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About this class

Goal To recall the notion of generalization bounds and
show how they can be derived from a stability
argument.
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Plan

Generalization Bounds
Stability
Generalization Bounds Using Stability
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Learning Algorithms

A learning algorithm A is a map

S 7→ fS

where S = (x1, y1). . . . (xn, yn).

We assume that:
A is deterministic,
A does not depend on the ordering of the points in the
training set.

How can we measure quality of fS?
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Error Risks

Recall that we’ve defined the expected risk:

I[fS] = E(x ,y) [V (fS(x), y)] =

∫
V (fS(x), y)dµ(x , y)

and the empirical risk:

IS[fS] =
1
n

n∑
i=1

V (fS(xi), yi).

Note: we will denote the loss function as V (f , z) or as
V (f (x), y), where z = (x , y). For example:

Ez [V (f , z)] = E(x ,y) [V (fS(x), y)]
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Generalization Bounds

Goal
Choose A so that I[fS] is small =⇒ I[fS] depends on the
unknown probability distribution.

Approach

We can measure IS[fS]. A generalization bound is a
(probabilistic) bound on the defect (generalization error)

D[fS] = I[fS]− IS[fS]

If we can bound the defect and we can observe that IS[fS] is
small, then I[fS] is likely to be small.
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Properties of Generalization Bounds

A probabilistic bound takes the form

P(I[fS]− IS[fS] ≥ ε) ≤ δ

or equivalenty with confidence 1− δ

I[fS]− IS[fS] ≤ ε
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Properties of Generalization Bounds (cont.)

Complexity
A historical approach to generalization bounds is based on
controlling the complexity of the hypothesis space (covering
numbers, VC-dimension, Rademacher complexities)
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Necessary and Sufficient Conditions for Learning

ERM

Consistency

Generalization

Finite ComplexityUGC

Empirical Risk Minimization

Uniform Glivenko Cantelli

Sunday, February 21, 2010
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Generalization Bounds By Stability

Stability
As we saw in class 2, the basic idea of stability is that a good
algorithm should not change its solution much if we modify the
training set slightly.
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Necessary and Sufficient Conditions for Learning
(cont.)

ERM Consistency

Generalization

Finite ComplexityUGC

Empirical Risk Minimization

Uniform Glivenko Cantelli

Stability

Sunday, February 21, 2010
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Regularization, Stability and Generalization

We explain this approach to generalization bounds, and show
how to apply it to Tikhonov Reguarization in the next class.

Note that we will consider a stronger notion of stability, than the
one discussed in class 2. Tikhonov regularization satisfies this
stronger notion of stability.
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Uniform Stability

notation: S training set, Si,z training set obtained replacing the
i-th example in S with a new point z = (x , y).

Definition
We say that an algorithm A has uniform stability β (is
β-stable) if

∀(S, z) ∈ Zn+1, ∀i , sup
z′∈Z
|V (fS, z ′)− V (fSi,z , z ′)| ≤ β.
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Uniform Stability (cont.)

Uniform stability is a strong requirement: a solution has to
change very little even when a very unlikely (“bad”) training
set is drawn.
the coefficient β is a function of n, and should perhaps be
written βn.
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Stability and Concentration Inequalities

Given that an algorithm A has stability β, how can we get
bounds on its performance?
=⇒ Concentration Inequalities, in particular, McDiarmid’s
Inequality.

Concentration Inequalities show how a variable is concentrated
around its mean.
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McDiarmid’s Inequality

Let V1, . . . ,Vn be random variables. If a function F mapping
V1, . . . ,Vn to R satisfies

sup
v1,...,vn,v ′

i

|F (v1, . . . , vn)− F (v1, . . . , vi−1, v ′i , vi+1, . . . , vn)| ≤ ci ,

then the following statement holds:

P (|F (v1, . . . , vn)− E(F (v1, . . . , vn))| > ε) ≤ 2 exp

(
− 2ε2∑n

i=1 c2
i

)
.
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McDiarmid’s Inequality
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Example: Hoeffding’s Inequality

Suppose each vi ∈ [a,b], and we define
F (v1, . . . , vn) = 1

n
∑n

i=1 vi , the average of the vi . Then,
ci = 1

n (b − a). Applying McDiarmid’s Inequality, we have that

P (|F (v)− E(F (v))| > ε) ≤ 2 exp

(
− 2ε2∑n

i=1 c2
i

)

= 2 exp

(
− 2ε2∑n

i=1(
1
n (b − a))2

)

= 2 exp
(
− 2nε2

(b − a)2

)
.
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Generalization Bounds via McDiarmid’s Inequality

We will use β-stability to apply McDiarmid’s inequality to the
defect D[fS] = I[fS]− IS[fS].

2 steps
1 bound the expectation of the defect
2 bound how much the defect can change when we replace

an example
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Bounding The Expectation of The Defect

Note that ES = E(z1,...,zn).

ESD[fS] = ES [IS[fS]− I[fS]]

= E(S,z)

[
1
n

n∑
i=1

V (fS, zi)− V (fS, z)

]

= E(S,z)

[
1
n

n∑
i=1

V (fSi,z , z)− V (fS, z)

]
≤ β

The second equality follows by the “symmetry” of the
expectation: the expected value of a training set on a training
point doesn’t change when we “rename” the points.
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Bounding The Deviation of The Defect

Assume that there exists an upper bound M on the loss.

|D[fS]− D[fSi,z ]| = |IS[fS]− I[fS]− ISi,z [fSi,z ] + I[fSi,z ]|
≤ |I[fS]− I[fSi,z ]|+ |IS[fS]− ISi,z [fSi,z ]|

≤ β +
1
n
|V (fS, zi)− V (fSi,z , z)|

+
1
n

∑
j 6=i

|V (fS, zj)− V (fSi,z , zj)|

≤ β +
M
n

+ β

= 2β +
M
n
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Applying McDiarmid’s Inequality

By McDiarmid’s Inequality, for any ε,

P (|D[fS]− ED[fS]| > ε) ≤ 2 exp

(
− 2ε2∑n

i=1(2(β + M
n ))2

)
=

= 2 exp

(
− ε2

2n(β + M
n )2

)
= 2 exp

(
− nε2

2(nβ + M)2

)
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A Different Form Of The Bound

Let

δ ≡ 2 exp
(
− nε2

2(nβ + M)2

)
.

Solving for ε in terms of δ, we find that

ε = (nβ + M)

√
2 ln(2/δ)

n
.

We can say that with confidence 1− δ,

D[fS] ≤ ED[fS] + (nβ + M)

√
2 ln(2/δ)

n

But ED[fS] ≤ β......
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A Different Form Of The Bound (cont.)

Finally, recalling the definition, of the defect we have with
confidence 1− δ,

I[fS] ≤ IS[fS] + β + (nβ + M)

√
2 ln(2/δ)

n
.
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Convergence

Note that if β = k
n for some k , we can restate our bounds as

P
(
|I[fS]− IS[fS]| ≥ k

n
+ ε

)
≤ 2 exp

(
− nε2

2(k + M)2

)
,

and with probability 1− δ,

I[fS] ≤ IS[fS] +
k
n

+ (2k + M)

√
2 ln(2/δ)

n
.
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Fast Convergence

For the uniform stability approach we’ve described, β = k
n (for

some constant k ) is “good enough”. Obviously, the best
possible stability would be β = 0 — the function can’t change at
all when you change the training set. An algorithm that always
picks the same function, regardless of its training set, is
maximally stable and has β = 0. Using β = 0 in the last bound,
with probability 1− δ,

I[fS] ≤ IS[fS] + M

√
2 ln(2/δ)

n
.

The convergence is still O
(

1√
n

)
. So once β = O(1

n ), further
increases in stability don’t change the rate of convergence.
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Summary

We define a notion of stability (β- stability) for learning
algorithms and show that generalization bound can be obtained
using concentration inequalities (McDiarmid’s inequality).
Uniform stability of O

(1
n

)
seems to be a strong requirement.

Next time, we will show that Tikhonov regularization possesses
this property.
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