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About this class

Goal To discuss some problems in unsupervised
learning and in particular introduce a statistical
learning framework for learning data
representation/reconstruction under constraints,
discussing the role played by regularization theory
and regularized algorithms.
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Plan

From supervised learning to learning data representation
Unsupervised Learning Algorithms
Computations
Final Comments
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Supervised Learning

we are given a trainining set S = ((x1, y1), . . . , (xn, yn))
sampled i.i.d. with respect to p(x , y).
the problem is: to predict the best possible output for new
input
find

f (xnew ) = ynew .
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Statistical Learning Theory for Supervised Learning

The problem can be formalized fixing some concepts.
loss function V (y , f (x))

hypotheses space H : {f | f : X → R}
a learning algorithm maps the data into a function, i.e.
A(S) = fS ∈ H
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Generalization

A good algorithm is such that

P(|IS[fS]− I[fS]| ≥ ε)

is small,or
P(I[fS]− inf

f∈H
I[f ] ≥ ε)

is small, where I[f ] = E[V (y , f (x))].

L. Rosasco Regularization in Unsupervised Learning



Empirical Risk and Regularization

Typically we use algorithm based on the (regularized) empirical
risk minimization.

Constrained minimization

min
f∈Hλ

IS[fS]

or penalized minimization

min
f∈H
{IS[fS] + λR(f )}.
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Unsupervised Learning

we are given a trainining set S = (x1, . . . , xn) sampled i.i.d.
with respect to p(x).
the problem is to extract from data “useful” information
about p..........

L. Rosasco Regularization in Unsupervised Learning



Unsupervised Learning is not One but Many Problems

density estimation
dimensionality reduction
clustering
manifold learning
correlation analysis
association rules
networks/graph analysis
dictionary learning, vector quantizaton, data
representation/reconstruction

Unsupervised learning is ubiquitous: many algorithms, no
unified framework.
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Learning Data Representation

Data representation is the preliminary step to supervised
learning. Representation are often designed/engineered, but
ideally should be learned.

We have discussed how a good representation should be
discriminant and yet invariant to task irrelevant transformations.

Ideally such a good representation should reduce the sample
complexity of subsequent supervised tasks.
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Learning Data Representation (cont.)

Some questions before we even start..
How can we know what is “task relevant” if we don’t have
labels (we don’t know what’s the task)?
What do we mean with learning a representation?
What guarantees we have? (stability, overfitting...)
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Approach

We are going to replace

discrimination 7→ reconstruction+constraints

for the time being we are not going to consider the problem of
invariance (see last lectures to see how this can be done).
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Empirical Reconstruction Error

Given a training set S, we are going to consider algorithms that
minimize the following empirical (reconstruction) error,

IS[C] =
1
n

n∑
i=1

d2(xi ,C)

where:
C is a subset of X
d2(xi ,C) = minv∈C ‖x − v‖2 is the square distance of a
point x to the set C
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Regularization framework

We are going to consider (constrained) algorithms based on

min
C∈Hk

IS[C]

where Hk ⊂ {C | C ⊂ X} is a hypotheses space of suitable
subsets of X .
The above algorithm returns an estimator A(S) = CS ∈ Hk .
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Remarks

the above error measure depends on the distribution,
points that are more likely to be sampled contribute more
to the error
we can alternatively consider penalized algorithms

min
C∈H

IS[C] + R(C)

where H ⊂ {C | C ⊂ X} is an essentially unconstrained
hypotheses space and R(C) a regularizer that penalize
complex/large sets.
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Examples

The above framework is general enough to encompass a
variety of algorithms.

PCA
Sparse coding
K-Means
K-Flats
Non Negative Matrix Factorization
...

Each algorithm is defined by a suitable choice of Hk .
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Hypothesis Space

Hypothesis space

H = {C ⊆ X : C = {x : x = Tb =
k∑

j=1

bj tj , with T ∈ T ,b ∈ B}}

T - linear transformations B 7→ X , Tb =
∑k

j=1 bj tj , where tj
are the code vectors defining a dictionary.
The choice of B determines the encoding x 7→ (b1, . . . ,bk )
and the algorithm.
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Hypothesis Space

Input: samples S.
Output: mapping TS (determines set CS = TS(B)).

Dictionary: T in coordinates (t1, . . . , tk ).
Encoding: given x , encoding is argminb∈Bd2(x ,T (b))

C = T (B) are encoded with no error
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PCA

PCA:

Let B = Rk

Sets are of the form C = T (Rk ), with T linear

C is a k -dimensional linear subspaces of X

IS,k = min
T∈T

1
n

n∑
i=1

d2(xi ,T (Rk ))

= min
rank-k linear projection π

1
n

n∑
i=1

d2(xi , πxi)

Free parameter: k (maximum dimension of C)
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K-Means

K-Means:

Let B = {e1, . . . ,ek}

Sets of the form C = T (B) ⊆ X , with T linear mapping

Arbitrary sets C ⊂ X of size |C| = k

IS,k = min
T∈T

1
n

n∑
i=1

d2(xi ,T ({e1, . . . ,ek})))

= min
C={m1,...,mk}

1
n

n∑
i=1

k
min
j=1

d2(xi ,mj)

Free parameter: k (size of C)
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K-Flats

K-Flats:

Let B ⊂ Rm×k

B = ∪k
j=1span

(
ej,1, . . . ,ej,m

)
6= Rm×k

Sets are collections of k m-dimensional linear subspaces
of X (m-flats)

IS,k = min
T∈T

1
n

n∑
i=1

d2(xi ,T (B))

= min
C={π1,...,πk}

πj rank-k linear projection

1
n

n∑
i=1

k
min
j=1

d2(xi , πjxi)

Free parameters: k ,m (number and dimension of flats)
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Sparse Coding

Sparse Coding

Let B = B1(λ) = {y ∈ Rk : ‖y‖1 ≤ λ}
T = { linear T : ‖Tei‖ ≤ γ,1 ≤ i ≤ k}

Sets are of the form C = T (B1(λ))
(Typically sparse) linear combinations of k points

IS,k = min
T∈T

1
n

n∑
i=1

d2(xi ,T (B1(λ)))

Free parameter: λ, controls sparsity.
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Unsupervised Learning: K-Means Problem

K-means problem: find set C = {m1, . . . ,mk} of size k
minimizing

IS[C] =
1
n

n∑
i=1

k
min
j=1

d2(xi ,mj)

Non-linear, non-convex.
NP-hard even for k = 2!
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K-Means Problem

IS[C] =
1
n

n∑
i=1

k
min
j=1

d2(xi ,mj)

Given means, optimal partition given by assignment
function:

a(xi) = argmink
j=1d2(xi ,mj)

Given a partition, optimal means given by centers of mass:

mj =
∑

i:a(xi )=j

xi /
∑

i:a(xi )=j

1
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K-Means with Lloyd’s Algorithm

IS[C] =
1
n

n∑
i=1

k
min
j=1

d2(xi ,mj)

Lloyd’s algorithm:
Initialize {mi : i = 1, . . . , k} randomly in S = {x1, . . . , xn}
(without replacement)
Repeat until convergence:

find partition given means,

a(xi ) = argmink
j=1d2(xi ,mj )

update means given the above partition,

mj =
∑

i:a(xi )=j

xi /
∑

i:a(xi )=j

1
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K-Means with Lloyd’s Algorithm (cont.)

Lloyd’s algorithm:
a) Given means⇒ optimize partition.
b) Given partition⇒ optimize means.

Greedy block-coordinate descent. Does it converge?
Steps a) and b) strictly decrease IS[C], until convergence.
⇒ no partition is repeated (never twice in the same state).
Number of different partitions of S is ≤ kn

⇒ must converge to local minimum in finite number of steps.

How close to global optimum?: we don’t know.
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K-Means with Lloyd’s Algorithm (cont.)
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K-Means++

Choose seeding adaptively:
m1 uniform random in S = {x1, . . . , xn}.
For j = 2, . . . , k , let

P[mj = i ] ∝ min
l=1,...,j−1

d2(xi ,ml)

(pick means far from previously-inserted means)
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Properties of K-Means++

K-Means++
m1 uniform random in S = {x1, . . . , xn}.
P[mj = i ] ∝ minl=1,...,j−1 d2(xi ,ml), j = 2, . . . , k

Guarantees:
O(ln k)-Approximation randomized algorithm: after
seeding it is

E {IS[{m1, . . . ,mk}]} ≤ 8(ln k + 2) · min
|C|=k

IS[C]
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Complexity of K-Means++

K-Means++
m1 uniform random in S = {x1, . . . , xn}.
P[mj = i ] ∝ minl=1,...,j−1 d2(xi ,ml), j = 2, . . . , k

Complexity: O(kn).

Choose m1 randomly.
Let pi ← d2(xi ,m1), i = 1, . . . ,n Θ(n)

For j = 2, . . . , k : k×

Draw mj ∝ [p1, . . . ,pj−1] Θ(n)

pi ← min{pi ,d2(xi ,mj )} Θ(n)
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K-Means++ Addenda

Additionally:
May still run Lloyd algorithm after.
Incremental: computes all intermediate solutions
(k ′ = 1, . . . , k ).
Proof does not (trivially) extend to K-Flats.
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Generalization Bounds

Can we quantify the generalization properties of the previous
unsupervised learning algorithms?

Recall that we defined,
Empirical reconstruction error: IS[C] = 1

n
∑n

i=1 d2(xi ,C)

Expected reconstruction error: I[C] = E[d2(x ,C)]
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Generalization Bounds (cont.)

A good algorithm is such that
generalization

P(|IS[CS]− I[CS]| ≥ ε)

is small,or
consistency (excess risk bounds)

P(I[CS]− inf
C∈Hk

I[C] ≥ ε)

is small.
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Kernel Methods

Many algorithms can be extended using kernels.
Given a feature map Φ : X → H, the idea is to consider

IS[C] =
1
n

n∑
i=1

d2(xi ,C)

where:
C is a subset of H
d2(xi ,C) = minv∈C ‖Φ(x)− v‖2H is the square distance of
the feature map Φ(x) of a point x to the set C
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Kernel K-Means

For example in the case of kernel k-means, the algorithms will
compute (implicitly) means in the feature space

mj =
1
` j

`j∑
i=1

Φ(xi), `j ≤ n.

Indeed the distance of a point to a such mean can be computed
explicitly

∥∥Φ(x)−mj
∥∥2
H = K (x , x)− 1

`j

`j∑
i=1

K (x , xi) +
1
`j

2

`j∑
i=1

K (xi , xi)

L. Rosasco Regularization in Unsupervised Learning



Summary and Questions

Learning data representation can be described in a
regularization framework.
Different Hypotheses spaces induce different algorithms.
Computations are considerably more complicated (lack of
convexity).

Sample/approximation tradef-offs?
Partial supervision (semi-supervised, time, constraints–
symmetry etc.)
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K-Flats Problem

Modified Lloyd algorithm:
Initialize flats “randomly" {πi : i = 1, . . . , k}.
Repeat until convergence:

Given flats, optimal partition given by assignment function:

a(xi ) = argmink
j=1d2(xi , πjxi )

Given partition, optimal flat πj given by top eigenvectors
(PCA) of

SjSt
j =

∑
i:a(xi )=j

xix t
i

Similar guarantees: convergence to local minimum.
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