacity have been summarized in my earlier review
article (Palm, 1991).

Initiated by the paper of Hopfield (1982) many theoretical
physicists became interested in associative memory and applied
methods from the theory of spin-glasses to the analysis of feedback
auto-associative memories (Fig. 2(b) or (c)) as dynamical systems
with a nice natural energy function

H(x) = �xCxT

governing the asymptotic behavior, resulting (for symmetric C) in
an attractor dynamics towards the minima of H(x) as fixed points
(Amit, 1989; Amit, Gutfreund, & Sompolinsky, 1987; Domany,
van Hemmen, & Schulten, 1991; Hopfield, 1982). Concerning the
use of these systems as practical associative memories, the most
important questions are

1. Canwe construct thematrix C in such away that a predescribed
set M of memory vectors become fixed points?

2. How large is M as compared to the matrix dimension or
network size n (the critical capacity ↵ = M/n)?

3. How large are the ‘‘basins of attraction’’, i.e. how many errors
in an input pattern can be corrected by the feedback retrieval
dynamics?

The first two questions were studied extensively. In a nutshell
the two most important results are that ↵ = 2 can be reached
asymptotically in principle (Gardner, 1987, 1988), but there is no
local rule to construct the appropriate matrix C from the memory
set M and the entries of the matrix C need to be stored with high
accuracy. And secondly, ↵ ⇡ 0.14 can be reachedwith the additive
Hopfield rule (Eq. (1)) (Amit et al., 1987; Hopfield, 1982). Also the
binary (or ‘‘clipped’’) storage version has been considered, leading
to considerably lower values for ↵ (e.g. ↵ ⇡ 0.83 for the non-
constructive binary case was found by Krauth & Mézard, 1989).

The third question has also been studied (e.g. Horner, Bormann,
Frick, Kinzelbach, & Schmidt, 1989;Nadal & Toulouse, 1990; Opper,
Kleinz, Kohler, & Kinzel, 1989). However, satisfactory answers
were at first only found for the non-local construction of C and only
for ↵-values that are considerably lower than the critical capacity
(for the binary memory matrix reasonable error correction is
possible for ↵-values up to about 0.3 Opper et al., 1989), allowing
a possible correction of about 4% of the entries. In this case (↵ =
0.3) the information capacity is about 0.06. Numerical simulations
of the Hopfield memory show that the basins of attraction are
surprisingly small, corresponding to an information capacity of less
than 0.04. Perhaps the most important reason for this is the large
number of spurious (i.e. unwanted) fixed points that are created by
the Hopfield rule. Their number seems to increase exponentially
with the size ofM .

From the application perspective the results for the Hopfield
rule are far below the results achieved with the Hebb rule (e.g.
0.14 vs. 0.69). On top of that, there are two additional reasons why
the information capacity (total information divided by n2) is usually
considerably smaller than the critical capacity of the samememory:
First the information that can be extracted from a fixed point is
always less and usuallymuch less than n bits. Thus the information
capacity will be much less than the critical capacity. Secondly, for
sparse binary patterns with a probability p for a 1-entry, the total
information content of one pattern is roughly �np log p which is
again less than n. The second effect has been incorporated into the
definition of the critical capacity ↵ for sparse (or biased) memory
patterns (e.g. Gardner, 1987).
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(a)
Hetero-association.

(b)
Auto-association.

(c) Same as (b). (d) Bidirectional
association.

(e) Associative
memory for Fig. 1.

Fig. 2. Different types of associative memories. Auto-association is typically used with feedback which can be depicted as in (b) or (c). (e) is a realization of the basic module
in Fig. 1 in terms of hetero- and auto-association; it is also the basic building block of associative memory networks. Each drawing can be interpreted in three different ways:
1. as a (module for a) simple box-and-arrow diagram, 2. a graphical shorthand for vector–matrix multiplication (plus thresholding, see Eq. (2)), and 3. as a shorthand for a
neural network architecture (see Palm, 1980, 1982 Appendix 2 or the cover of this journal).

The main reason for the large difference in performance is
the sparseness of the memory patterns used with the Hebb rule
in the so-called Willshaw model (Willshaw et al., 1969). This
parameter range has not been well-treated in the early physics
literature, probably due to the misleading symmetry assumption
(symmetry with respect to sign change) that was imported from
spin-glass physics. This prevented the use of binary {0, 1} activity
values and the corresponding Hebb rule and the discovery of
sparseness. It also led to unrealistic neuralmodels, both concerning
neural activity (an active neuron carries more information than a
passive one) and connectivity (a synaptic weight cannot cross the
boundary between excitatory, positive and inhibitory, negative).
Only in 1988, it was the contribution of Mischa Tsodyks that
brought {0, 1} activity modeling, the Hebb rule for synaptic
plasticity and sparseness to a broader recognition in the theoretical
physics community (Tsodyks & Feigelman, 1988). He showed that
for sparse Hebbian associative memories ↵ = 1/(2 ln 2) ⇡ 0.72,
corresponding to an information capacity (for auto-associative
pattern completion) of about 0.18 (Palm, 1988, 1991; see also
Schwenker, Sommer, & Palm, 1996). The corresponding older
result for the sparse binary Willshaw model is ↵ = ln 2 resulting
in an information capacity of 1

4 ln 2 ⇡ 0.17 (Palm, 1991; see also
Palm & Sommer, 1992; Schwenker et al., 1996).

4. Sparse coding

In technical applications of NAM, efficiency is clearly an
important issue. This involves not only storage capacity or
storage efficiency, but also fast retrieval of the stored patterns.
Since retrieval is simply done by vector–matrix multiplication
with entries in {0, 1}, this is reduced to counting, followed by
thresholding, so it is very fast. If the input patterns are sparse it is
even faster, since the number of operations is simply proportional
to the number of 1-entries in an input pattern. So it is practically
important to use sparse binary patterns. This raises the problem of
sparse coding. At first sight this appears as no big problem. If one
wants a sparse representation for a fixed number M of items, for
example in terms of binary vectors that each contain k 1-entries
and n–k 0-entries, then there are

� n
k

�
such vectors and one can

easily map the M items into such patterns if M 
� n
k

�
. Another

possibility is to use a concatenation of several 1-out-of-n codes to
create a k-out-of-kn code (ifM  nk).

However, if one wants to make use of the nice property of
NAMs that they respect pattern similarity (in the sense of overlap,
inner product, or Hamming distance of binary patterns), then
one has to represent semantically similar items by similar binary
vectors (Baum, Moody, & Wilczek, 1988; Palm, Schwenker, &
Sommer, 1994; Palm, Schwenker, Sommer, & Strey, 1997). This
problem of similarity based sparse coding has already been treated
systematically by Stellmann (1992) by investigating methods that
can generate roughly similarity preserving sparse binary code
vectors from a given similarity matrix. Also, in many practical

applications there is a natural way of generating sparse code
vectors: In many pattern recognition or classification tasks with
a moderately large number of classes (e.g. in spoken word
recognition, face recognition, written letter recognition) it is usual
practice to output a 1-out-of-n binary vector representation of
the n classes. In more complex applications with very many
classes to be distinguished one often uses a more structured
approach that describes each class by a large number of binary
features, which often are sparse again. If these binary-feature-
based representations are not sparse enough, it often makes sense
to combine two or more of those features into one (creating
a 1-out-of-kn representation from a 1-out-of-k and a 1-out-
of-n representation). Of course, this does not make sense (in
terms of similarity) for any arbitrary combination of features.
These more practical issues of creating sparse codes with natural
similarity have recently been rediscovered in practical applications
such as visual object recognition (Ganguli & Sompolinsky, 2012;
Kavukcuoglu, Lecun, & LeCun, 2010; Kreutz-Delgado et al., 2003;
Lee, Battle, Raina, & Ng, 2007; Szlam, Gregor, & LeCun, 2012).

Even on the level of sensor outputs, signals are often sparse,
because only changes of the output are reported as temporally
separated events. Of course, this strongly depends on the type
of sensor. In video signals, for example, the most common
compression codes are essentially based on the sparseness of signal
differences, both in time and visual (2d) space. The same principle
is also working in the human or animal visual system resulting
in center-surround antagonistic activation of retinal ganglion cells
and sparse activity of edge-detecting cells in the primary visual
cortex (Field, 1987; Olshausen, 2003b; Olshausen & Field, 1996a,
1996b; Vinje & Gallant, 2000).

5. The sparseness principle

Also outside the context of associative memory sparseness
seems to be a useful principle in machine learning and signal
processing (Candes & Romberg, 2007; Coulter, Hillar, Isley, &
Sommer, 2010; Donoho & Elad, 2003; Hillar & Sommer, 2011;
Hoyer, 2004; Hoyer & Hyvärinen, 2002; Hurley & Rickard, 2009;
Kavukcuoglu et al., 2010; Kreutz-Delgado et al., 2003; Szlam
et al., 2012), so that one can often expect sparse representations
as a result of this kind of processing. In machine learning, in
particular in unsupervised or semisupervised learning one tries to
create useful compact representations of the data to be learned
by autoencoding networks or component analysis (PCA, ICA).
In this context one often uses techniques of regularization to
obtain robust representations and avoid overfitting. Here again
sparseness constraints have turned out to be extremely useful,
leading to overcomplete sparse representations. The reasons for
this common observation are currently not yet well understood
although sparse sensory representations have been investigated
since the late 1990s, for example by Bruno Olshausen and others
(e.g. Carlson, Rasquinha, Zhang, & Connor, 2011; Coulter et al.,
2010; Földiák & Young, 1998; Ganguli & Sompolinsky, 2012;
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Hromádka, DeWeese, & Zador, 2008; Hurley & Rickard, 2009;
Hyvärinen, 2010; Kreutz-Delgado et al., 2003; Lee, Ekanadham,
& Ng, 2008; Olshausen, 2003a, 2003b; Olshausen & Field, 1996a,
1996b, 1997).

Also in sensor fusion sparse representations (often coming from
these sources) can be very useful, but here one can perhaps give
a hint of the reason. When we want to fuse two sparse binary
representations x and y of two types of sensor data coming from
the same object, we can learn to associate the positive (nonzero)
features in y with those in x. If these features are sparse, then the
co-occurrence of a feature in x with a feature in y is much more
significant, i.e.muchmore unlikely to happen by chance, compared
to the non-sparse case. Thus we are learning or associating less,
but more significant, events, which is likely to result in a better
performance.

In the neurosciences today it is commonplace that spiking
neural activity is mostly sparse (e.g. Carlson et al., 2011; Földiák &
Young, 1998; Franco, Rolls, Aggelopoulos, & Jerez, 2007;Hahnloser,
Kozhevnikov, & Fee, 2002; Koulakov & Rinberg, 2011; Vinje &
Gallant, 2000; Wolfe, Houweling, & Brecht, 2010). Considering
spike-trains of single neurons the argument is simply that the
duration of a spike is typically less than amillisecond, whichwould
allow for up to 1000 spikes per second, whereas the observed spike
frequencies are much lower; even a very active neuron hardly
produces more than 100 spikes per second. A more qualitative
observation is that observed spike frequencies tend to go down
when we move from sensory or motor systems to more central
brain regions like the cerebral cortex. It is not easy to say what
the average spike frequency of a cortical neuron may be during
a typical day, but it is most likely not more than about 5 spikes
per second. This observed sparsity of neural spiking may of course
be due to an energy saving principle (Lennie, 2003), but it may
also be related to the working of associative synaptic plasticity
in the cortex, i.e. to storage efficiency. Concerning the functional
role of sparse activity in the cortex, there are several theoretical
ideas, in particular for the learning and generation of sparse
representations (e.g. Földiák, 1990; Hyvärinen, 2010; Lee et al.,
2007; Olshausen, 2003a; Perrinet, 2010; Rehn & Sommer, 2006,
2007; Rozell, Johnson, Baraniuk, & Olshausen, 2008; Zetzsche,
1990).

Also on a cognitive psychological level sparseness appears to
be very natural. Most of our mental concepts (or the words for
them) occur sparsely. This becomes immediately obvious when
we consider negation. We cannot really imagine something like a
non-car or a non-table, because this would encompass essentially
everything and cannot be conceived. Thus our usual concepts
signify rather small, compact and rare constellations of sensations.

6. Technical realization of NAMs

During the 1990s some serious attempts were made to develop
technical hardware realizations for massively parallel computing
of NAM functionalities (Gao & Hammerstrom, 2003; Heittmann,
Malin, Pintaske, & Rückert, 1997; Heittmann & Rückert, 1999,
2002; Zhu & Hammerstrom, 2002). The basic idea is to use a
large number of conventional RAM chips storing columns of the
storage matrix with parallel counting and thresholding (Palm &
Bonhoeffer, 1984; Palm & Palm, 1991).

Another essential idea is to use an address bus to communicate
the NAM activity patterns between processors. This is important
because generally the inter-process communication is always the
bottleneck in massively parallel computing architectures. Here
the use of sparse activity patterns makes it possible to save on
transmission rate by just transmitting the addresses of the few
active neurons in a NAM population. This idea has always been
used in our own parallel architectures (e.g. Palm & Palm, 1991;

Palm et al., 1997) and later it has been widely adopted in the
parallel implementation of spiking or pulse-codedneural networks
(e.g. Mahowald, 1994) and even received an acronym, AER, i.e.
address-event representation. Now these ideas are used in several
larger projects aimed at hardware implementations of large-scale
spiking neural networks for technical applications or for brain
simulations (De Garis, Shuo, Goertzel, & Ruiting, 2010; Djurfeldt
et al., 2008; Fay, Kaufmann, Knoblauch, Markert, & Palm, 2005;
Johansson & Lansner, 2007; Markram, 2006; Seiffert, 2004; Zhu &
Hammerstrom, 2002).

In such application oriented projects there also occurred the
idea of developing efficient software implementations in terms of
sparse matrix operations using pointers to the nonzero elements
(Bentz, Hagstroem, & Palm, 1989). In these applications there
already appeared some indications that the limit of ln 2 retrievable
bits per hardware bit, i.e. the efficiency limit of ln 2 can be
surpassed. Only recently we were able to show that this is indeed
the case (Knoblauch, 2011; Knoblauch, Palm, & Sommer, 2010). By
optimizing the quotient of the information storage capacity and
the information contained in the storage matrix itself, we found a
regime of ultra-sparse memory patterns, where the storagematrix
is also a sparse matrix and the quotient, i.e. the efficiency of the
memory approaches 1.

7. More detailed modeling of NAMs inspired by neuroscience

Following the early ideas of Donald Hebb (1949), the stepwise
formation of an associative memory matrix is understood as a rule
for the change of synaptic efficacies in the synaptic connectivity
matrix connecting the neurons of the NAM. Thus associative
learning is realized by synaptic plasticity, which was a subject
of intensive investigation in the neurosciences. In neuroscience
and recently also in neuromorphic engineering there has been
increasing interest in spiking neuron models and the role of spike
synchronization (e.g. Jin, Furber, & Woods, 2008; Knoblauch &
Palm, 2001; Mehrtash et al., 2003; Palm & Knoblauch, 2005; Plana
et al., 2011; Serrano-Gotarredona et al., 2008). In this context the
mechanisms for Hebbian synaptic plasticity has been analyzed
and modeled on a finer time-scale as a long-term process of
synaptic modification that is triggered by the coincidence or close
temporal succession of single pre- and postsynaptic spikes (or
sometimes two or three of these spikes). These more detailed
versions of the general idea of Hebbian synaptic plasticity were
observed in neurophysiology (e.g. Bi & Poo, 1998; Caporale & Dan,
2008; Froemke, Poo, & Dan, 2005; Markram, Lübke, Frotscher, &
Sakmann, 1997; Song, Miller, & Abbott, 2000) and are called spike-
timing dependent plasticity (STDP).

Their analysis (e.g. Izhikevich &Desai, 2003; Kempter, Gerstner,
& Van Hemmen, 1999; Pfister & Gerstner, 2006) has led to
some controversial arguments regarding the consistency between
the observed requirement of temporal ordering of pre- and
postsynaptic spikes (pre- slightly before post-) and the formation
and stabilization of recurrent auto-associations (Clopath, Büsing,
Vasilaki, & Gerstner, 2010; Knoblauch & Hauser, 2011). In many
STDP models exactly synchronized spikes in two neurons result
in a weakening of the synapse connecting them. So synchronized
spiking activity in a recurrent assembly would destroy the
assembly. However, already a slight temporal jittering of these
synchronized spikes in the range of milliseconds can reverse
this effect and lead to a strengthening of the synapse. Now
the current debate is, what is more likely to happen in a
biologically realistic parameter range and inneurobiological reality
(Knoblauch, Hauser, Gewaltig, Körner, & Palm, 2012). Currently
this interesting discussion can certainly not be interpreted as a
conclusive falsification of the assembly ideas, it rather shows new
technical possibilities, in particular if one moves from a local
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Fig. 3. Cortical architecture involving several interconnected cortical areas or modules corresponding to auditory, grammar, visual, goal, and motor processing.
Interconnections are not shown. Each module is realized by a combination of hetero- and auto-association as in Fig. 2(d). Additionally the model comprises evaluation
fields and activation fields.
Source: Adapted from Fay et al. (2005).

interpretation of assemblies to a more global systemic one, where
the network of the whole cortex is considered as a machine for
learning and organization of behavior.

In such a more constructive fashion it is easily possible
to create larger systems of several cortical modules based on
hetero- and auto-associative connectivity structures that work
with spiking neuron models producing biologically plausible
single neuron and population dynamics and that can interact in
a functionally meaningful fashion to generate computationally
demanding behavior which may be called cognitive (Fransén &
Lansner, 1998; Lansner, 2009; Lansner & Fransén, 1992; Sandberg,
Tegner, & Lansner, 2003). We produced an example of such a
system (see Fig. 3) that contains about 30 cortical modules or
areas and demonstrates the understanding of simple command
sentences by controlling a robot to perform the appropriate
actions (Fay et al., 2005; Knoblauch, Markert, & Palm, 2005;
Markert, Knoblauch, & Palm, 2007). The basic idea of such
an approach is to model the cerebral cortex as a network of
associative memory modules. I have developed this idea already
in my book ‘Neural Assemblies’ (Palm, 1982). It was strongly
influenced by intense discussions with Valentino Braitenberg
and by his analysis and interpretation of the anatomical cortical
connectivity (see Braitenberg, 1977, 1978; Braitenberg & Schüz,
1998). Valentino also had the rather cute idea to codify the basic
concept of a recurrent associative memory module (see Fig. 2(e)
and Palm, 1980) in a widely visible logo, namely the logo of the
Springer book series ‘Studies of Brain Function’ which started in
1977. Incidentally this logo also has some similarity to the logo of
‘Neural Networks’.

8. Conclusion

Theoretically it is no problem to show computational Turing
universality of binary or spiking neural network systems. The first
results on this topic go back to McCulloch and Pitts’ paper and to
early work in computer science, notably by Kleene. Later this topic
was taken up again in a wider context by Wolfgang Maass and
others (e.g. Funahashi & Nakamura, 1993). The same is of course
also true for associative memory networks (Wennekers & Palm,
2007), which may be used for a higher-level psychologically more
plausible implementation of thought processes or human problem
solving capabilities. This type of higher level brain modeling
based on networks of larger modules, each containing several

populations of (thousands of) neurons, may eventually bring
us closer to the goal of early neuroscientists like Donald Hebb
or Warren McCulloch, namely to bridge the huge gap between
lower level neuroscientific analysis of brain activity and higher
level synthetic psychological descriptions of human cognition, by
creating an additional process description (in terms of Hebbian
cell assemblies and cortical modules) at an intermediate level
that is amenable to interpretations from both sides. In the recent
literature one can find several projects or schools that may be
associated with such a program (e.g. Edelman & Tononi, 2000,
Hawkins & Blakeslee, 2004 and Hecht-Nielsen, 2007 and of course
also Steve Grossberg and John Taylor) and most of them are
entertaining ideas that are based on, closely related to, or at least
easily translatable into associative memory models.
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