Goal To introduce theory and algorithms for online learning.
Plan

- Different views on online learning
- From batch to online least squares
- Other loss functions
- Theory
A learning algorithm \mathcal{A} is a map from the data space into the hypothesis space and

$$f_S = \mathcal{A}(S),$$

where $S = S_n = (x_0, y_0) \ldots (x_{n-1}, y_{n-1})$.

We typically assume that:

- \mathcal{A} is deterministic,
- \mathcal{A} does not depend on the ordering of the points in the training set.

notation: note the weird numbering of the training set!
The pure online learning approach is:

\[
\begin{align*}
\text{let } f_1 &= \text{init} \\
\text{for } n &= 1, \ldots \\
f_{n+1} &= \mathcal{A}(f_n, (x_n, y_n))
\end{align*}
\]

- The algorithm works sequentially and has a recursive definition.
A related approach (similar to transductive learning) is:

\[
\text{let } f_1 = \text{init} \\
\text{for } n = 1, \ldots \\
f_{n+1} = A(f_n, S_n, (x_n, y_n))
\]

- Also in this case the algorithm works sequentially and has a recursive definition, but it requires storing the past data \(S_n \).
Different motivations/perspectives that often corresponds to different theoretical framework.

- Biologically plausibility.
- Stochastic approximation.
- Incremental Optimization.
- Non iid data, game theoretic view.
Our goal is to minimize the expected risk

\[l[f] = \mathbb{E}_{(x,y)} [V(f(x), y)] = \int V(f(x), y) d\mu(x, y) \]

over the hypothesis space \(\mathcal{H} \), but the data distribution is not known.

The idea is to use the samples to build an approximate solution and to update such a solution as we get more data.
Our goal is to minimize the expected risk

\[l[f] = \mathbb{E}_{(x,y)} [V(f(x), y)] = \int V(f(x), y) d\mu(x, y) \]

over the hypothesis space \(\mathcal{H} \), but the data distribution is not known.

The idea is to use the samples to build an approximate solution and to update such a solution as we get more data.
More precisely if
- we are given samples \((x_i, y_i)_i\) in a sequential fashion
- at the \(n - th\) step we have an approximation \(G(f, (x_n, y_n))\) of the gradient of \(l[f]\) then we can define a recursion by

\[
\text{let } f_0 = \text{init} \\
\text{for } n = 0, \ldots \\
f_{n+1} = f_n + \gamma_n(G(f_n, (x_n, y_n)))
\]
More precisely if

- we are given samples \((x_i, y_i)_i\) in a sequential fashion
- at the \(n - th\) step we have an approximation \(G(f, (x_n, y_n))\) of the gradient of \(l[f]\)

then we can define a recursion by

Let \(f_0 = \text{init}\)

For \(n = 0, \ldots\)

\[f_{n+1} = f_n + \gamma_n(G(f_n, (x_n, y_n)))\]
Here our goal is to solve empirical risk minimization

\[l_S[f], \]

or regularized empirical risk minimization

\[l^\lambda_S[f] = l_S[f] + \lambda \|f\|^2 \]

over the hypothesis space \(\mathcal{H} \), when the number of points is so big (say \(n = 10^8 - 10^9 \)) that standard solvers would not be feasible.

Memory is the main constraint here.
In this case we can consider

\[
\text{let } f_0 = \text{init}\n\]
\[
\text{for } t = 0, \ldots \n\]
\[
f_{t+1} = f_t + \gamma_t(G(f_t, (x_{n_t}, y_{n_t})))
\]

where here \(G(f_t, (x_{n_t}, y_{n_t}))\) is a pointwise estimate of the gradient of \(l_S\) or \(l_S^\lambda\).

Epochs

Note that in this case the number of iteration is decoupled to the index of training set points and we can look at the data more than once, that is consider different *epochs*.
If the data are not i.i.d. we can consider a setting when the data is a finite sequence that we will be disclosed to us in a sequential (possibly adversarial) fashion.

Then we can see learning as a two players game where
- at each step nature chooses a samples \((x_i, y_i)\)
- at each step a learner chooses an estimator \(f_{i+1}\).

The goal of the learner is to perform as well as if he could view the whole sequence.
If the data are not i.i.d. we can consider a setting when the data is a finite sequence that we will be disclosed to us in a sequential (possibly adversarial) fashion.

Then we can see learning as a two players game where

- at each step *nature* chooses a samples \((x_i, y_i)\)
- at each step a *learner* chooses an estimator \(f_{i+1}\).

The goal of the learner is to perform as well as if he could view the whole sequence.
Plan

- Different views on online learning
- From batch to online least squares
- Other loss functions
- Theory
We start considering a linear kernel so that

\[l_s[f] = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i^T w) = \| Y - Xw \|^2 \]

Remember that in this case

\[w_n = (X^T X)^{-1} X^T Y = C_{n}^{-1} \sum_{i=0}^{n-1} x_i y_i. \]

(Note that if we regularize we have \((C_n + \lambda I)^{-1}\) in place of \(C_n^{-1}\).)

notation: note the weird numbering of the training set!
Recalling Least Squares

We start considering a linear kernel so that

\[l_s[f] = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - x_i^T w) = \| Y - Xw \|^2 \]

Remember that in this case

\[w_n = (X^T X)^{-1} X^T Y = C_n^{-1} \sum_{i=0}^{n-1} x_i y_i. \]

(Note that if we regularize we have \((C_n + \lambda I)^{-1}\) in place of \(C_n^{-1}\).)

notation: note the weird numbering of the training set!
Then we can consider

$$w_{n+1} = w_n + C_{n+1}^{-1} x_n [y_n - x_n^T w_n].$$

Proof

1. $w_n = C_n^{-1} (\sum_{i=0}^{n-1} x_i y_i)$
2. $w_{n+1} = C_{n+1}^{-1} (\sum_{i=0}^{n-1} x_i y_i + x_n y_n)$
3. $w_{n+1} - w_n = C_{n+1}^{-1} (x_n y_n) + C_{n+1}^{-1} (C_n - C_{n+1}) C_n^{-1} \sum_{i=0}^{n-1} x_i y_i$
4. $C_{n+1} - C_n = x_n x_n^T$.
Then we can consider

\[w_{n+1} = w_n + C_{n+1}^{-1} x_n [y_n - x_n^T w_n]. \]

Proof

\begin{itemize}
 \item \(w_n = C_n^{-1} \left(\sum_{i=0}^{n-1} x_i y_i \right) \)
 \item \(w_{n+1} = C_{n+1}^{-1} \left(\sum_{i=0}^{n-1} x_i y_i + x_n y_n \right) \)
 \item \(w_{n+1} - w_n = C_{n+1}^{-1} (x_n y_n) + C_{n+1}^{-1} (C_n - C_{n+1}) C_n^{-1} \sum_{i=0}^{n-1} x_i y_i \)
 \item \(C_{n+1} - C_n = x_n x_n^T \).
\end{itemize}
Then we can consider

\[w_{n+1} = w_n + C_{n+1}^{-1} x_n [y_n - x_n^T w_n]. \]

Proof

- \(w_n = C_n^{-1} (\sum_{i=0}^{n-1} x_i y_i) \)
- \(w_{n+1} = C_{n+1}^{-1} (\sum_{i=0}^{n-1} x_i y_i + x_n y_n) \)
- \(w_{n+1} - w_n = C_{n+1}^{-1} (x_n y_n) + C_{n+1}^{-1} (C_n - C_{n+1}) C_n^{-1} \sum_{i=0}^{n-1} x_i y_i \)
- \(C_{n+1} - C_n = x_n x_n^T. \)
Then we can consider

\[w_{n+1} = w_n + C_{n+1}^{-1} x_n (y_n - x_n^T w_n) . \]

Proof

- \(w_n = C_n^{-1} \left(\sum_{i=0}^{n-1} x_i y_i \right) \)
- \(w_{n+1} = C_{n+1}^{-1} \left(\sum_{i=0}^{n-1} x_i y_i + x_n y_n \right) \)
- \(w_{n+1} - w_n = C_{n+1}^{-1} (x_n y_n) + C_{n+1}^{-1} (C_n - C_{n+1}) C_{n+1}^{-1} \sum_{i=0}^{n-1} x_i y_i \)
- \(C_{n+1} - C_n = x_n x_n^T . \)
We derived the algorithm

$$w_{n+1} = w_n + C_{n+1}^{-1} x_n [y_n - x_n^T w_n].$$

The above approach
- is recursive;
- requires storing all the data;
- requires inverting a matrix \((C_i)_i\) at each step.
The following matrix equality allows to alleviate the computational burden.

Matrix Inversion Lemma

\[
[A + BCD]^{-1} = A^{-1} - A^{-1}B[DA^{-1}B + C^{-1}]^{-1}DA^{-1}
\]

Then

\[
C_{n+1}^{-1} = C_n^{-1} - \frac{C_n^{-1}x_nx_n^T C_n^{-1}}{1 + x_n^TC_n^{-1}x_n}.
\]
The following matrix equality allows to alleviate the computational burden.

Matrix Inversion Lemma

\[
[A + BCD]^{-1} = A^{-1} - A^{-1}B[DA^{-1}B + C^{-1}]^{-1}DA^{-1}
\]

Then

\[
C_{n+1}^{-1} = C_n^{-1} - \frac{C_n^{-1}x_nx_n^TC_n^{-1}}{1 + x_n^TC_n^{-1}x_n}.
\]
Moreover

\[
C_{n+1}^{-1} x_n = C_n^{-1} x_n - \frac{C_n^{-1} x_n x_n^T C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n = \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n,
\]

we can derive the algorithm

\[
w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n].
\]

Since the above iteration is equivalent to empirical risk minimization (ERM) the conditions ensuring its convergence – as \(n \to \infty \) – are the same as those for ERM.
Moreover

\[C_{n+1}^{-1} x_n = C_n^{-1} x_n - \frac{C_n^{-1} x_n x_n^T C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n = \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n, \]

we can derive the algorithm

\[w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n]. \]

Since the above iteration is equivalent to empirical risk minimization (ERM) the conditions ensuring its convergence – as \(n \to \infty \) – are the same as those for ERM.
Moreover

\[C_{n+1}^{-1} x_n = C_n^{-1} x_n - \frac{C_n^{-1} x_n x_n^T C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n = \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n, \]

we can derive the algorithm

\[w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n]. \]

Since the above iteration is equivalent to empirical risk minimization (ERM) the conditions ensuring its convergence – as \(n \to \infty \) – are the same as those for ERM.
The algorithm

\[w_{n+1} = w_{n-1} + \frac{C_{n}^{-1}}{1 + x_{n}^{T}C_{n}^{-1}x_{n}} x_{n}[y_{n} - x_{n}^{T}w_{n}] \]

is of the form

let \(f_{0} = \text{init} \)
for \(n = 1, \ldots \)
\(f_{n+1} = A(f_{n}, S_{n}, (x_{n}, y_{n})) \).

The above approach
- is recursive;
- requires storing all the data;
- updates the inverse just via matrix/vector multiplication.
The algorithm

\[w_{n+1} = w_{n-1} + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n]. \]

is of the form

let \(f_0 = \text{init} \)
for \(n = 1, \ldots \)
\(f_{n+1} = A(f_n, S_n, (x_n, y_n)). \)

The above approach
- is recursive;
- requires storing all the data;
- updates the inverse just via matrix/vector multiplication.
How about the memory requirement?
The main constraint comes from the matrix storing/inversion

\[w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n]. \]

We can consider

\[w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n]. \]

where \(\gamma_t \) is a decreasing sequence.
Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

\[w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n] \]

We can consider

\[w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n] \]

where \(\gamma_t \) is a decreasing sequence.
How about the memory requirement? The main constraint comes from the matrix storing/inversion

$$w_{n+1} = w_n + \frac{C_n^{-1}}{1 + x_n^T C_n^{-1} x_n} x_n [y_n - x_n^T w_n].$$

We can consider

$$w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n].$$

where γ_t is a decreasing sequence.
Online Least Squares

The algorithm

\[w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n]. \]

- is recursive;
- does not require storing the data;
- does not require updating the inverse, but only vector/vector multiplication – \(O(1) \).
When we consider

$$w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n].$$

we are no longer guaranteed convergence.
In other words:

how shall we choose γ_n?
Some ideas from the comparison with batch least squares.

\[w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n]. \]

Note that

\[\nabla (y_n - x_n^T w)^2 = x_n [y_n - x_n^T w]. \]

The batch gradient algorithm would be

\[w_{n+1} = w_n + \gamma_n \frac{1}{t} \sum_{t=0}^{t-1} x_t [y_t - x_t^T w_n]. \]

since

\[\nabla I(w) = \nabla \frac{1}{t} \sum_{t=0}^{t-1} (y_t - x_t^T w)^2 = \frac{1}{t} \sum_{t=0}^{t-1} x_t (y_t - x_t^T w). \]
Some ideas from the comparison with batch least squares.

\[w_{n+1} = w_n + \gamma_n x_n [y_n - x_n^T w_n]. \]

Note that

\[\nabla (y_n - x_n^T w)^2 = x_n [y_n - x_n^T w]. \]

The batch gradient algorithm would be

\[w_{n+1} = w_n + \frac{1}{n} \sum_{t=0}^{t-1} x_t [y_t - x_t^T w_n]. \]

since

\[\nabla l(w) = \nabla \frac{1}{t} \sum_{t=0}^{t-1} (y_t - x_t^T w)^2 = \frac{1}{t} \sum_{t=0}^{t-1} x_t (y_t - x_t^T w). \]
If γ_n decreases too fast the iterate will get stuck away from the real solution.

In general the convergence of the online iteration is slower than the recursive least squares since we use a simpler step-size.

Polyak Averaging

If we choose $\gamma_n = n^{-\alpha}$, with $\alpha \in (1/2, 1)$ and use, at each step, the solution obtained averaging all previous solutions (namely Polyak averaging), then convergence is ensured and is almost the same as recursive least squares.
Extensions

- Other Loss functions
- Other Kernels.
Other Loss functions

The same ideas can be extended to other convex differentiable loss functions, considering

\[w_{n+1} = w_n + \gamma_n \nabla V(y_n, x_n^T w_n). \]

If the loss is convex but not differentiable then more sophisticated methods must be used, e.g. proximal methods, subgradient methods.
If we use different kernels $f(x) = \Phi(x)^T w = \sum_{i=0}^{n-1} c^i K(x, x_i)$ then we can consider the iteration

$$c_{n+1}^i = c_n^i, \quad i = 1, \ldots, n$$
$$c_{n+1}^n = \gamma_n [y_n - c_n^T K_n(x_n)],$$

where $K_n(x) = K(x, x_0), \ldots, K(x, x_{n-1})$ and $c_n = (c_1^n, \ldots, c_n^n)$.
Proof

- \(f_n(x) = w_n^T \Phi(x) = K_n(x)^T c_n \).
- Then

 \[
 w_{n+1} = w_n + \gamma_n \Phi(x_n)[y_n - \Phi(x_n)^T w_n],
 \]

 gives

 \[
 f_{n+1}(x) = f_n(x) + \gamma_n[y_n - K_n(x_n)^T c_n]K(x, x_n),
 \]

 that can be written as

 \[
 K_{n+1}(x)^T c_{n+1} = K_n(x)^T c_n + \gamma_n[y_n - K_n(x_n)^T c_n]K(x, x_n).
 \]

QED
\[c_{n+1}^i = c_n^i, \quad i = 1, \ldots, n \]
\[c_{n+1}^{n+1} = \gamma_n [y_n - c_n^T K_n(x_n)]. \]

The above approach
- is recursive;
- requires storing all the data;
- does not require updating the inverse, but only vector/vector multiplication – \(O(n) \).