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From i.i.d. Samples to i.i.d. Time Series

* Most of what you covered so far:
— Given: Z = {(x,y,)} pairs (for supervised case)
— Learn: f(x) > vy

* Speech recognition: vector time series, categorical
labels not at the sample level:
— Given: X=x, X, ... Xy where xS R%and Y. = y,y,...y,
— Notice:n =T
— Learn: f(X) 2> Y



Speech is Rich with Structure

Observed: —W#—M

== _ =
Acoustic: . =+ = = ===
ACOUStiC- | =——= = == - — — = =
Phonetic: voiced unvoiced voiced unvoiced voiced unvoiced voiced unvoiced
Phonetic: en s ai klow p iy d iy aa S
Lexical: encyclopedias
Grammatical: (he sold, NP, to her)
Semantic: {book, reference, knowledge, wikipedia}

Speech recognition requires modeling of all levels of hierarchy




Automatic Speech Recognition Pipeline
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All Speech Processing Begins Here

(in one form or another)

e Fourier Analysis

decompose the signal into
a sum of sinusoids across

the whole range of
/\/\/\/\/W\/\/ frequency



Beads on a String

Speech is a quasi-stationary signal
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Short-time Analysis for Quasi-stationary Signals
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Removing Speaker Characteristics

* All speech recognition front-ends attempt to remove
speaker dependent factors (so do speaker
recognizers!)

e Typically accomplished using spectral smoothing of
various types
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Acoustic Front-ends

* The standards:
— Mel Frequency Cepstral Coefficients (MFCCs)

* Mel Scale and discrete cosine transform

— Perceptual Linear Prediction (PLPs)
* Bark Scale and linear prediction (and typically DCT)

e Data driven:

— Neural Network Posteriorgrams
* Use phonetically transcribed training data to train ANNs

* Recent trends:
— Deep belief network pre-training
— Spectro-temporal receptive fields (2D Gabors)



Standard Front-end Tricks

* Velocity and Acceleration features
— Interested in changes (edges)

— Instantaneous is noisy, so we average (slope of line fit to several
points in trajectory)

 Temporal Context (+ LDA or PCA)
— Form supervectors from several neighboring observation
— Learn to reduce dimension with or without labeled data

* Cepstral Mean Subtraction

— Compensation for convolutional noise (e.g. channel/
microphone variation)

— s’ =s* n = S(f) = S(f) N(f) = <log S'(f)> = <log(S(f))> + log(N(f))



A Biologically Inspired Alternative

e Auditory neuron STRFs are tuned to a variety of frequencies,
scales of spectral modulations, and rates of temporal
modulations [Mesgarani, David, Fritz & Shamma, JASA 2008]
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Filters Inspired by STRFs

e Model real STRFs with the set of 2-D Gabor filters with the same
tuning variations: frequency, rate, and scale
[Mesgarani, Slaney & Shamma, TASLP 2006]
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Spectro-Temporal Modulation Features

e Convolve set of spectro-temporal modulation filters with auditory
spectrogram to produce a 4032-dimensional vector time series

Spectrograms  Spectrotemporal Filtered Spectrograms
2D filters
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Decoder

X=X X, .. Xp
el where x,€R?

“4% —> QIS 3 Decoder W= w; W, W .
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Acoustic Model

Most acoustic models (AMs) are characterized in terms of
phonemes
— Phonemes are the atomic sounds of a given language
— E.g.Cat=/kaet/, Robot=/row b aat/, The=/dh ah/ OR /thiy/
— Natural classes exist in terms of confusions and production mechanisms
— About 45 phones in English (depends on how you count)

Phonetic AMs allow sharing of observations across context,
reducing training data dependence

Phonetic AMs allow generalization to new words (given
pronunciation lexicon)



Modeling Individual Observations

* Each phonetic class is modeled with Gaussian
Mixture Model (GMM)

A




Context Dependent Phonemes

* Increase model complexity with context dependent
phones:
— One class for each phone in a particular phonetic context
— E.g. triphones: (aa: k, t) OR (t: s, iy)

— Not all 453 possibilities occur, so a fair amount of pruning is
done

* Typically: pool of Gaussians shared by GMMs for all
context dependent phonetic units (simple means of
parameter sharing)

* Decision trees typically used to prune and determine
how best to share parameters



GMM Training w/ Expectation-Maximization

* E-step: Given current GMM parameters 0,
compute the posterior probability of each
GMM component given the observation:




GMM Training w/ Expectation-Maximization

* M-step: Compute the new expected maximum likelihood
estimates 0’ of the GMM means and covariances:

1 . .
Fij = N ZP(J|Xr- qr = )Xt
Ut
1 . .
Ty = 7~ > PUlxe: G = ) (xe = i)
Ut

Nj = > p(jlxe. qr = i)

L

* |terate E and M step until the total data
likelihood converges



But We Don’t Have Frame Labels!

 We will also need to use E-M algorithm to decide
which frames in training data belong to which
phonetic class

e But: We first have some temporal constraints to
exploit



Trajectories are should be smooth




Modeling Temporal Dynamics

* Beads on a string model:
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* Enter the Hidden Markov Model (HMM):
dt—1 gt qi+1

LU

Lt—1 Tt Tt+1




Typical Phone HMM Topology

Three states per context dependent phone unit (states model
entry, stable part, and exit of the phoneme)

AA-b AA-m AA-e

AA-b AA-m AA-e

In total, three states per context dependent phone, 0(483)
context dependent units per phoneme (a very large number)



Expectation-Maximization Training (Again)

W e

HMM acoustic model trained with forward-backward
algorithm (Baum-Welch)

— Allows us to compute P(q, =i | x, ) given HMM-GMM parameters

— A polynomial time dynamic program to an otherwise exponential time
problem

— Made possible by first order Markov property of HMM

Use Baum-Welch to get responsibility of each frame to each state
Run E-M training of GMMs given these responsibilities
Estimate maximum expected log likelihood HMM parameters

lterate until total data likelihood converges (under whole HMM-
GMM model)



Acoustic Modeling, 1990s-present

* Basic prescription hasn’t changed since late 80s
 Most advances from fast computers and big data

» 200k+ Gaussians (1 hour of speech!)
* 100k+ words

* Quinphone states

* Speaker/noise model adaptation

* Discriminative model re-training

» 2000+ hours of transcribed speech




Alternatives

Still only given labels at the segment level, not frame
level

Alternatives typically rely on some sort of EM
procedure to get word or frame alignments

Most Common: Use HMM-GMM recognizer for
frame level alignments

E.g. neural networks (tandem and hybrid)



Language Model

* Necessary for several reasons:
— Simplify decoding by ruling out impossibilities (e.g.
“She can’t do it”, NOT “she cat do hit”)

— Compensate for bad acoustics / bad acoustic
model

— Disambiguate homonyms: “write a letter to Ms.
Wright, right now”



N-gram Language Model

P(W) =p(wy|<s>) X
p(wa|wy <s>)x
p(W3|W2W1<S>)><

p(</s>|Wmwm_1 - wowy <s>)

is approximated by

P(W) ~p(wy|<s><s>)X
p(wa|wy <s>)x

p(ws3|wowy )X

p(</s>|Wmwp_1)

Note: smoothing and back-off required



N-grams Still Reign

The simplest answer is still the most common in
practice

More complicated models (synatactic, recurrent

neural networks) provide improvements but are
intractable

N-best list/Lattice rescoring are work-arounds

Discriminative training has also been useful



Pronunciation Lexicon

* The lexicon (dictionary) is the connecting glue
between phonetic acoustic model and the
language model

* Word models are constructed from dictionary,
e.g. cat:

k ae t
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Decoding

 Decoding Graph (common: 45M states, 190M arcs)

W, [CEsEsE T eEsEsEEsmen]
W, [CEsEsE T eEsEsEsEsmen]
W, SEeEeE T eEsReE N ghonon
w, SEeEeE T eEsReE N ghouon
w,, S (AR E G E R e




Viterbi Algorithm

Find the most likely state sequence Q = g, ... g, given the
acoustics X = x; ... X7

Under 1%t order Markov property, this simplifies:

O* =max, P(Q]X) =max, P(X|Q)P(0)

_ ]jP(xt | %)lj P(q,19q,.)

Viterbi algorithm is a quadratic time dynamic program that
takes advantage of the Markov property



Lattice Output




Word Error Rate

e String edit alignment between reference and
hypothesized word strings (as word token
sequences)

« WER=100x (N_, + N, _+N,.)/N

ref

REF | The| [dog|ate|my|homework
Hye |A |aldog|ate homework

ERR sub lins del



A Long Way To Go

* Humans vs. Machines (as of late 1990s):

connected H-OOS’% Humans
‘91> N 0.7%
° ASR

Wall Street 0.9%
Journal
(clean)

Wall Street

Journal
(10 dB SNR)

1.1%
12.8%

telephone
conversations

I




Not AII Frames Are Created Equal

High entropy frames removed to mask 60% of the signal!



Point Process Models

Transform the signal into sparse temporal point patterns of
acoustic events

Explicitly model whole words or common phrases according
to the temporal statistics of these patterns



Speech

PPM Architecture
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Phonetic Events

Phonetic Posteriorgram Phonetic Events
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48 real-valued event times

8000+ real-valued probabilities

Sparse across phones, not time Sparse in time



Spectro-Temporal Modulation Events

STRF Points

STRF Frames
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Geometric Interpretation

o Frames: Model trajectory as
series of points in R™

e Points: Model trajectory as
the times of closest approach @
to each categorical center,
each marked with the
category identity




Sliding Model Word Detectors

— ’ ) ) T

Lol ib bbbt bt iirntiinnl
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© Letb, : R — {0, 1} be indicator function of word w occurrence
O Let R, = {N,, } be the point pattern in the interval [t,¢ + T

€ Define LLR detector function

o [PRex|T, 04()=1) 1, . g
. (1) _log/P(Rt,ﬂT, 5 (1) O)P(T|9w(t)—1)dT.



Word Model, P(R:r|T,0.,(t)=1)

Memoryless point process with feature ¢, arrival probability Ay, (¢)dt
In differential time element dt at time ¢

© Normalize all t € R; r to the interval [0, 1], yielding R" = {N; }

® Assume T-independence of R’, independent feature detectors,
and inhomogeneous Poisson process model for each feature:

P(Rt7T‘T, Ow(t) TlRt i H _fo Ap;(s)ds H )‘d)z

s€N’

© Rate functions {\, ()} are estimated with parametric model or
KDE



Example: “twenty” PPM

* Given a word, learn likelihoods of each event type as a
function of time in the word

..................................................................................

Phone
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Fraction of Word Duration



Example: “greasy” PPM

Poisson Process Rate Parameters, kp(t)
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Demonstrated PPM Advantages

* Robustness: AURORA2 Robust Digit Recognition Evaluation
Train: Clean, Test: Babble

clean 99.0 98.5
20 dB 90.2 93.6

Less is More:
15dB /3.8 89.7 Huge recognition
10 dB 49.4 80.2 improvements from

> modeling only the

5dB 26.8 62.5 _
important parts of
0dB 9.3 35.8 the signal

* Speed: Run-time linear in number of events, allowing keyword
search > 500,000X faster than real time



Machine Learning in Word Space

* Imagine words occupying
some abstract space (need

not be vectors) the e e
S

the the the the
the the the the

* Define a distance metric the —
“« . ” th
between “points” in that the /7 them N ihen
space them then
them then then
them
h them then then
e Train word models with S hem  them then

machine learning methods o then then
that require only pair-wise
distances



Discriminative PPM

Training Examples: “the"

Compute phone events from

phonetic posteriorgrams = g
= =
2000 - .(.7')
= (@)
. . . : Q
Collect positive/negative 5 o0 .
point patterns for each word =
from training lattices G 000
5000 '%
Rescore lattice arcs with RLS ©
o fe Q
+RBF word classifiers c

7000 i —— = i = .
aa ae ah £ Wd dheherey f ghhih iy jh k | m nngowoy p r s sh t th tsuhuw v w y z zhsi
Feature Dimensions

Random phone events present in negative examples only



PPM vs IBM Attila

* Attila: LDA, VTLN, fMMI, fMLLR, MLLR, bMMI, Quinphones
* PPM: MLP monophone events, whole-word classifiers

Combined (Attila + PPM) EER (%)

Word-Level Performance Comparison
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