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 Class 19:  A class of models of the ventral stream of visual 
cortex

 Class 20: A “magic” theory of the ventral stream: Part I 

 Class 21: A “magic” theory of the ventral stream: Part I I and III

Plan for class 21-22- 23 
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1.  Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models
5.  Beyond hierarchical models

Intro and connections with other classes
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Connection with the topic of 
learning theory

4
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How then do the learning machines described in the theory compare with brains? 

 One of the most obvious differences is the ability of people and animals to 
learn from very few examples. The algorithms we have described can learn an object recognition 
task from a few thousand labeled images but a child, or even a monkey, can learn the same task from just a few 
examples. Thus an important area for future theoretical and experimental work is learning from partially labeled 
examples 

 A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms” we 
have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory? It seems that the learning theory of 
the type we have outlined does not offer any general argument in favor of hierarchical learning machines for 
regression or classification. 

 Why hierarchies? There may be reasons of efficiency – computational speed and use of computational 
resources. For instance, the lowest levels of the hierarchy may represent a dictionary of features that can be 
shared across multiple classification tasks.

  There may also be the more fundamental issue of sample complexity. Learning theory shows that the 
difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in 
turn how many training examples are needed to achieve a given level of generalization error. Thus our ability of 
learning from just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale
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Classical learning theory and Kernel Machines 
(Regularization in RKHS)

implies

Remark:

Kernel machines correspond to
shallow networks

X1

f

Xl
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WARNING: 
using a class of models to summarize/interpret 

experimental results

• Models are cartoons of reality, eg Bohr’s model of 
the hydrogen atom

• All models are “wrong”

• Some models can be useful summaries of data and 
some can be a good starting point for a real theory

Monday, April 23, 2012



1.  Problem of visual recognition, visual cortex
2.  Historical background
3.  Neurons and areas in the visual system
4.  Feedforward hierarchical models
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Unconstrained visual recognition is a difficult problem 
(e.g., “is there an animal in the image?”)

	
  	
  Learning	
  and	
  Recogni-on	
  in	
  Visual	
  Cortex:
what	
  is	
  where
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Vision
A Computational Investigation into the Human Representation and Processing of Visual Information
David Marr
Foreword by Shimon Ullman
Afterword by Tomaso Poggio

David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to 
enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader 
questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and 
cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from 
neuroscience, psychology, and computation. This MIT Press edition makes Marr's influential work available to a new generation 
of students and scientists.

In Marr's framework, the process of vision constructs a set of representations, starting from a description of the input image 
and culminating with a description of three-dimensional objects in the surrounding environment. A central theme, and one that 
has had far-reaching influence in both neuroscience and cognitive science, is the notion of different levels of analysis—in Marr's 
framework, the computational level, the algorithmic level, and the hardware implementation level. 

Now, thirty years later, the main problems that occupied Marr remain fundamental open problems in the study of perception. 
Vision provides inspiration for the continui

Vision:	
  
what	
  is	
  where
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~ 1979 , with David Marr and Francis Crick, Borego Desert

Vision:	
  what	
  is	
  where
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Desimone & Ungerleider 1989

dorsal 
stream:
“where”

ventral 
stream:
“what”

Vision:	
  what	
  is	
  where
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 The ventral stream... 

Feedforward connections only? 
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 …``solves” the problem 

(if the mask forces feedforward processing)…

human-
observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

• d’~ standardized error 
rate 
• the higher the d’, the 
better the performance

Human 80%
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2.  Historical background
3.  Neurons and areas in the visual system
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Some personal history: 
First step in developing a model: 

learning to recognize 3D objects in  IT cortex

Poggio & Edelman 1990

Examples of Visual Stimuli
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An idea for a module for view-invariant 

identification

Architecture that 
accounts for 
invariances to 3D 
effects (>1 view 
needed to learn!)

Regularization 
Network (GRBF)
with Gaussian kernels

View Angle

VIEW-
INVARIANT, 

OBJECT-
SPECIFIC

UNIT

Prediction: 
neurons become
view-tuned 
through learning

Poggio & Edelman 1990
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Learning to Recognize 3D Objects in  IT 

Cortex

Logothetis Pauls & Poggio 1995

Examples of Visual Stimuli

After human psychophysics 
(Buelthoff, Edelman, Tarr, 
Sinha, to be added next 
year…), which supports 
models based on view-tuned 
units... 

… physiology!

Monday, April 23, 2012



Recording Sites in Anterior IT

Logothetis, Pauls & Poggio 1995

…neurons tuned to 
faces are intermingled 

nearby….
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Neurons tuned to object  views,
 as predicted by model!

Logothetis Pauls & Poggio 1995
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A “View-Tuned” IT Cell
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But also view-invariant object-specific neurons 
(5 of them over 1000 recordings)

Logothetis Pauls & Poggio 1995
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View-tuned cells: 
scale invariance (one training view only) motivates present model

Logothetis Pauls & Poggio 1995
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Hierarchy

• Gaussian centers (Gaussian Kernels) tuned to 
complex multidimensional features as 
composition of lower dimensional Gaussian

• What about tolerance to position and scale?
• Answer: hierarchy of invariance and tuning 

operations
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Answer: the “HMAX” model

Riesenhuber & Poggio 1999, 2000

Monday, April 23, 2012



From HMAX to the present model

How the new version of the model evolved from the original one 

1. The two key operations: Operations for selectivity and invariance, originally computed in a simplified
and idealized form (i.e., a multivariate Gaussian and an exact max, see Section 2) have been
replaced by more plausible operations, normalized dot-product and softmax
 
2. S1 and C1 layers: In [Serre and Riesenhuber, 2004] we found that the S1 and C1 units in the original
model were too broadly tuned to orientation and spatial frequency and revised these units accordingly.
In particular at the S1 level, we replaced Gaussian derivatives with Gabor filters to better fit
parafoveal simple cellsʼ tuning properties. We also modified both S1 and C1 receptive field sizes.

3. S2 layers: They are now learned from natural images. S2 units are more complex than the old 
ones (simple 2 °— 2 combinations of orientations). The introduction of learning, we believe, has b
een the key factor for the model to achieve a high-level of performance on natural
images, see [Serre et al., 2002].

4. C2 layers: Their receptive field sizes, as well as range of invariances to scale and position have been
decreased so that C2 units now better fit V4 data. 

5. S3 and C3 layers: They were recently added and constitute the top-most layers of the model along
with the S2b and C2b units (see Section 2 and above). The tuning of the S3 units is also learned from
natural images.

6. S2b and C2b layers: We added those two layers to account for the bypass route (that projects directly
from V1/V2 to PIT, thus bypassing V4 [see Nakamura et al., 1993]).
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Serre & Riesenhuber 2004
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• Human	
  Brain
– 1010-­‐1011	
  neurons	
  	
  (~1	
  million	
  flies)
– 1014-­‐	
  1015	
  synapses

• Neuron
– Fundamental space dimensions: 

• fine dendrites : 0.1 µ diameter; lipid bilayer 
membrane : 5 nm thick; specific proteins : pumps, 
channels, receptors, enzymes

– Fundamental time length : 1 msec

Vision:	
  what	
  is	
  where

• Ventral	
  stream	
  in	
  rhesus	
  monkey
– ~109	
  neurons	
  in	
  the	
  ventral	
  stream	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(350	
  106	
  in	
  each	
  emisphere)

– ~15	
  106	
  neurons	
  in	
  AIT	
  (Anterior	
  
InferoTemporal)	
  cortex	
  

Van Essen & Anderson, 1990
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Neural Circuits

Source: Modified from Jody Culham’s web slides
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and with            ,            ,             ,              and                      we obtain

Membrane with excitatory and inhibitory 

synapses
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Source: Lennie,  Maunsell, Movshon

Vision:	
  what	
  is	
  where
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The ventral stream hierarchy: V1, V2, 
V4, IT

A gradual increase in the
receptive field size, in the complexity of the 
preferred stimulus, in tolerance to position 

and scale changes

Kobatake & Tanaka, 1994

Vision:	
  what	
  is
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The ventral stream hierarchy: V1, V2, 
V4, IT

A gradual increase in the
receptive field size, in the complexity of the 
preferred stimulus, in tolerance to position 

and scale changes

Kobatake & Tanaka, 1994

The Ventral Stream 
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(Thorpe and Fabre-Thorpe, 2001)
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V1: hierarchy of simple and complex cells

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel 1959)
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V1: hierarchy of simple and complex cells
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cells
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cells
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V1: hierarchy of simple and complex cells

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel 1959)
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*Modified from (Gross, 1998)

[software available online
with CNS (for GPUs)]

Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

	
  	
  Recogni-on	
  in	
  the	
  Ventral	
  Stream:	
  ‘’classical	
  model”
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[software available online] Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

• It is in the family of “Hubel-Wiesel” 
models (Hubel & Wiesel, 1959: qual. 
Fukushima, 1980: quant; Oram & 
Perrett, 1993: qual; Wallis & Rolls, 
1997; Riesenhuber & Poggio, 1999; 
Thorpe, 2002; Ullman et al., 2002; Mel, 
1997; Wersing and Koerner, 2003; 
LeCun et al 1998: not-bio; Amit & 
Mascaro, 2003: not-bio; Hinton, LeCun, 
Bengio not-bio; Deco & Rolls 2006…)

• As a biological model of 
object recognition in the 
ventral stream – from V1 to 
PFC -- it is perhaps the most 
quantitatively faithful to 
known neuroscience data

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  ‘’classical	
  model”
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Two key computations, 
suggested by physiology

Unit 
types

Pooling Computation Operation

Simple 
Selectivity / 

template 
matching

Gaussian-
tuning / 

AND-like

Complex Invariance Soft-max / 
or-like
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Gaussian tuning

Gaussian tuning in IT 
around 3D views

Logothetis Pauls & Poggio 1995

Gaussian tuning in 
V1 for orientation

Hubel & Wiesel 1958
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Max-like operation

Max-like behavior in V1

Lampl Ferster Poggio & Riesenhuber 2004 
see also Finn Prieber & Ferster 2007

Gawne & Martin 2002

Max-like behavior in V4
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 Max-like operation (OR-like)

 Complex units Stage 1

Stage 2

Two operations (~OR, ~AND):

disjunctions of conjunctions

Stage 3
 

y = e− |x−w |
2

or

y ~ xiw
| x |

Tuning operation (Gaussian-like, 
AND-like)

Simple units

Each operation 
~microcircuits of ~100 

neurons
Monday, April 23, 2012



 Max-like operation (OR-like)

 Complex units Stage 1

Stage 2

Two operations (~OR, ~AND):

disjunctions of conjunctions

Stage 3
 

y = e− |x−w |
2

or

y ~ xiw
| x |

Tuning operation (Gaussian-like, 
AND-like)

Simple units

Each operation 
~microcircuits of ~100 

neurons
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 Max-like operation (OR-like)

 Complex units Stage 1

Stage 2

Two operations (~OR, ~AND):

disjunctions of conjunctions

Stage 3
 

y = e− |x−w |
2

or

y ~ xiw
| x |

Tuning operation (Gaussian-like, 
AND-like)

Simple units

Each operation 
~microcircuits of ~100 

neurons
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(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007)

Plausible biophysical implementations

• Max and Gaussian-like tuning 
can be approximated with 
same canonical circuit using 
shunting inhibition. Tuning (eg 
“center” of the Gaussian) 
corresponds to synaptic 
weights.
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Stage 1

Stage 2

A plausible biophysical implementation
for both Gaussian tuning (~AND) + max 

(~OR): normalization circuits with divisive 
inhibition (Kouh, Poggio, 2008; also RP, 1999; 

Heeger, Carandini, Simoncelli,…)

A canonical microcircuit of spiking neurons?

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  
circuits	
  and	
  biophysics
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Stage 1

Stage 2

A plausible biophysical implementation
for both Gaussian tuning (~AND) + max 

(~OR): normalization circuits with divisive 
inhibition (Kouh, Poggio, 2008; also RP, 1999; 

Heeger, Carandini, Simoncelli,…)

A canonical microcircuit of spiking neurons?

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
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Simulation with spiking neurons and
realistic synapses
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Of the same form as model 
of MT (Rust et al., Nature 
Neuroscience, 2007

Can be implemented by 
shunting inhibition (Grossberg 
1973, Reichardt et al. 1983, 
Carandini and Heeger, 1994) 
and spike threshold variability 
(Anderson et al. 2000, Miller 
and Troyer, 2002)

Adelson and Bergen (see also 
Hassenstein and Reichardt, 
1956)

Basic circuit is closely related to other models
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• Task-specific circuits (from IT to PFC?)

- Supervised learning: ~ classifier

 Overcomplete dictionary of 
“templates” ~ image “patches” ~ 
~ “parts”  is learned during an 
unsupervised learning stage 
(from ~10,000 natural images) 
by tuning S units. 

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Lewicki and Olshausen, 1999; Einhauser et al 
2002; Wiskott & Sejnowski 2002; Spratling 2005)

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning
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  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning
(from	
  Serre,	
  2007)
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Start with S2 layer
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Units are organized in n 
feature maps

Start with S2 layer
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Units are organized in n 
feature maps

Start with S2 layer
…

…
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Start with S2 layer
…

…
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Database ~1,000 natural images

Start with S2 layer
…

…
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Database ~1,000 natural images

Start with S2 layer
…

…
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Database ~1,000 natural images

Start with S2 layer
…

…
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Database ~1,000 natural images

At each iteration:

 Present one image 

 Learn k feature maps 

Start with S2 layer
…

…
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Database ~1,000 natural images

At each iteration:

 Present one image 

 Learn k feature maps 

Start with S2 layer
…

…
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Start with S2 layer
…

…
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…

C1

S2
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…
Store in unit 

synaptic weights the 
precise pattern of 

subunits activity, i.e. 
w=x

C1

S2
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Pick 1 unit from the 
first map at random

Start with S2 layer
…

…
Store in unit 

synaptic weights the 
precise pattern of 

subunits activity, i.e. 
w=x

w1

Image “moves” (looming and shifting)

Weight vector w is copied to  
all units in feature map 1 

(across positions and scales) 
C1

S2
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S2 units

• Features of moderate complexity (n~1,000 
types)

• Combination of  V1-like complex units at 
different orientations

• Synaptic weights w 
learned from natural 
images

• 5-10 subunits chosen at 
random from all possible 
afferents (~100-1,000)

stronger 
facilitation

stronger 
suppression

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning
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  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning

Sample	
  S2	
  Units	
  Learned	
  (from	
  Serre,	
  2007)
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Nature Neuroscience - 10, 1313 - 1321 (2007) / Published online: 16 September 2007 | doi:10.1038/nn1975

Neurons in monkey visual area V2 encode combinations of orientations
Akiyuki Anzai, Xinmiao Peng & David C Van Essen
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Comparison	
  w|	
  V4

Pasupathy & Connor 2001

Tuning	
  for	
  
curvature	
  and	
  
boundary	
  

conformaJons?
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C2	
  units

• Same selectivity as S2 units but 
increased tolerance to position and 
size of preferred stimulus

• Local pooling over S2 units with 
same selectivity but different 
positions and scales

• A prediction to be tested:   S2 units 
in V2 and C2 units in V4?

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning
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 Cerebral Cortex Advance Access published online on June 19, 2006

A Comparative Study of Shape Representation in Macaque 
Visual Areas V2 and V4

Jay Hegdé and David C. Van Essen 
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Beyond	
  C2	
  units

• Units increasingly complex and invariant
• S3/C3 units:

•  Combination of  V4-like units with different 
selectivities

•  Dictionary of ~1,000 features = num. columns in IT 
(Fujita 1992)

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:	
  learning
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A loose hierarchy

• Bypass routes along with main routes: 
• From V2 to TEO (bypassing V4) (Morel & Bullier 1990; Baizer et al 1991; Distler et al 1991; 

Weller & Steele 1992; Nakamura et al 1993; Buffalo et al 2005)

• From V4 to TE (bypassing TEO) (Desimone et al 1980; Saleem et al 1992)

• “Replication” of simpler selectivities from lower 
to higher areas

• Rich dictionary of features – across areas --  
with various levels of selectivity and 
invariance
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Readings on the work with 

many relevant references

A detailed description of much of the work is in the 
“supermemo” at 

http://cbcl.mit.edu/projects/cbcl/publications/ai-
publications/2005/AIM-2005-036.pdf

Other recent publications and references
can be found at 

http://cbcl.mit.edu/publications/index-pubs.html
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  Model:	
  testable	
  at	
  different	
  levels

The	
   most	
   recent	
   version	
   of	
   this	
  
straighLorward	
   class	
   of	
   models	
   is	
  
consistent	
   with	
   many	
   data	
   at	
  
d ifferent	
   leve ls	
   -­‐ -­‐	
   f rom	
   the	
  
computa(onal	
   to	
   the	
   biophysical	
  
level.	
  	
  

Being	
  testable	
  across	
  all	
  these	
  levels	
  
is	
  a	
  high	
  bar	
  and	
  an	
   important	
  one	
  
(too	
   easy	
   to	
   develop	
   models	
   that	
  
explain	
   one	
   phenomenon	
   or	
   one	
  
area	
   or	
   one	
   illusion...these	
   models	
  
overfit	
   the	
   data,	
   they	
   are	
   not	
  
scienJfic)
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V1:

Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

MAX-like operation in subset of complex cells (Lampl et al 2004)
V2:

Subunits and their tuning (Anzai, Peng, Van Essen 2007)
V4:

Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)

MAX-like operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)
Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

Tuning and invariance properties (Logothetis et al 1995, paperclip objects)
Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

Read out results (Hung Kreiman Poggio & DiCarlo 2005)
Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:

Rapid categorization (Serre Oliva Poggio 2007)
Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

Hierarchical	
  Feedforward	
  Models:
is	
  consistent	
  with	
  or	
  predict	
  	
  neural	
  data
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Rapid Categorization:
mask should force visual 

cortex to operate in 
feedforward mode

Animal present
or not ?

30 ms ISI

20 ms

Image

Interval 
Image-Mask

Mask
1/f noise

Thorpe et al 1996; Van Rullen & Koch 2003; Bacon-Mace et al 2005

Hierarchical feedforward models of the 

ventral stream
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Rapid Categorization 

Hierarchical feedforward models of the 

ventral stream
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Rapid Categorization 

Hierarchical feedforward models of the 

ventral stream
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Feedforward Models:
“predict” rapid categorization 
(82% model vs. 80% humans) 

Image-by-image correlation:
around 73% 

for model vs.  humans) 

	
  	
  Recogni-on	
  in	
  Visual	
  Cortex:
model	
  accounts	
  for	
  	
  phychophysics
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• Image-by-image correlation:
– Heads:             ρ=0.71 
– Close-body:     ρ=0.84  
– Medium-body: ρ=0.71
– Far-body:         ρ=0.60

Hierarchical	
  model	
  of	
  recognition	
  in	
  visual	
  cortex
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Agreement of model  w| IT Readout data
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77 objects, 
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Reading-out the neural code in AIT
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Recording at each recording site during passive viewing

100 ms 100 ms

• 77 visual objects
• 10 presentation repetitions per object
• presentation order randomized and counter-balanced

time
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Agreement of model  w| IT Readout data
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 Training a classifier on neuronal 
activity.

INPUT OUTPUTf
From a set of data (vectors of activity of n neurons (x)  and object label (y)

 

Find (by training) a classifier eg a function f such that 

         

is a good predictor of object label y for a future neuronal activity x

Monday, April 23, 2012



Decoding the Neural Code …
population response (using a classifier)

x

Learning 
from (x,y) 
pairs

y ∈ {1,…,8}
Monday, April 23, 2012



Categorization

• Toy

• Body

• Human Face

• Monkey Face

• Vehicle

• Food

• Box

• Cat/Dog

Video speed: 1 frame/sec
Actual presentation rate: 5 objects/sec

80% accuracy in read-out from ~200 neurons

From neuronal 
population activity… …a classifier can decode and guess what the 

monkey was seeing…

Hung*, Kreiman, Poggio, DiCarlo. Science 2005
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So…experimentally we can decode the brain’s 
code and 

read-out from neural activity what the monkey is 
seeing 

We can also read-out with similar results 
from the model !!!
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A result (C. Hung, 
et al., 2005 ):

very rapid
read-out of object 
information rapid 
(80-100 ms from 

onset of stimulus) 

Information 
represented by 
population of 

neurons over very 
short times

 (over 12.5ms bin)

Very strong constraint
on neural code
(not firing rate).
Consistent with our IF 
circuits for max and 
tuning
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We can decode from model units as well as from ITIt turns out that the model agrees with IT data: we can decode 
from model units as well as from IT
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A result (C. Hung, 
et al., 2005 ):

very rapid
read-out of object 
information rapid 
(80-100 ms from 

onset of stimulus) 

Information 
represented by 
population of 

neurons over very 
short times

 (over 12.5ms bin)

Very strong constraint
on neural code
(not firing rate).
Consistent with our IF 
circuits for max and 
tuning
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Agreement of model  w| IT Readout data
Reading out category and identity invariant to position and scale

Hung Kreiman Poggio DiCarlo 2005

Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005
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Agreement of Model  w| IT Readout data

Hung, et al. 2005; Serre et al., 2005 

Reading out category and identity “invariant” to 
position and scale
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• 70/30 train/test (20 splits)
• 64 randomly selected C3/C2b features

– to match 64 recording sites
• Scale:     77.2 ± 1.25% vs. ~63% (physiology)
• Location:     64.9 ± 1.44% vs. ~65% (physiology)
• Categorization:    71.6 ± 0.91% vs. ~77% (physiology)

PhysiologyModel

Reading Out Scale and Position Information: 
comparing the model to Hung et al.

Tan, Serre, Poggio, 2008
Monday, April 23, 2012
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Models of the ventral stream in cortex
perform well compared to 

engineered computer vision systems (in 2006)
on several databases 

Bileschi, Wolf, Serre, Poggio, 2007
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Model extension to the dorsal stream: 
Recognition of actions

Thomas Serre, Hueihan Jhuang & 
Tomaso Poggio collaboration with 
David Sheinberg at Brown University

ventral stream

dorsal stream

dorsal 
stream

ventral 
stream
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Quantitative automatic phenotyping
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Behavioral analyses of mouse behavior needed to:

Quantitative automatic phenotyping
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Behavioral analyses of mouse behavior needed to:

Assess functional roles of genes

Quantitative automatic phenotyping
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Behavioral analyses of mouse behavior needed to:
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Validate models of mental diseases 
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Behavioral analyses of mouse behavior needed to:

Assess functional roles of genes

Validate models of mental diseases 

Help assess efficacy of drugs

Automated quant system to help:
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24/7 home-cage analysis of behavior
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Behavioral analyses of mouse behavior needed to:

Assess functional roles of genes

Validate models of mental diseases 

Help assess efficacy of drugs

Automated quant system to help:

Limit subjectivity of human intervention

24/7 home-cage analysis of behavior

24/7 monitoring of animal well-being

Quantitative automatic phenotyping
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Models of the dorsal stream in cortex lead to better 
systems for action recognition in videos: automatic 
phenotyping of mice. 

Hierarchical model of recognition: action recognition, 
ventral + dorsal stream (Giese and Poggio 2003);

	
  Jhuang	
  ,	
  Garrote,	
  Yu,	
  Khilnani,	
  Poggio,	
  Mutch,	
  Steele,	
  Serre,	
  	
  Nature	
  Communicatons,	
  2010
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Models of cortex lead to better systems for action 
recognition in videos: automatic phenotyping of mice

human 
agreement

72%

proposed 
system

77%

commercial 
system

61%

chance 12%

Performance

Jhuang	
  ,	
  Garrote,	
  Yu,	
  Khilnani,	
  Poggio,	
  Mutch	
  Steele,	
  Serre,	
  	
  Nature	
  Communicatons,	
  2010
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  Recogni-on	
  in	
  Visual	
  Cortex:
tes-ng	
  computa-onal	
  performance

Nicholas	
  Pinto,	
  PhD	
  thesis,	
  2010
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  Recogni-on	
  in	
  Visual	
  Cortex:	
  
computa-on	
  and	
  mathema-cal	
  theory

For 10years+...

 I did not manage to understand how 
model works....

we need theories -- not only models!
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What do hierarchical architectures 
compute? How? How do they develop? 
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More on models of the dorsal stream: 
action recognition and applications

Hueihan Jhuang

94
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 HLMs: 
a mathematical framework for

 hierarchical learning machines 

Lorenzo Rosasco: Class 22

95
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Efficient	
  so9ware	
  implementa;on:	
  	
  a	
  GPU-­‐based	
  framework	
  for	
  
simula;ng	
  cor;cally-­‐organized	
  networks	
  

(CNS:	
  available	
  on	
  our	
  Web	
  site)
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Extension to attention: dealing with clutter

see	
  also	
  Broadbent	
  1952	
  1954;	
  Treisman	
  1960;	
  Treisman	
  &	
  Gelade	
  1980;	
  Duncan	
  &	
  Desimone	
  1995;	
  Wolfe,	
  1997;	
  Tsotsos	
  and	
  	
  many	
  others

Zoccolan	
  Kouh	
  Poggio	
  DiCarlo	
  2007 Serre	
  Oliva	
  Poggio	
  2007
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  Gelade	
  1980;	
  Duncan	
  &	
  Desimone	
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  Wolfe,	
  1997;	
  Tsotsos	
  and	
  	
  many	
  others

Zoccolan	
  Kouh	
  Poggio	
  DiCarlo	
  2007 Serre	
  Oliva	
  Poggio	
  2007

Parallel	
  processing	
  	
  (No	
  afenJon) Serial	
  processing	
  (With	
  afenJon)

Vs.	
  

PFC
LIP/FEF IT

V4

V2
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Readings on the work with 

many relevant references

A detailed description of much of the work is in the 
“supermemo” at 

http://cbcl.mit.edu/projects/cbcl/publications/ai-
publications/2005/AIM-2005-036.pdf

Other recent publications and references
can be found at 

http://cbcl.mit.edu/publications/index-pubs.html

Monday, April 23, 2012
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Collaborators	
  in	
  recent	
  work

	
  F.	
  Anselmi,	
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  Spigler,	
  J.	
  Mutch,	
  L.	
  Rosasco,
H.	
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  Tan,	
  J.	
  Leibo,	
  N.	
  Edelman,	
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  Smale,	
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  Wolf,	
  E.	
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