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About this class

Last time Bayesian formulation of RLS, for regression.
(Basically, a normal distribution.)

This time a more complicated probability model: the
Dirichlet Process.

And its application to clustering.
And also more Bayesian terminology.
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@ Dirichlet distribution + other basics
@ The Dirichlet process

o Abstract definition
e Stick Breaking
e Chinese restaurant process

@ Clustering

e Dirichlet process mixture model
e Hierarchical Dirichlet process mixture model
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Gamma Function and Beta Distribution

The Gamma function
F(z):/ x* e *dx.
0

Extends factorial function to R*: I'(z + 1) = zl'(2).

for x € [0,1],a>0,6>0.
. : . af}
(Mean: variance: W')
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Beta Distribution
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For large parameters the distribution is unimodal. For small
parameters it favors biased binomial distributions.
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Dirichlet Distribution

Generalizes Beta distribution to the K-dimensional simplex SX.

K
K:{XGRK:ZX,':1,X,'ZOVI'}
i—1

Dirichlet distribution

_ ZI 105,) aj—
P(x|o) = P(X1,...,Xk) = S o) H 1)

where a = (v, ..., ak), a; > 0 Vi, x € SK.
We write x ~ Dir(a), i.e. X1,..., Xk ~ Dir(aq, ..., ak).
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Dirichlet Distribution

> B >
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Properties of the Dirichlet Distribution

@ Mean o
E[X,’] = KI
j=1%
@ Variance
ai(Zi;ﬁj ;)
Var[xj| = — > e .
(e )? (1 + 220 o)
@ Covariance
QjQj
Cov(x;, x;) = :
(O 0)2(1+ 31 )

@ Marginals: x; ~ Beta(a;, - o)
@ Aggregation: (xy + X2, ..., Xx) ~ Dir(a1 + az, ..., ak)
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Multinomial Distribution

If you throw n balls into k bins, the distribution of balls into bins
is given by the multinomial distribution.

Multinomial distribution

Let p = (p1,. .., Pk) be probabilities over K categories and
C = (Cy,..., Ck) be category counts. C; is the number of
samples in the ith category, from n independent draws of a
categorical variable with category probabilities p. Then

P(CIn.p) = o )
i=1 ’11

For K = 2 this is the binomial distribution.
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Treat the Dirichlet distribution as a distribution on probabilities:
each sample 6 ~ Dir(«) defines a K-dimensional multinomial
distribution.

X ~ Mult(8), 6 ~ Dir(«)
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Treat the Dirichlet distribution as a distribution on probabilities:
each sample 6 ~ Dir(«) defines a K-dimensional multinomial
distribution.

X ~ Mult(8),6 ~ Dir(«)

Posterior on 6:
0|x ~ Dir(a + x)
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Conjugate Priors

Say x ~ F(6) (the likelihood) and 6§ ~ G(«) (the prior).

Conjugate prior

G is a conjugate prior for F if the posterior P(0|x, «) is in the
same family as G. (E.g. if F is Gaussian then P(60|x, «) should
also be Gaussian.)

So the Dirichlet distribution is a conjugate prior for the
multinomial.
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@ Dirichlet distribution + other basics
@ The Dirichlet process

o Abstract definition
e Stick Breaking
e Chinese restaurant process

@ Clustering

e Dirichlet process mixture model
e Hierarchical Dirichlet process mixture model
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Parametric vs. nonparametric

@ Parametric: fix parameters independent of data.

@ Nonparametric: effective number of parameters can grow
with the data.

E.g. density estimation: fitting Gaussian vs. parzen windows.
E.g. Kernel methods are nonparametric.
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Dirichlet Process

Want: distribution on all K-dimensional simplices (for all K).

Informal Description

X is a space, F is a probability distribution on X and F(X) is
the set of all possible distributions on X.

A Dirichlet Process gives a distribution over F(X). A sample
path from a DP is an element F € F(X). F can be seen as a
(random) probability distribution on X.
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Dirichlet Process

Want: distribution on all K-dimensional simplices (for all K).

Formal Definition

Let X be a space and H be the base measure on X. Fis a
sample from the Dirichlet Process DP(«a, H) on X if its
finite-dimensional marginals have the Dirichlet distribution:

(F(By),...,F(Bk)) ~ Dir(aH(By),...,aH(B>))

for all partitions By, . .., Bk of X (for any K).
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Stick Breaking Construction

Explicit construction of a DP.

Let a > 0, ()72, such that
i1 i1
pi=6 1101 =8)=6(1-Y_m)
j=1 j=1

where 5; ~ Beta(1, «), for all i.
Let H be a distribution on X and define

F = ZPI%
=1

where 6; ~ H, for all j.
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Stick Breaking Construction: Interpretation
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The weights 7 partition a unit-length stick in an infinite set: the
i-th weight is a random proportion 3, of the stick remaining after
sampling the first i — 1 weights.
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Stick Breaking Construction (cont.)

It is possible to prove (Sethuraman °94) that the previous
construction returns a DP and conversely a Dirichlet process is
discrete almost surely.
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Chinese Restaurant Process

There is an infinite (countable) set of tables.
@ First customer sits at the first table.
@ Customer i sits at table j with probability
n
a+i+1’
where n; is the number of customers at table j, and / sits at
the first open table with probability

o«
a+i+1
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The Role of the Strength Parameter

Note that E[g;] = 1/(1 + «).

@ for small «, the first few components will have all the mass.

o for large «, F approaches the distribution H assigning
uniform weights to the samples 6;.
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Number of Clusters and Strength Parameter

It is possible to prove (Antoniak *77?7?) that the number of
components with positive count grows as

alogn

as we increase the number of samples n.
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Another idea

Clustering with the K-dimensional Dirichlet:
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Another idea

Clustering with the K-dimensional Dirichlet: take each sample
6 ~ Dir(«) to define a K-dimensional categorical (instead of
multinomial) distribution.

x ~ G(¢),p ~ Cat(0), 6 ~ Dir(a)

(G is a a distribution on observation space X, say, Gaussian.)
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Another idea

Clustering with the K-dimensional Dirichlet: take each sample
6 ~ Dir(«) to define a K-dimensional categorical (instead of
multinomial) distribution.

x ~ G(¢),p ~ Cat(0), 6 ~ Dir(a)
(G is a a distribution on observation space X, say, Gaussian.)
f; is the probability of x coming from the ith cluster.
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Another idea

Clustering with the Dirichlet Process:
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Another idea

Clustering with the Dirichlet Process: take each sample
6 ~ DP(«, H) to define a K-dimensional categorical (instead of
multinomial) distribution.

X ~ G(¢), ¢ ~ Cat(9),0 ~ DP(a, H)

(G is a a distribution on observation space X, say, Gaussian. H
can be uniformon {1,...,K}.)
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Another idea

Clustering with the Dirichlet Process:

X ~ G(¢)a ¢~ Cat(0)¢ 0 ~ DP(O&, H)
This is the Dirichlet Process mixture model.
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Hierarchical Dirichlet Process

What if we want to model grouped data, each group
corresponding to a different DP mixture model?
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Hierarchical Dirichlet Process

What if we want to model grouped data, each group
corresponding to a different DP mixture model?

Hierarchical Dirichlet Process

Foreach i€ {1,...,n}, draw x; according to

xj ~ G(¢), ¢ ~ Cat(0),0 ~ DP(«a, Hp), o ~ DP(~, H).
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Conclusions

@ Dirichlet distribution gives a distribution over the K-simplex.

@ Dirichlet is conjugate to the multinomial, which makes
inference in the Dirichlet/multinomial model easy.

@ Dirichlet process generalizes the Dirichlet distribution to
countably infinitely many components.

e Every finite marginal of the DP is Dirichlet distributed.

@ Complexity of the DP is controlled by the strength
parameter a.

@ The posterior distribution cannot be found analytically.
Approximate inference is needed.
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Dirichlet Process (cont.)

A partition of X is a collection of subsets By, ..., By is such
that, if BN Bj =0, Vi #jand Uil\i1 B = X.

Definition (Existence Theorem)

Let « > 0 and H a probability distribution on X.

One can prove that there exists a unique distribution DP(«, H)
on F(X) such that, if F ~ DP(a, H) and By, ...,Byis a
partition of X then

(F(B1),...,F(Bn)) ~ Dir(aH(By),...,aH(Bn)).

The above result is proved (Ferguson '73) using Kolmogorov’s
Consistency theorem (Kolmogorov ’'33).
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Dirichlet Processes lllustrated

R li
~ ppell
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Properties of Dirichlet Processes

Hereafter F ~ DP(«a, H) and A is a measurable set in X.
@ Expectation: E[F(A)] = aH(A).
@ Variance: V[F(A)] = w

a+
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Properties of Dirichlet Processes (cont.)

@ Posterior and Conjugacy: let x ~ F and consider a fixed
partition By, ..., By, then

P(F(B1), ceey F(BN)|X S Bk) =
Dir(aH(By),. ..,aH(Bk) +1,...,aH(By)).

It is possible to prove that if S = (xq,...,xn) ~ F, and
F ~ DP(«, H), then

1 n
P(F|S,a,H) = DP (a+ no— (aH+ gdx,.))
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A Qualitative Reasoning

From the form of the posterior we have that

E(F(A)[S, a, H) = nla (aH(A) + Zéx,(A)> .
i=1

If « < oo and n — oo one can argue that

E(F(A)|S,a, H) = Zmax,

where (7;)%°, is the sequence corresponding to the limit
lim,_,~ Cj/n of the empirical frequencies of the observations

(Xi)724-

If the posterior concentrates about its mean the above
reasoning suggests that the obtained distribution is discrete.
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