
9.520: Statistical Learning Theory and Applications March 10th, 2010

Regularization Methods for Multi-Output Learning
Lecturer: Lorenzo Rosasco Scribe: Yi-Chieh Wu, Phillip Isola

1 Introduction
Today we discuss the problem of multi-output learning, also known as multi-task learning (MTL),
in which, as the name implies, the object of interest is modeled as a function with multiple outputs.
We can view this problem from two perspectives: either we have a function with multiple outputs,
or we have to learn multiple, correlated functions, each with a single output.

2 Examples
We start by providing a few practical examples in which multi-output learning might be useful.

• Suppose we are attempting to model the buying preferences of several consumers based on past
purchases, e.g. as in the Netflix recommender system. We assume that people with similar
tastes tend to buy similar items and their buying history is related. Inferring the preferences
for a customer based only on his past purchases may be tough, because that customer may not
have rated enough movies or made enough purchases. If we can add information from other
customers with similar tastes, then we can essentially increase the number of data samples and
hopefully also increase classification accuracy, thereby prompting customers to rent movies
attuned to their tastes and be more satisfied with the overall Netflix service. In this case, each
consumer is modeled as a task and their previous preferences are the corresponding training
set.

• In pharmocological studies, we may be attempting to predict the blood concentration of a
medicine at different times across multiple patients. Finding the best-fit function for a single
patient based only on his measurements will likely overfit the training data. Instead, if we
pool the measurements across the patients, we can find a time series function that will likely
better generalize to the population at large.

• The lecture slides provide a much wider array of practical applications, in fields such as financial
analysis, computer vision, and geophysics.

3 Framework
The goal of multi-output problems can be thought of as improving classification performance by
exploiting relationships among the different tasks. Some data sets may be very small while others
are large, and some may be more similar to others, but by combining all the information together
and training the classifiers simultaneously, we can leverage shared information among the data sets
(see Figure 1).

The framework for multi-task learning can be formally described as follows.

11-1

Task 1

Task 2

X

X

Y

Figure 1: If we have samples from multiple tasks, all of which have a similar underlying functional
form, we can exploit this similarity by somehow borrowing strength across the tasks during
learning.

There are T single-output tasks. For each task j = 1, . . . , T , we are given a set of examples

Sj = (xj
i , y

j
i)nj

i=1

sampled i.i.d. according to a distribution Pt. The goal is to find

f t(x) ∼ y, for each t = 1, . . . , T.

With the above notation, we usually let x ∈ Rd and y ∈ R so that xj
i (the ith vector in the jth

training set) is in Rd. Now f t(x) is a single classification rule.
Before moving on, we note that the framework of multi-task learning makes the assumption that

the multiple tasks are “similar”. In the strongest case, we might assume the examples are all sampled
from the same distribution P . This assumption might be valid in many real world problems, such
as in many time series prediction problems, in which the tasks are very correlated. However, in
designing MTL algorithms, it remains important to assess exactly what kinds of similarities across
tasks that we can describe.

On the other hand, the framework for multi-task learning problems can be very general. That
is, the input spaces can be different, the output spaces can be different, and/or the hypothesis
spaces can be different. In this lecture, we will simplify the problem so that the input, output, and
hypothesis spaces are the same (e.g. Xj = X, Yj = Y , and Hj = H for all j = 1, . . . , T), and
furthermore, the hypothesis space is a RKHS with kernel K. This makes the problem easier to
analyze, and it turns out that many results transfer directly to more general cases.

11-2

4 Algorithm
A possible way of solving the MTL problem is to minimize the penalized empirical risk, e.g.

min
f1,...,fT

ERR[f1, . . . , fT] + λ PEN(f1, . . . , fT),

where typically, the error term is the sum of the empirical risks and the penalty term enforces
similarity among the tasks.

4.1 Empirical Risk
We let

ERR[f1, . . . , fT] =
T∑

j=1

lSj
[f j]

where

lSj
[f j] =

1
nj

nj∑
i=1

(yj
i − f

j(xj
i))2

for the square loss. Note that taking the sum means giving equal importance to all data sets so that
we are in some sense averaging the information from our data sets.

4.2 Penalty Term
The default choice for the regularizer in a single task classifier is ‖f‖2H. An easy choice (but perhaps
too simple) for multi-output learning is to use summation for the penalty term as we did for the
empirical risk, e.g. PEN(f1, . . . , fT) =

∑T
j=1 ‖f j‖2K . However, with this penalty term we will just

end up finding the minimizing f1, . . . , fT for all the tasks independently. Instead, we would like
to make use of some notion of correlation among the functions. We will do this by breaking up
the penalty term into two components: one component acting as the usual regularizer in individual
tasks, and the other component imposing similarity between tasks. The relative weighting of these
two components will be controlled by two parameters, γ and λ. When γ = 0, we treat everybody
as independent, and when λ = 0, we treat everybody as very close to the mean. We will consider
three different regularizers:

• Mixed Effect Regularizers. Let us assume that the functions look like a common curve plus a
(possibly task-specific) perturbation, and further assume that the common curve is the average.
Then1

PEN(f1, . . . , fT) = λ

T∑
j=1

‖f j‖2K + γ

T∑
j=1

∥∥∥f j − 1
T

T∑
s=1

fs
∥∥∥2

K
.

We can further extend this concept if not all tasks are the same, but maybe they are divided
into groups (see Cluster Regularizers below).

• Graph Regularization Regularizers. Sometimes we may know more specific correlations between
the tasks. In graph regularization, we build a similarity graph that encodes these correlations.
This graph can be represented as a T × T positive weight matrix M , which we can use to
enforce stronger or weaker similarities specific to each pair of tasks.

PEN(f1, . . . , fT) = γ

T∑
`,q=1

‖f ` − fq‖2KM`q + λ

T∑
`=1

‖f `‖2KM``

1Note the 1
T

factor in the average that is missing in the lecture slides.

11-3

• Cluster Regularizers. The components/tasks are partitioned into c clusters so that the com-
ponents in the same cluster should be similar. For r = 1, . . . , c, let

– mr be the cardinality of each cluster, and

– I(r) be the index set of the components that belong to cluster r.

Then

PEN(f1, . . . , fT) = γ

c∑
r=1

∑
l∈I(r)

‖f l − fr‖2K + λ

c∑
r=1

mr‖fr‖2K ,

where fr, r = 1, . . . , c, is the mean in cluster r.

The above regularizers give us ways of handling MTL when all the tasks are the same, when the
tasks are related by a known graph structure, and when the tasks fall into a number of known clusters.
Determining which of these situations we are in, and what is the precise similarity structure of the
tasks, remains a problem open for discussion. For now, we will assume we are given the correlations
between the tasks.

4.3 Tikhonov Regularization
We would like to reframe the problem as Tikhonov regularization, so that we can apply the repre-
senter theorem and our standard techniques. To do this, we define a suitable RKHS H with kernel
Q and re-index the sums in the error term (e.g. by stacking the matrices) so that

min
f1,...,fT

{ T∑
j=1

1
nj

(n∑
i=1

(yj
i − f

j(xi))2
)

+ λPEN(f1, . . . , fT)
}

can be written as

min
f∈H

{ 1
nT

nT∑
i=1

(yi − f(xi, ti))2 + λ‖f‖2Q
}
,

where we consider the training set (xi, yi, ti) for i = 1, . . . , T and let nT =
∑T

j=1 nj . In the next
section, we will show that by letting Q act simultaneously on a point and a task, we can reframe
the problem as a scalar task and can apply previously discussed algorithms (e.g. SVM, RLS).

5 Joint Kernels
Remember that a kernel is simply a function that maps X × X → R. To let the kernel act si-
multaneously on a point and a task, let the space be X = (X,Π) to produce the (joint) kernel
Q : (X,Π)× (X,Π)→ R, where Π = {1, . . . , T} is the index set of the output components. Finally,
simply use the reproducing property, where the function can be written as a linear combination of
the kernel. Explicitly, in the single task case, we have

f(x) =
p∑

i=1

K(x, xi)ci

with norm

‖f‖2K =
p∑

i,j=1

K(xj , xi)cicj ,

11-4

where p ≤ ∞. To transition to the multi-task case, set x = (x, t) and K = Q so that

f(x, t) =
p∑

i=1

Q((x, t), (xi, ti))ci

with norm

‖f‖2Q =
p∑

i,j=1

Q((xj , tj), (xi, ti))cicj .

A useful class of kernels comes from assuming that we can separate the kernel into a (scalar)
kernel for points (K : X × X → R) and a kernel for tasks (positive definite matrix A in T × T).
Now A acts on the indices of tasks so that At,t′ says how similar tasks t and t′ are, giving rise to

Q((x, t), (x′, t′)) = K(x, x′)At,t′

with norm

‖f‖2Q =
p∑

i,j=1

K(xi, xj)Atitj
cicj .

Lemma 1 If we fix t so that ft(x) = f(t, x) is one of the tasks, we can relate the norm to the scalar
product among the tasks as

‖f‖2Q =
∑
s,t

A†s,t〈fs, ft〉K ,

where † denotes the pseudo-inverse.

Now we have an inner product among tasks, and a weight matrix A that encodes relations among
the outputs.2 This also implies that

• A regularizer of the form
∑

s,tA
†
s,t〈fs, ft〉K defines a kernel Q. Thus, if we are able to rewrite

a regularizer in this form, we will obtain a kernel, Q, that we can used to solve the problem
as Tikhonov regularization (or use some other kernel regularization technique). We will take
this approach to solve the regularization problems of Section 4.2.

• The norm induced by a kernel Q of the form K(x, x′)A can be seen as a regularizer.

Proof of Lemma 1: Note that if ft(x) =
∑

iK(x, xi)At,tici, then

〈fs, ft〉K =
〈∑

i

K(x, xi)As,ti
ci,
∑

j

K(x, xj)At,tj
cj

〉
=
∑
i,j

〈
K(x, xi),K(x, xj)

〉
As,ti

At,tj
cicj

=
∑
i,j

K(xi, xj)As,tiAt,tjcicj .

Now multiply by A−1
s,t (or rather A†s,t) and sum over s, t to arrive at∑

s,t

A†s,t〈fs, ft〉K =
∑
s,t

∑
i,j

K(xi, xj)A†s,tAs,ti
At,tj

cicj

=
∑
i,j

K(xi, xj)
∑
s,t

[A†s,tAs,tiAt,tj]cicj

=
∑
i,j

K(xi, xj)Atitj
cicj ,

which is exactly equal to ‖f‖2Q previously determined. �

2In other words, A shows the correlation among the tasks. For example, think of f = (f1, ..., fT)> as a vector of
functions; then A is a weight matrix on the correlation of these functions.

11-5

5.1 Penalty Term
Now we relate the joint kernel to the three different regularizers of Section 4.2.

• Mixed Effect Regularizers. Let 1 be the T × T matrix whose entries are all equal to 1, and let
I be the T -dimensional identity matrix. Set A = ω1 + (1−ω)I so that the functions fs and ft

have correlation 1 when s = t and correlation ω when s 6= t. (If ω = 1, all tasks are similar,
and if ω = 0, all tasks are independent.) Then the kernel

Q((x, t), (x′, t′)) = K(x, x′)(ω1 + (1− ω)I)t,t′

incurs a penalty

Aω

(
Bω

T∑
`=1

‖f `‖2K + ωT

T∑
`=1

∥∥∥f ` − 1
T

T∑
q=1

fq
∥∥∥2

K

)
,

where Aω = 1
2(1−ω)(1−ω+ωT) and Bω = (2− 2ω + ωT).

• Graph Regularization Regularizers. The penalty

1
2

T∑
`,q=1

‖f ` − fq‖2KM`q +
T∑

`=1

‖f `‖2KM``

can be rewritten as
T∑

`,q=1

〈f `, fq〉KL`q,

where L = D − M , with D`q = δ`q(
∑T

h=1M`h + M`q). The kernel is Q((x, t), (x′, t′)) =
K(x, x′)L†t,t′ .

• Cluster Regularizers. The penalty

ε1

r∑
c=1

∑
l∈I(c)

‖f l − f c‖2K + ε2

r∑
c=1

mc‖f c‖2K

induces a kernel Q((x, t), (x′, t′)) = K(x, x′)G†t,t′ with

Glq = ε1δlq + (ε2 − ε1)Mlq.

The T × T matrix M is such that Mlq = 1
mc

if components l and q belong to the same cluster
c with cardinality mc, and Mlq = 0 otherwise.

5.2 Wrapup – Applying the Representer Theorem and Solving
In the previous section, we showed that if given a penalty, we can expand it to an inner product and
a number, put the numbers into a matrix, and invert the matrix. Thus, if we know how to define a
reasonable regularizer, or if we have a similarity matrix, the MTL problem becomes “easy” to frame
in Tikhonov regularization.

The representor theorem tells us that

f(x, t) = ft(x) =
n∑

i=1

Q((x, t), (xi, ti))ci,

11-6

where the coefficients are given by
(Q + λI)C = Y.

and C = (c1, . . . , cn)T , Qij = Q((xi, ti), (xj , tj)) and Y = (y1, . . . , yn)T . Note that even under the
simplifying assumption that the matrices can just be concatenated, we still have a bottleneck in
inverting the matrix Q. Luckily, we can use L2 boosting and find the coefficients by performing
gradient descent on the empirical risk

1
nT
‖Y −QC‖2nT

,

i.e. we set C0 = 0 and consider for i = 1, . . . , t− 1,

Ci = Ci−1 + η(Y −QCi−1),

where η is the step size (and the factors of 2, nT , and Q are folded into the step size). The number
of iterations plays the role of regularization parameter in the gradient descent.

6 Related Topics

6.1 Vector Fields

Figure 3. Divergence-free synthetic data.
Top: samples and our div-free solution; Bot-
tom: div of scalar SVR and associated field.

Figure 4. Fluid simulation data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 5. Measurement PIV data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 6. Curl-free synthetic data. Top: sam-
ples and our curl-free solution; Bottom: curl
of scalar SVR and associated vector field.

Figure 2: Example vector field data.
(figures from Macêdo and Castro 08)

Finally, we will discuss briefly how we can incorporate vector fields into MTL problems.3 This is
in some sense the most natural extension of the scalar setting, as we simply let y be a vector rather
than a scalar. That is, we are now given a set of training points S = {(xi, yi)}ni=1, where xi ∈ Rp,
yi ∈ RT , and the points are sampled i.i.d. according to some probability distribution P . The goal
is to find f(x) ∼ y.

As a practical example, suppose that we sample the velocity fields of an incompressible fluid
and want to recover the whole velocity field. Let the input x be a location, and the output be the
velocity components at that location, y = (v1, v2). This formulation allows us to average out noise
or enforce other constraints, e.g. that the divergence of the vector field must be 0.

For vector field learning, the error term

ERR[f1, . . . , fT] =
1
n

T∑
j=1

n∑
i=1

(yj
i − f

j(xj
i))2

3A vector field simply associates a vector to each point in a space.

11-7

can be written as

ERR[f] =
1
n

n∑
i=1

‖yi − f(xi)‖2T

‖y − f(x)‖2T =
T∑

j=1

(yj − f j(x))2,

with f : X → RT and f = f1, . . . fT .

Component 1

Component 2

X

X

Y Task 1

Task 2

X

X

Y

Figure 3: Relating vector fields and MTL. The multiple tasks in MTL correspond to the multiple
components that make up the vectors in a vector field.

6.2 Multi-class and Multi-label
In the multi-class problem, each input can be assigned to one of T classes, and we can think of
encoding each class with a vector, for example: class one can be (1, 0 . . . , 0), class 2 be (0, 1 . . . , 0),
etc. In the multi-label problem, images contain at most T objects, and each input image is associated
to a vector (1, 0, 1 . . . , 0), where 1/0 indicates presence/absence of an object.

In machine learning, the naïve multi-class classifier is to use the one-vs-all scheme with binary
classifiers. This turns out to be identical to solving multi-label problems where we set correlations
to 0. That is, solving for f1 is equal to solving one-vs-all for task 1. Thus, it is actually hard to
outperform the one-vs-all classifier.4

7 Final Remarks
Multi-output learning is a lively field, and we have discussed the problem in terms of kernels. The
kernel/regularizer choice is crucial, particularly since multi-output problems tend to overfit due to
the large number of model parameters and the small number of training samples. With this basic
framework for MTL, we can extend the problem as we have for the scalar case and look at, for
example, spectral, manifold, or sparsity-based regularization for multi-output problems.

4See Ryan Rifkin, “In defense of one-vs-all”.

11-8

