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Ubiquity of manifolds

� In many domains data explicitly lies on a manifold.

� For all sources of high-dimensional data, true 
dimensionality is much lower than the number of 
features.

� Much of the data is highly nonlinear.

� In high dimension can trust local but not global 
distances. 

Manifolds (Riemannian manifolds with a measure + noise) 
provide a natural mathematical language for thinking 
about high-dimensional data.



From data to graphs to manifolds

How to extract manifold structure from data? Construct a 
graph to “represent” the underlying space. Properties of 
the graph should reflect properties of the manifold.



Learning on manifolds

Simple intuition:

Good (plausible) 
classification function.

Bad (implausible) 
classification function.

Good functions have low “checkerboardedness”.



How to measure?

But remember we are dealing with data.

Easy enough: graph Laplacian.



Smoothness on manifolds

(Note: this condition not quite strong enough for regularization, but close – more later.)



Laplace operator

Fundamental mathematical object. Heat, wave, Schroedinger
equations. Fourier Analysis.

What is Laplace operator on a circle?



Laplace-Beltrami operator



Laplace-Beltrami operator

Nice math, but how to compute from data? Answer: the heat 
equation.



Laplace operator



Laplace-Beltrami operator

The heat equation has a similar form on manifolds. However do 
not know distances and the heat kernel. 

Turns out (by careful analysis using differential geometry) that
these issues do not affect algorithms.



Algorithm



Algorithm

Reconstructing eigenfunctions of Laplace-Beltrami operator from sampled 
data (Laplacian Eigenmaps, Belkin, Niyogi 2001).

1. Construct a data-dependent weighted graph.

2. Compute the bottom eigenvectors of the Laplacian matrix. 

Theoretical guarantees as data goes to infinite (using data-dependent t).

Out-of-sample extension?



Non-probabilistic data, such as meshes. 

Mesh K, triangle t.

Belkin, Sun, Wang 07,09

Mesh Laplacians

Surface S. Mesh K
ε 
.

Theorem:

Can be extended to arbitrary point clouds. Idea – only need a mesh locally.



Constructing data-dependent bases

Some applications:

� Data representation/visualization.

� Semi-supervised learning.

� Isometry-invariant representations. 

Symmetry detection.
Ovsyannikov, Sun, Guibas, 2009
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• In SSL, the more unlabeled data, the better results 

we expect

• However... Less unlabeled data More unlabeled data

“Indicator” functions of labeled points.

The more unlabeled data we have, the less stable the classifier gets, and 
the worse the results become. 
Laplacian is not powerful enough (has to do with properties of Sobolev
spaces).  However can use iterated Laplacian. (Recent work with X. 
Zhou)

Caution about using using Laplacian for regularization 



Connections: Locally Linear Embeddings (Roweis, Saul, 2000) 



Connections: Locally Linear Embeddings (Roweis, Saul, 2000) 

Convergence to the Laplacian in the “limit”. (But the algorithm does not actually 

allow that).



Connections: Diffusion Maps (Coifman, Lafon, 2005) 



Spectral clustering 



Spectral clustering 



Spectral clustering : continuous view



Spectral clustering and volumes of cuts



Final remarks

Laplacian and the heat equation are a key bridge between data, 
algorithms and classical mathematics. 

Data analysis --- Differential Geometry --- Differential Equations ---
Functional Analysis --- Numerical methods --- Algorithms 


