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1 Introduction
In this lecture we introduce a class of learning algorithms, collectively called manifold regulariza-
tion algorithms, suited for predicting/classifying data embedded in high-dimensional spaces. We
introduce manifold regularization in the framework of semi-supervised learning, a generalization of
the supervised learning setting in which our training set may consist of unlabeled as well as labeled
examples.

2 Semi-supervised learning
Recall that in supervised learning, the case with which we have dealt up to this point, we are given
a training set S consisting of labeled examples (xi, yi) drawn from a space X ×Y according to some
probability distribution p(x, y). In semi-supervised learning, we are given u examples

x1, . . . , xu

drawn from the marginal distribution p(x). The first n points x1, . . . , xn (with n ≤ u) are given
labels

y1, . . . , yn

drawn from the conditional distributions p(y | x). The value of n is typically smaller than u by
orders of magnitude.

An intuitive example for semi-supervised learning is human learning. For example, a child may
learn to classify members of a category of objects by being provided with a small number of labeled
examples and observing many more unlabeled examples in its environment. In this problem setting
(image labeling) and others, it can be preferable to use a semi-supervised learning algorithm due to
the high expense of labeling examples.

It is clear from our characterization of the semi-supervised learning problem that the role of the
u−n unlabeled training examples can only be to provide additional information about the distribution
of the input space X. The following diagram may help to intuitively justify the assertion that this
additional information is useful. In the two graphs, the same two (+)- and (−)-labeled examples
(represented by a square and circle) have been given. On the right, additional unlabeled examples
have been provided. The curves separating the shaded and unshaded regions in both graphs are
plausible decision boundaries.
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The classifier depicted in the second graph seems intuitively better since the boundary cuts
through a region of low density in data points. On the other hand, if the distribution on the
input space is highly uniform, it is unclear whether unlabeled data points drawn randomly from
that distribution can provide much benefit. In general, learning in a uniform input space of high
dimension is difficult.

3 Learning in high dimension
Intuitively, it seems that—provided the training set is sufficiently large, and that the conditional
distribution is not pathologically discontinuous—one can always approximate the conditional distri-
bution p(y | x) by interpolating from the labels of “nearby” points—say the k nearest. Perhaps it is
reasonable to select k = rn for some fixed fraction r, say r = 0.01. If we are in some bounded space,
such as the d-dimensional hypercube [0, 1]d ⊂ Rd, intuition may also suggest that we can collect ≥ k
nearby points by taking some small rectangle around the point x whose label we wish to predict.

The edge length of the d-dimensional hypercube required to capture a fraction r of the sampled
points in [0, 1]d, assuming uniform distribution, is r1/d. For instance, if r = 0.01 and d = 10, then
r1/d = 0.63. This means that finding the 1% of the training set closest to x requires examining
63% of the range of each input dimension. This behavior is a manifestation of the so-called “curse
of dimensionality”; roughly speaking, local methods—looking at small neighborhoods of a point
in the input space—are not likely to be effective at estimating outputs if the input space is truly
high-dimensional.

Fortunately, it is often enough the case that the data we wish to analyze possess some sort of
“intrinsic geometry” and are of effectively lower dimension than the entire putative input space. For
instance, this is true if the data are the result of some process involving a relatively small number
of degrees of freedom. Some examples:

1. Pose variations: the positions of arbitrarily many points on the arm and hand are governed
by a small number of joint angles;

2. Facial expressions: these are controlled by the tone of a small number of facial muscles.

4 Manifold regularization
In this lecture, we make the more particular assumption that our data lie in some Riemannian
manifold of smaller dimension than the input space, which has been embedded into the input space.
We refer to the input space as the ambient space.

A Riemannian manifoldM is a set of points which is everywhere “locally similar” to Rd. Formally,
for each point x ∈ M, some neighborhood of x can be associated with a smooth bijective map α
from the neighborhood into Rd. The manifold can be expressed as a union of these neighborhoods:

M =
⋃
α

Uα

where every point is in some Uα. The map α : Uα → Rd is called a system of coordinates for
Uα. Further, if two neighborhoods intersect (Uα ∩ Uβ 6= ∅) we require that the transition function
β ◦α−1 : α(Uα∩Uβ)→ Rd and its inverse be smooth. Using the systems of coordinates, it is possible
to define analogues of most Euclidean geometric concepts, including angles, distances, volumes, and
so forth.

In particular, given a manifold M of dimension d, it is possible to define an analogue of the
gradient operator ∇ which applies to functions onM. Recall that in Rd, the gradient of a function
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f is given by

∇f(x) ≡
(
∂f

∂x1
(x), . . .

∂f

∂xd
(x)
)
.

The gradient points in a direction in Rd along which change in f(x) is maximized, and has magnitude
representative of the amount of variation. The gradient of f with respect to M, denoted ∇Mf(x),
likewise represents the magnitude and direction of maximal variation at x withinM.

Suppose p(x) is the marginal distribution of input points to a function we wish to learn. If f is
some element of the hypothesis space, then

S(f) :=
∫
M
‖∇Mf(x)‖2 dp(x)

is a measure of the smoothness of f with respect toM. If f varies widely near points inM of high
probability density, S will be large. Hence S is a natural penalty function for regularization over
functions onM. Extending Tikhonov regularization with this additional term, an optimal f ∈ H is
given by

f∗ = arg min
f∈H

1
n

n∑
i=1

V (f(xi), yi) + λA‖f‖2K + λI

∫
M
‖∇Mf(x)‖2 dp(x).

Here the parameter λA regularizes with respect to the ambient space, whereas λI regularizes with
respect to the intrinsic geometry M. The term λA is necessary since the manifold M is a strict
subset of the input space X; among many f ∈ H which give the same value of S(f)—perhaps
because they are identical onM—we prefer a solution which is smooth in the ambient space.

Using Stokes’ theorem, we can rewrite S(f) in terms of the Laplacian with respect toM giving
the following equivalent form of the optimum:

f∗ = arg min
f∈H

1
n

n∑
i=1

V (f(xi), yi) + λA‖f‖2K + λI

∫
M
f(x)∆Mf(x) dp(x). (1)

(Recall that in Rd, the Laplacian of a function f is given by

∆f(x) ≡ −∂
2f

∂x2
1

(x)− · · · − ∂2f

∂x2
d

(x);

∆Mf is the analogue onM.)

5 The graph Laplacian
Since we are not given M and the embedding φ : M → Rd, we cannot precisely compute the
smoothness penalty S(f) =

∫
M f(x)∆Mf(x) dp(x). Instead, we use an empirical proxy for S based

on the assumption that the input points are drawn i.i.d. from the uniform distribution onM.1
Consider the weighted neighborhood graph G given by taking the graph on vertex set V =

{x1, . . . , xu} (the labeled and unlabeled input points) with edges (xi, xj) if and only if ‖xi−xj‖2 ≤ ε,
and assigning to edge (xi, xj) the weight

Wij = exp
(
−1
ε
‖xi − xj‖2

)
.

1Note that this trivially implies each x ∈ φ(M), which is not satisfied if the training set also incorporates noise,
e.g. x = φ(p) + N(0, ε), with φ(p) ∈M.
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The graph Laplacian of G is the matrix L given by

Lij = Dij −Wij , where D = diag
( u∑
j=1

Wij

)u
i=1

.

(i.e., D is the diagonal matrix whose ith entry is the sum of the weights of edges leaving xi.)
The graph Laplacian is a discrete analogue of the manifold Laplacian: one can show that if f =
(f(x1), . . . , f(xu)) is the vector given by evaluating an arbitrary f at each input point, then we can
write

u∑
i=1

u∑
j=1

Wij(fi − fj)2 = fTLf ≈ u2

∫
M
f(x)∆Mf(x) dp(x).

Using this approximation, the minimization problem (1) becomes

f∗ = arg min
f∈H

1
n

n∑
i=1

V (f(xi), yi) + λA‖f‖2K +
λI
u2

fTLf . (2)

This problem depends on the training set points, the regularization parameters λA, λI , and the
parameter ε used to construct the neighborhood graph. Choosing V to be the square loss or the
hinge loss, respectively, we recover natural generalizations of regularized least squares and SVM to
semi-supervised learning. As in the case of Tikhonov regularization, we have a representer theorem:
it is possible to write the solution to (2) as a linear combination of representers of the training set;
that is,

f∗(x) =
u∑
i=1

ciK(xi, x)

for some u-tuple c = (c1, . . . , cu). (The proof is similar to the one sketched in lecture 3.)

6 Manifold RLS and SVM
As examples, we show how to generalize regularized least squares and SVM to the semi-supervised
setting. Taking V (f(xi), yi) = (f(xi)− yi)2, using the representer theorem in (1) gives

c∗ = arg min
c∈Ru

1
n

(y − JKc)T (y − JKc) + λAcTKc +
λI
u2

cTKLKc,

where c∗ is such that f∗(x) =
∑u
i=1 c

∗
iK(xi, x). Here y = (y1, . . . , yn, 0, . . . , 0) ∈ Ru, and J is the

n × n diagonal matrix with ones in the first n diagonal entries and zeroes in the remaining u − n
entries; the effect of J is to disregard the value of f predicted for the unlabeled training points.

Since the functional is strictly convex and differentiable, we can solve for c∗ by setting the
derivative equal to zero. This yields the solution

c∗ = M−1y,

where

M = JK + λAnI +
λIn

2

u2
LK.

Similarly, we can use the hinge loss V (f(xi), yi) = (1 − yif(xi))+ in (1), apply the representer
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theorem, create slack variables ξi and add an unpenalized bias b, yielding

c∗ = arg min
c∈Ru,ξ∈Rn

1
n

n∑
i=1

ξi + λAcTKc +
λI
u2

cTKLKc

subject to yi
( u∑
j=1

cjKij + b
)
≥ 1− ξi for i = 1, . . . , n;

ξi ≥ 0 for i = 1, . . . , n.

This can be transformed to the dual problem

α∗ = arg max
α∈Rn

n∑
i=1

αi −
1
2
αTQα

subject to
n∑
i=1

yiαi = 0

0 ≤ αi ≤
1
n

for i = 1, . . . , n,

where
Q = yTJK

(
2λAI + 2

λI
u2

LK
)−1

JTy.

7 Remarks
We present some final remarks.

Convergence of the smoothness penalty. A result on convergence of the empirical estimate
of the smoothness penalty is as follows. For a point xi in the training set, note (Lf)i =

∑
j

(
f(xi)−

f(xj)) exp
(
− 1

ε‖xi − xj‖
2
)
. We extend this to an operator L on H, given by

(Lf)(x) =
∑
j

(f(x)− f(xj)) exp
(
− 1
ε
‖x− xj‖2

)
.

We then have the following convergence theorem2 due to Belkin and Niyogi [3]:

Theorem 1 Let the training points {x1, . . . , xu} be sampled from the uniform distribution over a
manifold M (of dimension d) embedded in X. Put ε = u−α, where 0 < α < 1

2+d . Then for all
f ∈ C∞ and x ∈ X, there exists a constant C such that

C
ε−

d+2
2

u
(Lf)(x)→ ∆Mf(x) in probability as u→∞.

Spectral properties of ∆M and L. Significant information about the spaceM can be gleaned
from the spectrum of ∆M. It can be shown that for M topologically compact, the eigenfunctions
of ∆M form a countable basis for L2(M). If M is a connected space, f(x) ≡ 1 is the unique
eigenfunction of ∆M having eigenvalue 0. The spectrum of L likewise encodes useful information;
for instance, the smallest nonzero eigenvalue of L is the size of the minimum cut on G. In the
Laplacian eigenmap algorithm [2], the training data {x1, . . . , xn} are projected onto the eigenvectors
of the Laplacian; this map preserves local distances, allowing dimensionality reduction in the case
that the input space has dimension � n.

2The version presented is from the class slides [1].
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Computational complexity. The graph Laplacian is a dense u × u matrix. We can achieve
better performance and overcome some space limitations by sparsifying L, e.g. by adding an edge
between xi and xj in the weighted neighborhood graph only if xj is a kth-nearest-neighbor of xi or
vice versa.
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